JPH0418347A - Polyethylenic heat-shrinkable laminated film - Google Patents

Polyethylenic heat-shrinkable laminated film

Info

Publication number
JPH0418347A
JPH0418347A JP2119720A JP11972090A JPH0418347A JP H0418347 A JPH0418347 A JP H0418347A JP 2119720 A JP2119720 A JP 2119720A JP 11972090 A JP11972090 A JP 11972090A JP H0418347 A JPH0418347 A JP H0418347A
Authority
JP
Japan
Prior art keywords
heat
temperature
layer
film
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119720A
Other languages
Japanese (ja)
Other versions
JP3004314B2 (en
Inventor
Shuichi Morita
修一 守田
Kazuhiro Hamada
和宏 浜田
Shigeyoshi Koyabu
小藪 重芳
Tamio Moriyama
民男 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2119720A priority Critical patent/JP3004314B2/en
Publication of JPH0418347A publication Critical patent/JPH0418347A/en
Application granted granted Critical
Publication of JP3004314B2 publication Critical patent/JP3004314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To reduce thickness irregularity and to improve sealing properties at the time of high speed packing by respectively using a resin having high heat of fusion in the innermost and outermost layers and using at least one layer based on an ethylene/alpha-olefin linear copolymer having a specific crystal m.p. as an intermediate layer. CONSTITUTION:At least one layer based on linear low density polyethylene characterised by that density is 0.870 - 0.930 g/cm<3>, a melt index is 0.1 - 10 g/10 min, the main peak temp. Tma of a fusion curve after quenching is 118+ or -5 deg.C and the temp. difference between main peak temp. Tmb after gradual cooling and Tma is 3 deg.C or more is contained as an intermediate layer and layers based on linear low density polyethylene (B) characterized by that a melt index is 0.1 - 10g/10 min, the total heat of fusion in a fusion curve after gradual cooling is 110 mJ/mg or more and the heat of fusion at main peak temp. or higher is 15 mJ/mg or more are contained as the innermost and outer most layers and the thickness of the intermediate layer to all of layers is 60% or more and the thickness of each of the innermost and outermost layers is set to 1 mum or more.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリエチレン系熱収縮性積層フィルムに関する
ものであり、より詳しくは特定のエチレン系共重合体か
ら成る厚み斑が小さく、包装機械適性が優れた熱収縮性
積層包装フィルムに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a polyethylene heat-shrinkable laminated film, more specifically a polyethylene-based heat-shrinkable laminated film that is made of a specific ethylene copolymer and has small thickness unevenness and is suitable for packaging machines. Concerning an excellent heat-shrinkable laminated packaging film.

(従来技術) 従来、熱収縮性フィルムとしてはポリ塩化ビニル、ポリ
プロピレン、ポリエチレン系等の延伸フィルムなどが知
られている。中でもポリエチレン系熱収縮性フィルムは
、ヒートシール性を有し低価格、その耐衝撃性などにお
いて優れている点て注目され、多くの分野での利用が期
待されている。
(Prior Art) Stretched films of polyvinyl chloride, polypropylene, polyethylene, and the like are conventionally known as heat-shrinkable films. Among these, polyethylene heat-shrinkable films have attracted attention for their heat-sealability, low cost, and excellent impact resistance, and are expected to be used in many fields.

一方、近年包装機の包装スピードが著しく高速化され、
これらの新しい包装機械に適した包装材料の供給が求め
られている。
On the other hand, the packaging speed of packaging machines has increased significantly in recent years.
There is a need to supply packaging materials suitable for these new packaging machines.

(発明が解決しようとする問題点) 近年そのスピードが著しく高速になってきているため、
溶断シール性が必ずしも満足のいくものでは無いことが
指摘され、更に低温収縮性に優れ、厚み斑が小さく、溶
断シール性に優れたフィルムの出現が望まれている。
(The problem that the invention aims to solve) In recent years, the speed of technology has increased significantly, so
It has been pointed out that the melt-cut sealability is not necessarily satisfactory, and there is a desire for a film that has excellent low-temperature shrinkability, small thickness unevenness, and excellent melt-cut sealability.

ポリエチレン系熱収縮性フィルムを包装材料として自動
包装機(ビロー包装機、半折自動包装機)に用いる場合
、近年包装機の包装スピードが著しく高速化し従来発生
しなかったヒートシール不良(部分的にシールされない
)やフィルムの平面性が悪い場合には、フィルム走行時
にシワが入り易く走行性トラブルの他にもヒートシール
不良が発生する事がある。
When using polyethylene heat-shrinkable film as a packaging material in automatic packaging machines (bellow packaging machines, half-folding automatic packaging machines), the packaging speed of packaging machines has increased significantly in recent years, resulting in heat seal failure (partially If the film is not sealed (not sealed) or if the film has poor flatness, wrinkles tend to form during film running, which can cause not only running problems but also poor heat sealing.

自動包装機で包装する場合はヒートシールはヒートナイ
フによる溶断シールが一般的であるが、シール不良現象
とはヒートナイフによる溶断シール時に溶断樹脂がヒー
トナイフの刃先に付着し、カットされなかったり、とン
ホールか発生したり、極端な場合には全くシールされな
いことを指している。又、シール不良の原因の一つとし
てヒートナイフ受は台へのフィルムの粘着現象も挙げら
れる。
When packaging with an automatic packaging machine, heat sealing is generally performed using a heat knife, but sealing failure occurs when the resin adheres to the cutting edge of the heat knife during sealing using a heat knife, resulting in the product not being cut. This means that holes may occur, or in extreme cases, there may be no seal at all. In addition, one of the causes of poor sealing is the sticking of the film to the base of the heat knife receiver.

又、フィルム厚み斑が大きかったり、平面性が悪い場合
には、フィルム走行時にシワが入り易くシワの部分を溶
断シールするとピンホールが発生し易く、シール不良の
原因となる。
Furthermore, if the film has large thickness unevenness or poor flatness, wrinkles are likely to form during film running, and pinholes are likely to occur when the wrinkled portions are sealed by melting, resulting in poor sealing.

(問題点を解決するための手段) 本発明は前記の問題点を解消し、厚み斑が小さく、自動
包装機での溶断シール性に優れた熱収縮性フィルムを提
供するために、フィルムの積層構成及び各種の原料樹脂
について鋭意検討した結果、融点以上の温度における融
解熱量が高いレジンを最内層及び最外層に各々使用し、
中間層に特定の結晶融点を有するエチレンとα−オレフ
ィンとの線状共重合体を主成分とする層を少なくとも一
層使用することにより厚み斑が小さく高速包装時のシー
ル適性を改善することが出来ることを見いだし、本発明
に到達したものである。
(Means for Solving the Problems) The present invention solves the above-mentioned problems and provides a heat-shrinkable film with small thickness unevenness and excellent fusing sealability on automatic packaging machines. After careful consideration of the structure and various raw material resins, we decided to use resins with a high heat of fusion at temperatures above the melting point for the innermost and outermost layers, respectively.
By using at least one layer mainly composed of a linear copolymer of ethylene and α-olefin having a specific crystal melting point in the intermediate layer, thickness unevenness can be reduced and sealing suitability during high-speed packaging can be improved. This is what led to the present invention.

即ち、本発明は中間層が密度が0.870〜0゜930
g/cm3、メルトインデックスが0.1〜10g/1
0分であり、且つ、示差走査熱量計(以下DSCと略す
)による融点測定において、190℃にて30分間保持
後降温速度100℃/分で20℃まで降温し、その後昇
温速度10℃/分で昇温するとき得られる融解曲線(以
下急冷後の融解曲線という)のメインピーク温度をTa
+aとしたときTo+aが118±5℃の範囲にあり、
又、190℃にて30分間保持後降温速度10℃/分で
20℃まで降温し、その後昇温速度10℃/分で昇温す
るとき得られる融解−!!(以下徐冷後の融解曲線とい
う)のメインピーク温度をTmbとしたとき、Tll1
bとTmaとの温度差が3℃以上である線状低密度ポリ
エチレン(A)を主成分とする組成物からなる層を少な
くとも一層と、メルトインデックス 0.1〜10g/
10分であり、且つ、徐4後の融解曲線における全融解
熱量が110mJ/■以上であり、メインピーク温度以
上の温度における融解熱量が15mJ/ntg以上であ
る線状低密度ポリエチレン(B)を主成分とする組成物
からなる層を各々最内層及び最外層として含み、少なく
とも一軸方向に延伸された積層フィルムであって、全層
に対する中間層の厚みが60%以上、最内層及び最外層
の厚みが各々1μ以上であり、厚み斑が10%未満、9
0℃における面積収縮率が20%以上であることを特徴
とするポリエチレン系熱収縮性積層フィルムを要旨とす
るものである。上記のDSC測定方法は試料8〜10i
+8をアルミパンに封入し窒素気流中にて行なわれる。
That is, in the present invention, the intermediate layer has a density of 0.870 to 0.930.
g/cm3, melt index 0.1-10g/1
0 minutes, and in the melting point measurement using a differential scanning calorimeter (hereinafter abbreviated as DSC), after holding at 190°C for 30 minutes, the temperature was lowered to 20°C at a cooling rate of 100°C/min, and then at a heating rate of 10°C/min. Ta
+a, To+a is in the range of 118±5℃,
Furthermore, after holding at 190°C for 30 minutes, the temperature is lowered to 20°C at a cooling rate of 10°C/min, and then the temperature is raised at a heating rate of 10°C/min. ! (hereinafter referred to as the melting curve after slow cooling) when the main peak temperature is Tmb, Tll1
At least one layer made of a composition mainly composed of linear low density polyethylene (A) with a temperature difference of 3° C. or more between b and Tma, and a melt index of 0.1 to 10 g/
10 minutes, and the total heat of fusion in the melting curve after slowing 4 is 110 mJ/■ or more, and the heat of fusion at a temperature equal to or higher than the main peak temperature is 15 mJ/ntg or more. Linear low-density polyethylene (B) A laminated film comprising layers each consisting of a composition as a main component as the innermost layer and the outermost layer and stretched in at least one axis, wherein the thickness of the intermediate layer is 60% or more of the total layer, and the innermost layer and the outermost layer are Each thickness is 1μ or more, thickness unevenness is less than 10%, 9
The gist of the present invention is a polyethylene heat-shrinkable laminated film characterized by an area shrinkage rate of 20% or more at 0°C. The above DSC measurement method is for samples 8 to 10i.
+8 is sealed in an aluminum pan and carried out in a nitrogen stream.

本発明において少なくとも一層、中間層の主成分として
用いられる線状低密度ポリエチレン(A)としてはエチ
レンと、例えばプロピレン、ブテン−1、ペンテン−1
、ヘキセン−1、ヘプテン−1,4−メチルペンテン−
1、オクテン−1、デセン−1、ウンデセン−1、ドデ
セン−1を含む炭素数3〜20個、好ましくは炭素数が
4〜8個01種または2種以上のα−オレフィンとの共
重合体があげられる。
In the present invention, the linear low density polyethylene (A) used as the main component of at least one intermediate layer includes ethylene, propylene, butene-1, pentene-1, etc.
, hexene-1, heptene-1,4-methylpentene-
1. Copolymer with 1 or more α-olefins having 3 to 20 carbon atoms, preferably 4 to 8 carbon atoms, containing 1 octene, 1 decene, 1 undecene, and 1 dodecene. can be given.

これらの樹脂の中でも、少なくとも50重量%以上のエ
チレンと2種のα−オレフィンを主成分とし、全分岐度
が2.OCH3/100C以上の3元共重合体であるも
の、あるいはエチレンと炭素数4〜8のα−オレフィン
とを主成分とし、分岐度が2.5CH3/100C以上
であるものが特に好ましい。更に好ましくはエチレンと
ブテン−1との共重合体、エチレンと4−メチルペンテ
ン−1、ブテン−1との3元共重合体、エチレンとオク
テン−1、ブテン−1との3元共重合体が更に好適であ
る。
Among these resins, the main components are at least 50% by weight of ethylene and two types of α-olefins, and the total degree of branching is 2. Particularly preferred are those which are terpolymer copolymers with OCH3/100C or more, or those whose main components are ethylene and an α-olefin having 4 to 8 carbon atoms and whose degree of branching is 2.5CH3/100C or more. More preferably, a copolymer of ethylene and 1-butene, a terpolymer of ethylene and 4-methylpentene-1 and 1-butene, and a terpolymer of ethylene and 1-octene and 1-butene. is even more suitable.

又、エチレンとα−オレフィンとの線状共重合体(A)
は密度0.870〜0.930 g/cw+3、メルト
インデックス 0.1−10g/10分の特性値を有す
るものが用いられ、より好ましくは密度がO−910〜
0.925g/cm3、メルトインデックスが0.2〜
5.0g/10分の特性値を有するものが用いられる。
Moreover, a linear copolymer of ethylene and α-olefin (A)
A material having a density of 0.870 to 0.930 g/cw+3 and a melt index of 0.1 to 10 g/10 minutes is used, and more preferably a density of O-910 to
0.925g/cm3, melt index 0.2~
A material having a characteristic value of 5.0 g/10 minutes is used.

密度が0.870 g/cm3未満てはフィルムの腰の
改良効果が小さく、又、0.930g/c…3を超える
と低温収縮性が不十分であるため好ましくない。メルト
インデックスが0.1g/10分未満のものは、溶融押
出時のモーター負荷が増大し加工適性が悪くなる点て好
ましくなく、10g/10分を超えると、延伸工程での
安定性が不十分であるため好ましくない。
If the density is less than 0.870 g/cm3, the effect of improving the stiffness of the film will be small, and if it exceeds 0.930 g/cm3, the low-temperature shrinkability will be insufficient, which is not preferable. If the melt index is less than 0.1 g/10 minutes, it is undesirable because the motor load during melt extrusion will increase and processing suitability will deteriorate, and if it exceeds 10 g/10 minutes, the stability in the stretching process will be insufficient. Therefore, it is not desirable.

前記の線状低密度ポリエチレン(A)としては急冷後の
融解曲線において全吸熱面積に対するTa+a±5℃の
範囲の吸熱面積が15%以上であるものが更に好適に利
用される。
As the linear low-density polyethylene (A), one whose melting curve after quenching has an endothermic area in the Ta+a±5° C. range of 15% or more of the total endothermic area is more preferably used.

全層に対する中間層の厚みは60%以上であることが必
要である。中間層の厚みが60%未満の場合、延伸フィ
ルムの厚み斑が大きくなる。又、最内層、最外層の延伸
後の厚みは少なくとも各々1μ閘以上になるように選択
する事が必要であり、1μ剛未満では優れた溶断ヒート
シール性が発揮できない。
It is necessary that the thickness of the intermediate layer is 60% or more of the total thickness. When the thickness of the intermediate layer is less than 60%, the thickness unevenness of the stretched film becomes large. Further, it is necessary to select the thickness of the innermost layer and the outermost layer after stretching to be at least 1 μm or more each, and if the thickness is less than 1 μm, excellent heat-sealability cannot be exhibited.

尚、中間層は上記の線状低密度ポリエチレン樹脂(A)
に属する異なったグレートの樹脂からなる複数の層から
成っていても良い・ 又、最内層及び最外層に主成分として各々使用されるエ
チレンとα−オレフィンとの線状共重合体(B)は、徐
冷後の融解曲線における全融解熱量が110mJ/11
1g以上であり、且つ、メインピーク温度以上の温度に
おける融解熱量が15mJ/lag以上、メルトインデ
ックスが0.1〜10g/10分、より好ましくは0.
2g〜5.0g/10分の特性値を有するものが用いら
れる。
The intermediate layer is made of the above linear low density polyethylene resin (A).
The linear copolymer (B) of ethylene and α-olefin used as the main component in the innermost layer and the outermost layer, respectively, may be composed of multiple layers consisting of resins of different grades belonging to , the total heat of fusion in the melting curve after slow cooling is 110 mJ/11
1 g or more, and has a heat of fusion of 15 mJ/lag or more at a temperature equal to or higher than the main peak temperature, and a melt index of 0.1 to 10 g/10 minutes, more preferably 0.
Those having characteristic values of 2 g to 5.0 g/10 minutes are used.

メルトインデックス0.1 g/l 0分未満では加工
性の低下、及びフィルム表面の粗面化による透明性の低
下の点て好ましくなく、10g/10分を超えるとヒー
トシール強度が低下し、延伸加工性にも悪い影響を及ぼ
す。
If the melt index is less than 0.1 g/l for 0 minutes, it is unfavorable in terms of a decrease in processability and a decrease in transparency due to roughening of the film surface, and if it exceeds 10 g/10 minutes, the heat-sealing strength decreases and stretching It also has a negative effect on workability.

上記のエチレンとα−オレフィンとの線状共重合体(B
)のエチレンと共重合されるα−オレフィンは特に限定
されるものではなく、例えば炭素数が4〜12のもの、
ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−
1、オクテン−1,4−メチルペンテン−1、デセン−
1、ウンデセン−1、ドデセン−1等が挙げられるが、
炭素数4〜8のα−オレフィンがより好適に用いられる
The above linear copolymer of ethylene and α-olefin (B
) The α-olefin copolymerized with ethylene is not particularly limited, and includes, for example, those having 4 to 12 carbon atoms,
Butene-1, Pentene-1, Hexene-1, Heptene-1
1, octene-1,4-methylpentene-1, decene-
1, undecene-1, dodecene-1, etc.
α-olefins having 4 to 8 carbon atoms are more preferably used.

前記の線状低密度ポリエチレン(A)、(B)は、いわ
ゆるチーグラーナツタ型触媒を使った低中圧法によって
容易に得ることが出来、これらの製造法については特公
昭50−32270号公報、特開昭49−35345号
公報、特開昭55−78004号公報、特開昭55−8
6804号公報、特開昭54−154488号公報など
に開示される技術によることが出来る。
The above-mentioned linear low-density polyethylenes (A) and (B) can be easily obtained by a low-medium pressure method using a so-called Ziegler-Natsuta type catalyst, and their production methods are described in Japanese Patent Publication No. 32270/1983, JP-A-49-35345, JP-A-55-78004, JP-A-55-8
This can be achieved by techniques disclosed in Japanese Patent Application Laid-open No. 6804, Japanese Patent Application Laid-open No. 154488/1983, and the like.

又、前記の各層に用いられる樹脂組成物はそれぞれ1種
又2種以上を混合使用しても良く、更に本発明の目的に
支障を来さない範囲で更に高圧法ポリエチレン、エチレ
ン−酢酸ビニル共重合体、アイオノマー エチレン−プ
ロピレン共重合体などのポリオレフィン系樹脂を混合し
て使用することができる。
Furthermore, the resin compositions used in each layer may be used alone or in a mixture of two or more, and furthermore, high-pressure polyethylene, ethylene-vinyl acetate, etc. Polymers, ionomers, and polyolefin resins such as ethylene-propylene copolymers can be used in combination.

尚、本発明の積層フィルムは前記の中閏層及び最内層、
最外層の他に前記の各層の厚さの条件を満たす範囲で前
記の線状低密度ポリエチレン樹脂(A)及び(B)以外
のポリオレフィン系樹脂から成る中閏層を1層又は2N
以上含んでいても良い。このような中間層に用いられる
ポリオレフィン系樹脂としては前記線状低密度ポリエチ
レン樹脂(A)及び(B)以外の線状低密度ポリエチレ
ン樹脂、高圧法ポリエチレン、エチレン−プロピレン共
重合体等のポリオレフィン系樹脂が挙げられ、本発明の
目的に支障を来さない範囲で1種又は2種以上を適宜選
択して用いる。
In addition, the laminated film of the present invention has the above-mentioned middle layer and innermost layer,
In addition to the outermost layer, there is one or 2N intermediate layer made of a polyolefin resin other than the linear low-density polyethylene resin (A) and (B), within a range that satisfies the thickness conditions of each layer.
It may contain more than that. Polyolefin resins used for such an intermediate layer include linear low-density polyethylene resins other than the linear low-density polyethylene resins (A) and (B), high-pressure polyethylene, ethylene-propylene copolymers, and other polyolefin resins. Examples include resins, and one or more types thereof may be appropriately selected and used within a range that does not impede the purpose of the present invention.

その他に、希望により滑剤、ブロッキンク防止剤、帯電
防止剤、防曇剤などの添加剤がそれぞれの有効な作用を
具備させる目的で適宜使用する事ができ、特に最内層、
最外層の場合有用である。
In addition, additives such as lubricants, anti-blocking agents, antistatic agents, and anti-fogging agents may be used as appropriate to provide their respective effective effects, especially in the innermost layer.
Useful for the outermost layer.

次に本発明のフィルムの製造方法を示す。前記の樹脂を
用いて本発明の延伸フィルムを製造するに用いる未延伸
フィルムを製造する方法及びこの未延伸フィルムを延伸
して延伸フィルムを製造する方法は公知の方法で行なう
ことができるが、以下、三層積層管状製膜・延伸の場合
を例にあげ、具体的に説明する。
Next, a method for manufacturing the film of the present invention will be described. The method for producing an unstretched film used to produce the stretched film of the present invention using the above-mentioned resin and the method for producing a stretched film by stretching this unstretched film can be carried out by known methods, but the following methods may be used. This will be specifically explained by taking as an example the case of forming and stretching a three-layer laminated tubular film.

まず前記エチレンとα−オレフィンとの線状共重合体(
A)を中間層、エチレンとα−オレフィンとの線状共重
合体(B)を内外層となるように3台の押出機により溶
融混練し、三層環状ダイより環状に共押出し、延伸する
ことなく一旦急冷固化してチューブ状未延伸フィルムを
作製する。
First, the linear copolymer of ethylene and α-olefin (
A) is melt-kneaded using three extruders so that the intermediate layer and the linear copolymer of ethylene and α-olefin (B) are the inner and outer layers, and the mixture is coextruded into a ring shape from a three-layer annular die and stretched. A tubular unstretched film is produced by rapidly cooling and solidifying the film.

得られたチューブ状未延伸フィルムを例えば第1図で示
すようなチューブラ−延伸装置に供給し、高度の配向可
能な温度範囲、例えば中間層樹脂の融点以下10℃、好
ましくは融点以下15℃よりも低い温度でチューブ内部
にガス圧を適用して膨張延伸により同時二軸配向を起こ
させる。延伸倍率は必ずしも縦横同一でなくてもよいが
、優れた強度、収縮率などの物性を得るためには縦横何
れの方向にも2倍以上、好ましくは2.5倍以上、さら
に好ましくは3倍以上に延伸するのが好適である。
The obtained tubular unstretched film is fed to a tubular stretching apparatus such as that shown in FIG. Simultaneous biaxial orientation is caused by expansion stretching by applying gas pressure inside the tube at low temperature. The stretching ratio does not necessarily have to be the same lengthwise and crosswise, but in order to obtain excellent physical properties such as strength and shrinkage, it should be at least 2 times, preferably 2.5 times or more, and more preferably 3 times in both directions. It is preferable to stretch the film to a length higher than that.

延伸装置から取りだしたフィルムは希望によりアニーリ
ングする事が出来、このアニーリングにより保存中の自
然収縮を抑制することができる。
The film taken out from the stretching device can be annealed if desired, and this annealing can suppress natural shrinkage during storage.

(実施例) 以下に実施例により本発明を具体的に説明するが、本発
明はこれらの実施例に限定されるものではない。
(Examples) The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

尚、本実施例の中で示した各物性測定は以下の方法によ
った。
In addition, each physical property measurement shown in this example was carried out by the following method.

■融解熱 8〜10IIIgの試料を秤量後アルミパンに封入し、
示差熱量計にて30m1/s+inの望素気渣中で室温
から190℃まで昇温し、この温度で30分間保持し、
次いて約10℃/ va + nで室温まで冷却する。
■Weigh a sample with a heat of fusion of 8 to 10IIIg and then seal it in an aluminum pan.
Using a differential calorimeter, the temperature was raised from room temperature to 190°C in 30 m1/s+in of desired air, and maintained at this temperature for 30 minutes.
It is then cooled to room temperature at about 10° C./va + n.

この後、昇温速度10℃/winで得られる融解曲線を
用いて吸熱ピークの面積より融解熱を算出する。
Thereafter, the heat of fusion is calculated from the area of the endothermic peak using a melting curve obtained at a temperature increase rate of 10° C./win.

■面積収縮率 縦横共10.0cisの正方形に切りとったフィルムを
90℃のグリセリン浴中に10秒間浸漬した後取り出し
、水中で急冷後縦横のそれぞれ長さを測定して次式によ
り算出した。
(2) Area Shrinkage Rate A film cut into a square of 10.0 cis in length and width was immersed in a glycerin bath at 90° C. for 10 seconds, taken out, and rapidly cooled in water. The length and width in both length and width were measured and calculated using the following formula.

面積収縮率=100−AXB 但し、A、Bはそれぞれ急冷後の縦横の長さ(単位は1
)を示す。
Area shrinkage rate = 100-AXB However, A and B are the vertical and horizontal lengths after quenching (unit: 1
) is shown.

■厚み斑 連続接触型電子マイクロメーター(安立電気株式会社製
、K306C型)を使用し、フルスケール8μ庁でチュ
ーブの円周方向に測定したチャートについて最大値(T
 1lax)、最小値(Twin)及び平均値(T)を
求め、次式により算出した。
■The maximum value (T
1lax), the minimum value (Twin), and the average value (T), and calculated using the following formula.

1゛ 但し、Tは測定フィルムの101w1lW1隔に相当す
るチャートから読みとった値の算術平均値である。
1. However, T is the arithmetic mean value of the values read from the chart corresponding to 101W11W1 intervals of the measurement film.

■各層の厚さ 積層の各層の厚さはフィルムの断面を顕微鏡で観察する
ことにより測定した。
■Thickness of each layer The thickness of each layer in the lamination was measured by observing the cross section of the film with a microscope.

■ヘイズ ASTM−D 1003に準拠した。■Haze Compliant with ASTM-D 1003.

■包装機械適性 (イ)トキワ工業(株)!!自動包装機(型式PW−R
2、ピロー包装機)に輻380mのフィルムを使用し、
カップラーメンを100ケ/分間のスピードで包装した
。収縮包装後のシール部を観察し、シール部に糸曳きか
なく、1m以上のピンホールがないものを良品とした。
■Packaging machine aptitude (a) Tokiwa Kogyo Co., Ltd.! ! Automatic packaging machine (model PW-R
2. Using a film with a width of 380 m in the pillow packaging machine,
Cup noodles were packaged at a speed of 100 pieces/minute. The sealed portion after shrink-wrapping was observed, and those with no strings or pinholes of 1 m or more in the sealed portion were judged to be good.

この包装機を用いて100ケ連続的に包装し、その良品
率を測定した。尚、収縮前の予備包装時のフィルム寸法
の余裕率は縦、横共に10%とした。
Using this packaging machine, 100 pieces were continuously packaged, and the quality of the products was measured. Incidentally, the margin of film dimensions during preliminary packaging before shrinkage was 10% for both length and width.

(ロ)協和電機(株)製半折自動包装機(型式AT−5
00)に輻400−の半折フィルムを供給し、縦23.
5(?ll、横15.5cm、高さ5.6(!II+の
弁当箱(200g)を25個/1分間のスピードで連続
的に100個包装しその良品率を測定した。
(b) Half-folding automatic packaging machine manufactured by Kyowa Denki Co., Ltd. (model AT-5)
00), a half-folded film with a width of 400- is supplied, and the length is 23.
100 bento boxes (200 g) of size 5 (?ll, width 15.5 cm, height 5.6 (!II+)) were continuously packaged at a speed of 25 pieces/1 minute, and the yield rate was measured.

良品の基準はピロー包装の場合と同一にした。又、予備
包装の余裕率は縦・横共に13%とした。
The standards for non-defective products were the same as for pillow packaging. In addition, the margin for preliminary packaging was set at 13% for both length and width.

実施例1 表1に示すような特性を持つエチレンと、コモノマーと
して4−メチルペンテン−1及びブテン−1との3元共
重合体からなる線状低密度ポリエチレン樹脂を中間層と
し、同様に表1に示すような特性を持つエチレンと4−
メチルペンテン−1との共重合体である線状低密度ポリ
エチレン樹脂を内外層として3台の押出機(中間層用、
最内層用、最外層用)でそれぞれ170℃〜240℃に
て溶融混練し、表1に示す厚み比を想定して各押出機か
らの押出量を設定して240℃に保った3層環状ダイス
より下向きに共押出した。
Example 1 A linear low-density polyethylene resin made of a ternary copolymer of ethylene having the properties shown in Table 1 and 4-methylpentene-1 and butene-1 as comonomers was used as an intermediate layer, and the same Ethylene and 4- with the properties shown in 1.
Three extruders (for the middle layer,
A three-layer annular product was melt-kneaded at 170°C to 240°C (for the innermost layer and for the outermost layer), and maintained at 240°C by setting the extrusion amount from each extruder assuming the thickness ratio shown in Table 1. It was coextruded downward from the die.

形成された3層構成チューブを内側は冷却水が循環して
いる円筒状冷却マンドレルの外表面を摺動させながら外
側は水槽を通すことにより冷却して引き取り、直径約7
5m、厚さ320μmの未延伸フィルムを得た。各層の
厚み調整は押出機のスクリュー回転数及び引き取り速度
を調整することにより行なった。このチューブ状未延伸
フィルムを第1図に示したチューブラ−二軸延伸装置に
導き、95〜105℃で縦横それぞれ4倍に延伸し、積
層二軸延伸フィルムを得た。次いてこの延伸フィルムを
チューブアニーリング装置にて75℃の熱風で10秒閏
処理した後、室温に冷却し、折り畳んで巻き取った。
The formed three-layered tube is cooled by sliding it on the outer surface of a cylindrical cooling mandrel in which cooling water is circulated on the inside, while the outer side is passed through a water tank, and then taken out.
An unstretched film with a length of 5 m and a thickness of 320 μm was obtained. The thickness of each layer was adjusted by adjusting the screw rotation speed and take-up speed of the extruder. This tubular unstretched film was introduced into the tubular biaxial stretching apparatus shown in FIG. 1, and stretched four times in length and width at 95 to 105°C to obtain a laminated biaxially stretched film. Next, this stretched film was treated with hot air at 75° C. for 10 seconds in a tube annealing device, cooled to room temperature, folded and rolled up.

延伸中の安定性は良好で、延伸点の上下動や延伸チュー
ブの揺動もなく、又、ネッキングなどの不均一延伸状態
も観察されなかった。得られた延伸フィルムは表1に示
したような厚み構成をもち、透明性、低温収縮性に優れ
、厚み斑も小さいものであった。
The stability during stretching was good, with no vertical movement of the stretching point or swinging of the stretching tube, and no uneven stretching conditions such as necking were observed. The obtained stretched film had the thickness structure shown in Table 1, had excellent transparency and low-temperature shrinkability, and had small thickness unevenness.

表3.4に示したようにピロー包装機、及び半折自動包
装機にてカップラーメン及び弁当箱の連続実包評価を行
ない、シール部の不良が少なく、広い温度範囲に於て良
好な包装適性を有するものであった。
As shown in Table 3.4, continuous packaging evaluation of cup ramen and bento boxes was performed using a pillow packaging machine and a half-folding automatic packaging machine, and it was found that there were few seal defects and good packaging suitability over a wide temperature range. It had a

実施例2.3 表1に示す樹脂構成にて実施例1と同一の方法で熱収縮
性積層フィルムを作製した。透明性、低温収縮性に優れ
厚み斑も小さく、包装適性に優れたフィルムであった。
Example 2.3 A heat-shrinkable laminated film was produced in the same manner as in Example 1 using the resin composition shown in Table 1. The film was excellent in transparency and low-temperature shrinkability, had small thickness irregularities, and had excellent packaging suitability.

実施例4 表1に示す樹脂構成にて実施例1と同一の方法で熱収縮
性積層フィルムを作製した。内外層に防曇剤としてステ
アリン酸モノグリセライドを5000ppm添加したが
、透明性、低温収縮性に優れ、厚み斑も小さく、包装適
性に優れたフィルムてあった。
Example 4 A heat-shrinkable laminated film was produced in the same manner as in Example 1 using the resin composition shown in Table 1. Although 5000 ppm of stearic acid monoglyceride was added as an antifogging agent to the inner and outer layers, the film had excellent transparency and low-temperature shrinkability, had small thickness irregularities, and was excellent in packaging suitability.

実施例5 実施例1において、押出装置を4台の押出機を接続した
4層環状ダイスを有する装置に代え、中間層と最内層と
の間に高圧法低密度ポリエチレン樹脂(密度0.922
g/Cm3、Mlが0.5g/]O分)からなる第2の
中間層がくるようにし、最内層、第2の中間層、中間層
、最外層の各層の厚さ比がそれぞれ15.10.60.
15となるように設定した他は、使用樹脂、延伸条件等
は実施例1と同様にして4層の熱収縮性積層フィルムを
製造した。得られたフィルムの厚み斑は9.5%、面積
収縮率は25.0%、ヘイズは3.0%であり、厚み斑
、低温収縮性及び透明性ともに優れ包装適性が優れたフ
ィルムであった。
Example 5 In Example 1, the extrusion device was replaced with a device having a four-layer annular die connected to four extruders, and a high-pressure low-density polyethylene resin (density 0.922) was used between the middle layer and the innermost layer.
g/Cm3, Ml is 0.5 g/]O min), and the thickness ratio of each layer of the innermost layer, second intermediate layer, intermediate layer, and outermost layer is 15. 10.60.
A four-layer heat-shrinkable laminated film was produced in the same manner as in Example 1 except that the resin used and the stretching conditions were set to 15. The thickness unevenness of the obtained film was 9.5%, the area shrinkage rate was 25.0%, and the haze was 3.0%, indicating that the film had excellent thickness unevenness, low-temperature shrinkability, and transparency, and was excellent in packaging suitability. Ta.

比較例1 表1に示すように中間層に急冷後の融点が126℃であ
り、11B±5℃の範囲には融点がない線状低密度ポリ
エチレン樹脂を使用し、内外層には実施例1の内外層に
用いたものと同一の線状低密度ポリエチレン樹脂を使用
し、実施例1と同し条件で押し出し、冷却して引き取り
、直径約75−1厚さ320μ層の積層未延伸フィルム
原反を得た。各層の厚み調整は押出機のスクリュー回転
数及び引き取り速度を調整することにより行なった。
Comparative Example 1 As shown in Table 1, a linear low-density polyethylene resin having a melting point after quenching of 126°C and no melting point in the range of 11B±5°C was used for the intermediate layer, and Example 1 was used for the inner and outer layers. Using the same linear low-density polyethylene resin as that used for the inner and outer layers of Example 1, it was extruded under the same conditions as in Example 1, cooled, and taken off to produce a laminated unstretched film material with a diameter of about 75-1 and a thickness of 320 μm. I got the opposite. The thickness of each layer was adjusted by adjusting the screw rotation speed and take-up speed of the extruder.

次いて実施例1と同様にチューブラ−延伸装置により9
5〜105℃の温度にて縦横それぞれ4倍に延伸した。
Next, in the same manner as in Example 1, 9
It was stretched 4 times in length and width at a temperature of 5 to 105°C.

延伸中の安定性が悪く揺動が大きく、厚み斑の大きい熱
収縮性積層フィルムを得た。
A heat-shrinkable laminated film with poor stability during stretching, large fluctuations, and large thickness unevenness was obtained.

このチューブ状未延伸フィルムを第1図に示したチュー
ブラ−二軸延伸装置に導き、95〜105℃で縦横それ
ぞれ4倍に延伸し、積層二輪延伸フィルムを得た。次い
てこの延伸フィルムをチューブアニーリング装置にて7
5℃の熱風で10秒間処理した後、室温に冷却し、折り
畳んで巻き取った。
This tubular unstretched film was introduced into the tubular biaxial stretching apparatus shown in FIG. 1, and stretched four times in length and width at 95 to 105°C to obtain a laminated two-wheel stretched film. Next, this stretched film was passed through a tube annealing device for 7
After being treated with hot air at 5° C. for 10 seconds, it was cooled to room temperature, folded and rolled up.

得られた熱収縮性フィルムを包装機にかけ包装適性を評
価したが、溶断シールバーへの樹脂付着や糸曵きは若干
は改良されたが、シワが発生し易いこともあり、シール
性は不十分であった。
The resulting heat-shrinkable film was run on a packaging machine to evaluate its suitability for packaging, and although resin adhesion to the fused seal bar and threading were slightly improved, the sealing performance was insufficient as wrinkles were likely to occur. Met.

比較例2.3 表1に示した中間層は実施例1と同じ線状低密度ポリエ
チレン樹脂を使用し、内外層には比較例2に対しては全
融解熱量が110mJ/IIg以下の線状低密度ポリエ
チレン樹脂、比較例3に対しては全融解熱量は110m
J/w+g以上であるが、融点以上の温度に於ける融解
熱量が15mJ/11g以下である線状低密度ポリエチ
レン樹脂を使用し、実施例1と同様な方法で熱収縮性積
層フィルムを得た。得られた熱収縮性フィルムは透明性
、低温熱収縮性、厚み斑が少ないフィルムであったが、
包装機による実包テストではヒートナイフへの樹脂付着
、ヒートナイフ受は台へのフィルムの粘着などが認めら
れ、シール部に長さ約3閣の穴があくこともあり、シー
ル性が非常に不安定であった。
Comparative Example 2.3 The intermediate layer shown in Table 1 used the same linear low-density polyethylene resin as in Example 1, and the inner and outer layers used linear low-density polyethylene resin with a total heat of fusion of 110 mJ/IIg or less, compared to Comparative Example 2. For low density polyethylene resin, comparative example 3, the total heat of fusion was 110 m
A heat-shrinkable laminated film was obtained in the same manner as in Example 1 using a linear low-density polyethylene resin whose heat of fusion at temperatures above the melting point was 15 mJ/11 g or above, but not below J/w+g. . The resulting heat-shrinkable film was transparent, had low-temperature heat-shrinkability, and had little thickness unevenness;
In a package test using a packaging machine, resin adhesion to the heat knife and film adhesion to the heat knife holder were observed, and there was also a hole about 3 mm long in the seal area, resulting in very poor sealing performance. It was stable.

比較例4 中間層に実施例3の中間層に使用した樹脂を使用し、内
外層には実施例】の内外層に使用した樹脂を使用した。
Comparative Example 4 The resin used for the intermediate layer of Example 3 was used for the intermediate layer, and the resin used for the inner and outer layers of Example was used for the inner and outer layers.

中間層の厚さを全体の厚さの50%の比率にしたことを
除いては実施例1と同じ方法て熱収縮性積層フィルムを
得た。延伸工程での安定性が悪く、厚み斑の大きいフィ
ルムであった。
A heat-shrinkable laminated film was obtained in the same manner as in Example 1, except that the thickness of the intermediate layer was 50% of the total thickness. The film had poor stability during the stretching process and had large thickness unevenness.

透明性、低温熱収縮性は優れていたが、包装機による実
包テストではヒートナイフへの樹脂の付着やヒートナイ
フ受は台へのフィルムの粘着も認められなかったが、平
面性が悪く、シワが入りやすいため、シール性は不十分
なものであった。
Transparency and low-temperature heat shrinkability were excellent, but in a packaging test using a packaging machine, no resin was observed to adhere to the heat knife, nor did the film stick to the base of the heat knife holder, but the flatness was poor and wrinkles were observed. The sealing performance was insufficient because it was easy for the particles to enter.

比較例5 中間層、内外層ともに実施例1と同し樹脂構成で、熱収
縮性積層フィルムを得た。熱収縮性フィルムの内外層の
厚みを1μ■未満になるように非常に薄く設定した。
Comparative Example 5 A heat-shrinkable laminated film was obtained in which both the intermediate layer and the inner and outer layers had the same resin composition as in Example 1. The thickness of the inner and outer layers of the heat-shrinkable film was set to be very thin, less than 1 μm.

透明性、低温熱収縮性に優れ、厚み斑も小さい熱収縮性
積層フィルムであったが、包装機による実包テストでは
やはりヒートナイフへの溶融樹脂の付着が認められ、シ
ール性は不十分であった。
Although the heat-shrinkable laminated film had excellent transparency and low-temperature heat-shrinkability, and had small thickness unevenness, a packaging test using a packaging machine showed that molten resin adhered to the heat knife, and the sealing performance was insufficient. Ta.

[以下、余臼] (発明の効果) 本発明は熱収縮性フィルムを製造するに際し、中間層と
して特定の融点構造を有する線状低密度ポリエチレン樹
脂を主成分とする層を少なくとも一層用い、内外層とし
て特定の融解熱量を有する線状低密度ポリエチレン樹脂
を用いた積層構造を採用したことにより、チューブの延
伸安定性が良いため厚み斑が小さく、低温収縮性が優れ
、ヒートシール性が良く、且つ、ヒートシール時にヒー
トナイフへの粘着性が少ないため、高速包装適性が優れ
た熱収縮性材料を提供するものである。
[Hereinafter referred to as "mill"] (Effects of the Invention) When producing a heat-shrinkable film, the present invention uses at least one layer mainly composed of a linear low-density polyethylene resin having a specific melting point structure as an intermediate layer. By adopting a laminated structure using linear low-density polyethylene resin with a specific heat of fusion as a layer, the tube has good stretching stability, has small thickness unevenness, has excellent low-temperature shrinkability, and has good heat sealability. In addition, the present invention provides a heat-shrinkable material that has low adhesion to a heat knife during heat sealing and is therefore highly suitable for high-speed packaging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で用いたチューブラ−二軸延伸装置を説
明するための断面図である。 A・・・延伸装置
FIG. 1 is a sectional view for explaining a tubular biaxial stretching apparatus used in Examples. A...Stretching device

Claims (4)

【特許請求の範囲】[Claims] (1)ポリエチレン系熱収縮性積層フィルムにおいて、
中間層として密度が0.870〜0.930g/cm^
3、メルトインデックスが0.1〜10g/10分であ
り、且つ、示差走査熱量計(以下DSCと略す)による
融点測定において、190℃にて30分保持後降温速度
100℃/分で20℃まで降温し、その後昇温速度10
℃/分で昇温するとき得られる融解曲線(以下急冷後の
融解曲線という)のメインピーク温度をTmaとしたと
きTmaが118±5℃の範囲にあり、又、190℃に
て30分間保持後降温速度10℃/分で20℃まで降温
し、その後昇温速度10℃/分で昇温するとき得られる
融解曲線(以下徐冷後の融解曲線という)のメインピー
ク温度をTmbとしたとき、TmbとTmaとの温度差
が3℃以上である線状低密度ポリエチレン(A)を主成
分とする組成物からなる層を少なくとも一層と、メルト
インデックス0.1〜10g/10分であり、且つ、徐
冷後の融解曲線における全融解熱量が110mJ/mg
以上であり、メインピーク温度以上の温度における融解
熱量が15mJ/mg以上である線状低密度ポリエチレ
ン(B)を主成分とする組成物からなる層を各々最内層
及び最外層として含み、少なくとも一軸方向に延伸され
た積層フィルムであって、全層に対する中間層の厚みが
60%以上、最内層及び最外層の厚みが各々1μm以上
であり、厚み斑が10%以下、90℃における面積収縮
率が20%以上であることを特徴とするポリエチレン系
熱収縮性積層フィルム。
(1) In polyethylene heat-shrinkable laminated film,
As an intermediate layer, the density is 0.870-0.930g/cm^
3. The melt index is 0.1 to 10 g/10 minutes, and in the melting point measurement using a differential scanning calorimeter (hereinafter abbreviated as DSC), after holding at 190°C for 30 minutes, the temperature was lowered to 20°C at a cooling rate of 100°C/min. and then increase the temperature to 10
When the main peak temperature of the melting curve (hereinafter referred to as the melting curve after rapid cooling) obtained when the temperature is raised at a rate of °C/min is Tma, Tma is in the range of 118 ± 5 °C, and the temperature is maintained at 190 °C for 30 minutes. When the main peak temperature of the melting curve (hereinafter referred to as the melting curve after slow cooling) obtained when the temperature is lowered to 20 °C at a post-cooling rate of 10 °C/min and then heated at a temperature increase rate of 10 °C/min (hereinafter referred to as the melting curve after slow cooling) is Tmb. , at least one layer consisting of a composition mainly composed of linear low density polyethylene (A) with a temperature difference between Tmb and Tma of 3 ° C. or more, and a melt index of 0.1 to 10 g/10 minutes, And the total heat of fusion in the melting curve after slow cooling is 110 mJ/mg
The above-mentioned structure includes, as the innermost layer and the outermost layer, layers each composed of a composition mainly composed of linear low-density polyethylene (B) having a heat of fusion of 15 mJ/mg or more at a temperature equal to or higher than the main peak temperature, and at least one axial A laminated film stretched in the direction, in which the thickness of the intermediate layer is 60% or more of all the layers, the thickness of the innermost layer and the outermost layer is 1 μm or more each, the thickness unevenness is 10% or less, and the area shrinkage rate at 90 ° C. 20% or more of polyethylene heat-shrinkable laminated film.
(2)線状低密度ポリエチレン(A)の急冷後の融解曲
線において全吸熱面積に対するTma±5℃の範囲の吸
熱面積が15%以上であることを特徴とする請求項1の
ポリエチレン系熱収縮性積層フィルム。
(2) The heat-shrinkable polyethylene according to claim 1, characterized in that in the melting curve of the linear low-density polyethylene (A) after quenching, the endothermic area in the range of Tma±5°C is 15% or more with respect to the total endothermic area. laminated film.
(3)線状低密度ポリエチレン(A)が少なくとも50
重量%以上のエチレンと2種のα−オレフインを主成分
とし、全分岐度が2.0CH_3/100C以上の3元
共重合体であることを特徴とする請求項1のポリエチレ
ン系熱収縮性積層フィルム。
(3) Linear low density polyethylene (A) has at least 50%
The polyethylene heat-shrinkable laminate according to claim 1, characterized in that it is a terpolymer containing ethylene and two types of α-olefins in an amount of at least 2% by weight and a total degree of branching of at least 2.0CH_3/100C. film.
(4)線状低密度ポリエチレン(A)がエチレンと炭素
数4〜8のα−オレフィンとを主成分とし、分岐度が2
.5CH_3/100C以上であることを特徴とする請
求項1のポリエチレン系熱収縮性積層フィルム。
(4) Linear low-density polyethylene (A) contains ethylene and an α-olefin having 4 to 8 carbon atoms as main components, and has a degree of branching of 2.
.. The polyethylene heat-shrinkable laminated film according to claim 1, characterized in that the polyethylene heat-shrinkable laminated film has a hardness of 5CH_3/100C or more.
JP2119720A 1990-05-11 1990-05-11 Polyethylene heat-shrinkable laminated film Expired - Fee Related JP3004314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119720A JP3004314B2 (en) 1990-05-11 1990-05-11 Polyethylene heat-shrinkable laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119720A JP3004314B2 (en) 1990-05-11 1990-05-11 Polyethylene heat-shrinkable laminated film

Publications (2)

Publication Number Publication Date
JPH0418347A true JPH0418347A (en) 1992-01-22
JP3004314B2 JP3004314B2 (en) 2000-01-31

Family

ID=14768451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119720A Expired - Fee Related JP3004314B2 (en) 1990-05-11 1990-05-11 Polyethylene heat-shrinkable laminated film

Country Status (1)

Country Link
JP (1) JP3004314B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012490A1 (en) * 1993-11-02 1995-05-11 Kohjin Co., Ltd. Heat-shrinkable laminated polyethylene film
WO1996009166A1 (en) * 1994-09-20 1996-03-28 Kohjin Co., Ltd. Multilayer stretchable and shrinkable polyethylene film and process for producing the same
US5635286A (en) * 1991-11-12 1997-06-03 Kohjin Co., Ltd. Heat shrinkable polyethylene laminate film
JPH10157036A (en) * 1996-11-27 1998-06-16 Idemitsu Petrochem Co Ltd Multilayer film for packaging bag
CN111629898A (en) * 2018-03-20 2020-09-04 普瑞曼聚合物株式会社 Laminate and liquid packaging bag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635286A (en) * 1991-11-12 1997-06-03 Kohjin Co., Ltd. Heat shrinkable polyethylene laminate film
WO1995012490A1 (en) * 1993-11-02 1995-05-11 Kohjin Co., Ltd. Heat-shrinkable laminated polyethylene film
WO1996009166A1 (en) * 1994-09-20 1996-03-28 Kohjin Co., Ltd. Multilayer stretchable and shrinkable polyethylene film and process for producing the same
US5759675A (en) * 1994-09-20 1998-06-02 Kohjin Co., Ltd. Multi-layer stretchable, shrinkable polyethylene film and process for the preparation thereof
JPH10157036A (en) * 1996-11-27 1998-06-16 Idemitsu Petrochem Co Ltd Multilayer film for packaging bag
CN111629898A (en) * 2018-03-20 2020-09-04 普瑞曼聚合物株式会社 Laminate and liquid packaging bag

Also Published As

Publication number Publication date
JP3004314B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
AU640419B2 (en) Biaxially orientated polyethylene film
KR0173114B1 (en) Bioriented blown film
EP0729831A1 (en) Multilayer stretchable and shrinkable polyethylene film and process for producing the same
WO1996009931A1 (en) Heat-shrinkable polypropylene laminate film
US5306549A (en) Biaxially stretched polyethylene film
JP4915749B2 (en) Polyolefin multilayer shrink film
JP3335038B2 (en) Polyethylene heat-shrinkable co-extruded film
EP0732196B1 (en) Heat-shrinkable polyolefin laminate film
JP3272554B2 (en) Multilayer polyethylene stretch shrink film and method for producing the same
JP3751965B2 (en) Polyolefin multilayer shrink film
US5635286A (en) Heat shrinkable polyethylene laminate film
JPH0418347A (en) Polyethylenic heat-shrinkable laminated film
JPH10272747A (en) Laminated stretch shrink film
JP5587136B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP2648404B2 (en) Polyethylene-based multilayer stretched film
JP5660852B2 (en) Polyolefin heat shrinkable film with excellent shrink finish
JP2011126247A (en) Polyolefin-based thin film multilayered shrink film
JP3068920B2 (en) Polyethylene heat-shrinkable laminated film
JP2019166830A (en) Biaxially oriented polypropylene-based resin film and package using the same
JPH10100343A (en) Laminated stretch shrink film
CA2118002C (en) Heat shrinkable polyethylene laminate film
JPH09239927A (en) Stretch-shrink laminated polyolefin film
JP2010234656A (en) Polypropylene and polyolefin multilayer shrink film with light shielding property
JPH01301251A (en) Polyethylenic heat-shrinkable multilayered film
JP3859808B2 (en) Polyolefin heat shrinkable film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees