JPH04177881A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04177881A
JPH04177881A JP2306656A JP30665690A JPH04177881A JP H04177881 A JPH04177881 A JP H04177881A JP 2306656 A JP2306656 A JP 2306656A JP 30665690 A JP30665690 A JP 30665690A JP H04177881 A JPH04177881 A JP H04177881A
Authority
JP
Japan
Prior art keywords
layer
inp
semiconductor layer
ingaas
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2306656A
Other languages
Japanese (ja)
Other versions
JP2945464B2 (en
Inventor
Koichi Kaneda
金田 幸一
Satoyasu Narita
里安 成田
Osamu Goto
修 後藤
Shinji Imagawa
今川 伸次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Fujitsu Quantum Devices Ltd
Original Assignee
Fujitsu Ltd
Fujitsu Quantum Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Fujitsu Quantum Devices Ltd filed Critical Fujitsu Ltd
Priority to JP30665690A priority Critical patent/JP2945464B2/en
Publication of JPH04177881A publication Critical patent/JPH04177881A/en
Application granted granted Critical
Publication of JP2945464B2 publication Critical patent/JP2945464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the crystallinity of an InGaAs and the conditions of the interface between the InGaAs layer and an InP layer by specifying the growth conditions of the InGaAs layer. CONSTITUTION:An InP first semiconductor layer 21, an InGaAs second semiconductor layer 22 the lattice of which is commensurate with an InP single-crystal substrate 20, and an InP third semiconductor layer 23 are successively grown by crystal growth on the substrate 20. The second semiconductor layer 22 is grown at a crystal growth speed not higher than 2.5mum/hr and a molar ratio not higher than 2.5X10<-3> in the gas phase of the compound material of As. Thereby the crystallinity of the InGaAs layer 22 and the conditions of the interface between the InP layer 21 and the InGaAs layer 22 can be improved, the dark current of an APD and a PIN photodiode can be reduced by their multiplier action, and a high-efficiency semiconductor laser device can be obtained.

Description

【発明の詳細な説明】 〔概要〕 化合物半導体、特にInP系のエピタキシャルウェハを
有機金属気相成長(MOVPE)法で製造する方法に関
し、 InGaAs (又はInGaAsP)層の結晶性、及
び核層とInP層との界面状態を改善することにより、
暗電流や微分効率等の電気的特性が良好な半導体装置を
製造することを目的とし、InP単結晶基板上に、結晶
成長されたInPの第1の半導体層、該基板と格子整合
したInGaAsの第2の半導体層、InPの第3の半
導体層のうち、第2の半導体層を成長するに際し、結晶
成長速度か2.5μva/Hr以下で、かつ、Asの化
合物原料の気相中のモル比が2.5 X 10−3以下
で成長させる工程を含む。又、第2の半導体層を、As
の化合物原料の気相中のモル比と、■族の化合物原料の
気相中のモル比との比を16pI下にして成長させる。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a compound semiconductor, particularly an InP-based epitaxial wafer, by a metal organic vapor phase epitaxy (MOVPE) method, the crystallinity of an InGaAs (or InGaAsP) layer, and the relationship between the core layer and InP By improving the interface condition with the layer,
With the aim of manufacturing a semiconductor device with good electrical characteristics such as dark current and differential efficiency, a first semiconductor layer of InP crystal-grown on an InP single crystal substrate, and a first semiconductor layer of InGaAs lattice-matched to the substrate are formed. When growing the second semiconductor layer of the second semiconductor layer and the third semiconductor layer of InP, the crystal growth rate is 2.5 μva/Hr or less, and the mole of As compound raw material in the gas phase is The method includes a step of growing at a ratio of 2.5×10 −3 or less. Further, the second semiconductor layer is made of As.
The growth is performed with the ratio of the molar ratio of the compound raw material in the gas phase to the molar ratio of the group II compound raw material in the gas phase under 16 pI.

〔産業上の利用分野〕[Industrial application field]

本発明は、化合物半導体、特にInP系のエピタキシャ
ルウェハをMOVPE法で製造する方法に関する。
The present invention relates to a method for manufacturing a compound semiconductor, particularly an InP-based epitaxial wafer, by the MOVPE method.

例えば光ファイバを用いた光通信には発光素子及び受光
素子が使用されるが、これら発光素子及び受光素子には
化合物半導体、特にInP系のエピタキシャルウェハが
用いられる。従来、エピタキシャルウェハの製造には液
相成長(LPE)法が用いられてきたが、最近では口膜
厚の均一性や大面積化の必要からMOVPEが実用化さ
れつつある。
For example, light-emitting elements and light-receiving elements are used in optical communication using optical fibers, and compound semiconductors, particularly InP-based epitaxial wafers, are used for these light-emitting elements and light-receiving elements. Conventionally, a liquid phase epitaxy (LPE) method has been used to manufacture epitaxial wafers, but recently MOVPE has been put into practical use due to the need for uniformity in film thickness and large area.

そこで、MOVPE法で製造されたウニ/Sを用いても
LPE法で製造されたウエノxを用いた場合と同等又は
それ以上の素子特性を得る必要かあるか、実際にはMO
VPE法で製造されたウエノ1を受光素子に用いた場合
は後述のように暗電流か大きく、弱い光を受けた時には
十分な出力電流を得ることができない。一方、発光素子
に用いた場合には十分な微分効率を得ることかできない
。このため、MOVPE法て暗電流の小さいエピタキシ
ャルウェハ、又、十分な微分効率のエピタキシャルウェ
ハを製造する必要かある。
Therefore, is it necessary to obtain device characteristics equivalent to or better than when using Uenox manufactured by the LPE method even when using UNO/S manufactured by the MOVPE method?
When Ueno 1 manufactured by the VPE method is used as a light receiving element, the dark current is large as will be described later, and a sufficient output current cannot be obtained when receiving weak light. On the other hand, when used in a light emitting device, sufficient differential efficiency cannot be obtained. Therefore, it is necessary to manufacture epitaxial wafers with small dark current and sufficient differential efficiency using the MOVPE method.

〔従来の技術〕[Conventional technology]

例えば受光素子であるアバランシェホトダイオード(A
 P D)に用いられるエピタキシャルウェハをMOV
PE法で製造する場合、トリメチルインジウム(TMI
)、)リエチルガリウム(TEG) 、アルシン(As
H2)、ホスフィン(PH3)を夫々In、Ga、As
、Pの原料として用い、成長温度を590°C〜650
’C,成長圧力を50 torr〜100 torrと
する。このような条件において、InP基板上にInP
バッファ層、基板と格子整合したInGaAs層、In
GaAsPバッファ層、InP層を成長してダブルヘテ
ロ構造のウェハを製造する。
For example, an avalanche photodiode (A
MOV the epitaxial wafer used for PD)
When manufacturing using the PE method, trimethylindium (TMI
),) ethyl gallium (TEG), arsine (As
H2), phosphine (PH3) respectively In, Ga, As
, as a raw material for P, and the growth temperature was set at 590°C to 650°C.
'C, growth pressure is 50 torr to 100 torr. Under these conditions, InP is deposited on the InP substrate.
Buffer layer, InGaAs layer lattice matched to the substrate, In
A GaAsP buffer layer and an InP layer are grown to produce a double heterostructure wafer.

特に、InGaAs層の結晶成長速度(Rg)は4 μ
m /)Ir 〜6 μm /Hr、気相中のA s 
H3のモル比は4X10”2〜6X10−”である。こ
のような成長条件のもとで製造されたエピタキシャルウ
ェハを用いてアバランシェホトダイオードを構成した場
合、ブレークダウン電圧の90%の電圧を印加したとき
の暗電流は百数十nAである。
In particular, the crystal growth rate (Rg) of the InGaAs layer is 4 μ
m/)Ir ~6 μm/Hr, As in gas phase
The molar ratio of H3 is 4X10"2 to 6X10". When an avalanche photodiode is constructed using an epitaxial wafer manufactured under such growth conditions, the dark current when a voltage of 90% of the breakdown voltage is applied is more than 100 nA.

一方、受光素子であるPINホトダイオードに用いられ
るエピタキシャルウェハをMOVPE法で製造する場合
、APDの場合と同じ原料を用い、成長温度、成長圧力
もAPDの場合と同じにし、InP基板上にInPバッ
ファ層、基板と格子整合したInGaAs層、InGa
AsPバッファ層、InP層を成長してダブルヘテロ構
造のウェハを製造する。特に、InGaAs層のRgは
APDの場合と同じ4 μm /Hr 〜6 μm /
Hr、気相中のA s Hsのモル比は4X10−”〜
6×10−3である。このような成長条件のもとて製造
されたエピタキシャルウェハを用いてPINホトダイオ
ードを構成した場合、5v逆方向電圧を印加したときの
暗電流は2nAである。
On the other hand, when manufacturing an epitaxial wafer used in a PIN photodiode, which is a light receiving element, by the MOVPE method, the same raw materials as in the case of APD are used, the growth temperature and growth pressure are also the same as in the case of APD, and an InP buffer layer is formed on an InP substrate. , InGaAs layer lattice matched to the substrate, InGa
A double heterostructure wafer is manufactured by growing an AsP buffer layer and an InP layer. In particular, the Rg of the InGaAs layer is 4 μm/Hr to 6 μm/Hr, which is the same as that of APD.
Hr, the molar ratio of A s Hs in the gas phase is 4X10-”~
It is 6×10−3. When a PIN photodiode is constructed using an epitaxial wafer manufactured under such growth conditions, the dark current is 2 nA when a 5 V reverse voltage is applied.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来装置は、InGaAs層の成長速度及び成長圧力を
前述のような条件に設定しているので、APDの暗電流
が百数十nA(10nA以下であることが望ましい)、
PINホトダイオードの暗電流か2nA(0,1nA以
下であることか望ましい)というようにLPE法てエピ
タキシャルウェハを製造した場合よりも夫々かなり大き
く、特に弱い光を受けた時などでは十分な出力電流を得
ることができず、実用化か困難である問題点があった。
In the conventional device, the growth rate and growth pressure of the InGaAs layer are set to the conditions described above, so the dark current of the APD is 100-odd nA (preferably 10 nA or less),
The dark current of the PIN photodiode is 2 nA (preferably less than 0.1 nA), which is considerably larger than that when epitaxial wafers are manufactured using the LPE method, and the dark current is sufficient, especially when exposed to weak light. However, there was a problem that it was difficult to put it into practical use.

又、半導体レーザに用いられるエピタキシャルウェハに
関しても、前述と同様の成長条件を用いて製造している
ので、十分な微分効率を得ることかてきない問題点かあ
った。
Furthermore, since epitaxial wafers used in semiconductor lasers are manufactured using the same growth conditions as described above, there is a problem in that it is difficult to obtain sufficient differential efficiency.

このような問題点を生じるのは、後で詳述する如く、理
由は明確でないが、前述の成長条件を用いて成長を行な
うと、InGaAs (又はInGaAsP)層の結晶
性、及び酸層とInP層との界面状態が悪化するためと
考えられる。
The reason why such a problem occurs is not clear, as will be explained in detail later, but when growth is performed using the above-mentioned growth conditions, the crystallinity of the InGaAs (or InGaAsP) layer and the acid layer and InP This is thought to be due to deterioration of the interface condition with the layer.

本発明は、InGaAs (又はInGaAsP)層の
結晶性、及び酸層とInP層との界面状態を改善するこ
とにより、暗電流や微分効率等の電気的特性が良好な半
導体装置の製造方法を提供することを目的とする。
The present invention provides a method for manufacturing a semiconductor device with good electrical characteristics such as dark current and differential efficiency by improving the crystallinity of the InGaAs (or InGaAsP) layer and the interface state between the acid layer and the InP layer. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。同図(A)は結晶成長
速度及びAsの化合物原料の気相中のモル比と、暗電流
との関係を示す特性図、同図(B)は本発明方法によっ
て製造された半導体装置の構成図である。上記問題点は
、同図(A)に示す如く、InP単結晶基板20上に、
少なくともInPの第1の半導体層21.該基板20と
格子整合したInGaAsの半導体層22.TnPの第
3の半導体層23を有機金属気相成長法で連続して結晶
成長してダブルヘテロ構造の半導体装置を製造する方法
において、第2の半導体層22を、同図(B)に示す如
く、結晶成長速度が2.5μm/Hr以下で、かつ、A
sの化合物原料の気相中のモル比か2.5X10−3以
下で成長させる工程を含むことを特徴とする半導体装置
の製造方法によって解決される。又、この場合、第2の
半導体層 22を、Asの化合物原料の気相中のモル比
と、■族の化合物原料の気相中のモル比との比を16以
下にして成長させる。
FIG. 1 shows a diagram of the principle of the present invention. The figure (A) is a characteristic diagram showing the relationship between the crystal growth rate, the molar ratio of the As compound raw material in the gas phase, and the dark current, and the figure (B) is the structure of a semiconductor device manufactured by the method of the present invention. It is a diagram. The above-mentioned problem is as shown in FIG.
At least a first semiconductor layer 21 of InP. an InGaAs semiconductor layer 22 lattice-matched to the substrate 20; In a method for manufacturing a semiconductor device with a double heterostructure by continuously growing crystals of a third semiconductor layer 23 of TnP by metal-organic vapor phase epitaxy, the second semiconductor layer 22 is formed as shown in FIG. , the crystal growth rate is 2.5 μm/Hr or less, and A
The problem is solved by a method for manufacturing a semiconductor device, which includes a step of growing a compound raw material of s at a molar ratio of 2.5×10 −3 or less in the gas phase. Further, in this case, the second semiconductor layer 22 is grown with the ratio of the molar ratio of the As compound raw material in the gas phase to the molar ratio of the Group 2 compound raw material in the gas phase to 16 or less.

〔作用〕[Effect]

モル比を前述のように設定すると、成長がInGaAs
の第2の半導体層22からInPの第3の半導体層23
に切換る時にその界面にIn−A s t P +イの
ような中間層(残留又は反応管などに付着したAsの量
に依存して厚く、格子不正も大きくなると思われる)か
形成されないと考えられ、又、結晶成長速度を前述のよ
うに設定すると結晶性が向上するものと考えられる。ま
た、ASの化合物原料の気相中のモル比と、■族の化合
物原料の気相中のモル比との比を前述のように設定した
ので、■族の化合物原料の空格子等の欠陥を少なくでき
る。本発明によると第2の半導体層22の結晶性、及び
第2の半導体層22と第3の半導体層23との界面状態
を改善できるので、これらの相乗作用からAPDの場合
では暗電流を10nA以下、PINホトダイオードの場
合では暗電流を0.1nA以下にすることができる。又
、半導体レーザの場合では微分効率を従来例に比して2
5%程度改善できる。
If the molar ratio is set as described above, the growth will be similar to that of InGaAs.
from the second semiconductor layer 22 of InP to the third semiconductor layer 23 of InP.
When switching to , an intermediate layer such as In-A s t P + A (which is thick depending on the amount of As remaining or attached to the reaction tube, etc., and the lattice irregularity is thought to be large) is not formed at the interface. It is also believed that setting the crystal growth rate as described above improves crystallinity. In addition, since the ratio of the molar ratio in the gas phase of the AS compound raw material to the molar ratio in the gas phase of the group ■ compound raw material was set as described above, defects such as vacancies in the group ■ compound raw material can be reduced. According to the present invention, the crystallinity of the second semiconductor layer 22 and the interface state between the second semiconductor layer 22 and the third semiconductor layer 23 can be improved, so due to the synergistic effect of these, the dark current can be reduced to 10 nA in the case of an APD. Hereinafter, in the case of a PIN photodiode, the dark current can be reduced to 0.1 nA or less. In addition, in the case of semiconductor lasers, the differential efficiency is 2
It can be improved by about 5%.

〔実施例〕〔Example〕

第2図は本発明方法によって製造されたPINホトダイ
オードの構成図を示す。第2図中、lはn−InP基板
、2はn−1nPバッファ層、3はn−−InGaAs
層、4はn−InPキャップ層、5は窒化珪素膜、6は
Zn拡散によるP′″−InP層、7はp電極、8はn
t極であり、PTNホトダイオードを構成する。なお、
構造上は従来のものと同しである。ここで、p電極7に
負電圧、nE電極に正電圧を印加し、成長条件に対する
暗電流を測定した結果を第3図及び第4図に示す。
FIG. 2 shows a block diagram of a PIN photodiode manufactured by the method of the present invention. In Figure 2, l is an n-InP substrate, 2 is an n-1nP buffer layer, and 3 is n--InGaAs.
4 is an n-InP cap layer, 5 is a silicon nitride film, 6 is a P''-InP layer formed by Zn diffusion, 7 is a p electrode, and 8 is an n-type layer.
It is a t-pole and constitutes a PTN photodiode. In addition,
The structure is the same as the conventional one. Here, a negative voltage was applied to the p-electrode 7, and a positive voltage was applied to the nE electrode, and the results of measuring the dark current with respect to the growth conditions are shown in FIGS. 3 and 4.

第3図はInGaAs層3の成長速度(Rg)と暗電流
(Id)との関係を気相中のA s H2のモル比(X
A、、Iff)をパラメータとしてプロットしたもの、
第4図はASH2のモル比(XA3.I2)と暗電流(
Id)との関係をInGaAs層3の成長速度(Rg)
をパラメータとしてプロットしたものである。PINホ
トダイオードではその性能上、暗電流は0.1nA以下
であることが望ましいとされるか、このような望ましい
値を得るには、第3図、第4図より明らかな如く、In
GaAs層3のRgが2.5 μm /Hr以下で、が
っ、AsH3(7)モル比(X A、、、)が2.5X
]0−3以下であることか必要であることがゎがる。
Figure 3 shows the relationship between the growth rate (Rg) and the dark current (Id) of the InGaAs layer 3 based on the molar ratio of A s H2 in the gas phase (X
A, , Iff) is plotted as a parameter,
Figure 4 shows the molar ratio of ASH2 (XA3.I2) and the dark current (
Id) and the growth rate (Rg) of the InGaAs layer 3
is plotted as a parameter. It is said that it is desirable for the dark current of a PIN photodiode to be 0.1 nA or less due to its performance, and in order to obtain such a desirable value, as is clear from Figs. 3 and 4,
When the Rg of the GaAs layer 3 is 2.5 μm/Hr or less, the AsH3(7) molar ratio (X A,...) is 2.5X
]0-3 or less or required.

そこで、本発明では、MOVPE法でエビタキシャルウ
エバを製造する際の成長条件として、InGaAs層3
のRgを2.5 μm /Hr以下、Asの化合物原料
の気相中のモル比を2.5X10−3以下とする。なお
、成長圧力は76 torr、成長温度は630°Cと
する。この場合、理由は明確てないが、A s H2の
モル比(X A、、、)か必要以上に大きいと気相中に
残留するAs化合物(ASH3)や、リアクタ(反応管
)及びサセプタ等に付着したAsが再離脱し、成長かI
 nGaAs層3からInP層4に切換る時に中間層(
I n A S xP、□イ、がAsの量に依存して厚
(形成され、この中間層によって格子不正が太き(なる
からと思われる。このため、本発明は、AsHsのモル
比を必要以上に大きくとらず、2.5 X 10−+以
下に設定してInGaAs層3とInPキャップ層4と
の界面に中間層を形成しないようにして、界面状態を改
善する。一方、Rgか必要以上に大きいとInGaAs
層3の結晶性が悪化するので、本発明はRgを2.5μ
m/Hr以下にする。このとき、気相中のAsHsのモ
ル比(X As、3)と■族の化合物原料(InとGa
)のモル比(X[)との比(XA3□、/ Xz )か
大きいと■族の化合物原料の空格子等の欠陥か多く生成
されると思われるので、この欠陥を少なくするためには
、成長表面からのいわゆるAs抜けによる欠陥を生じな
い範囲てXAsH3/X−を14と小さくする。
Therefore, in the present invention, as a growth condition when manufacturing an epitaxial webber by the MOVPE method, the InGaAs layer 3
The Rg of the compound is 2.5 μm /Hr or less, and the molar ratio of the As compound raw material in the gas phase is 2.5×10 −3 or less. Note that the growth pressure is 76 torr and the growth temperature is 630°C. In this case, although the reason is not clear, if the molar ratio of As H2 (X The As attached to the I will detach again and grow.
When switching from nGaAs layer 3 to InP layer 4, the intermediate layer (
I n A S The interface condition is improved by not making it larger than necessary and by setting it to 2.5 x 10-+ or less to avoid forming an intermediate layer at the interface between the InGaAs layer 3 and the InP cap layer 4. On the other hand, if Rg If it is larger than necessary, InGaAs
Since the crystallinity of layer 3 deteriorates, in the present invention, Rg is set to 2.5μ.
m/Hr or less. At this time, the molar ratio of AsHs in the gas phase (X As, 3) and the group II compound raw materials (In and Ga
) to X[) (XA3□, / , XAsH3/X- is made as small as 14 within a range that does not cause defects due to so-called As omission from the growth surface.

このように、本発明ではInGaAs層3のRgを2.
5 μm /Hr以下で、かつ、Asの化合物原料の気
相中のモル比を2.5X10−3以下にすることにより
、InGaAs層3の結晶性、及びInGaAs層3と
InP層4との界面状態を改善できるので、これらの相
乗作用により、暗電流を0.1nA以下にてき、弱い光
を受けた時にでも十分な出力電流を取出すことかてきる
In this way, in the present invention, the Rg of the InGaAs layer 3 is set to 2.
5 μm/Hr or less and the molar ratio of the As compound raw material in the gas phase to 2.5×10 −3 or less, the crystallinity of the InGaAs layer 3 and the interface between the InGaAs layer 3 and InP layer 4 are improved. Since the condition can be improved, the synergistic effect of these makes it possible to reduce the dark current to 0.1 nA or less, and to extract a sufficient output current even when receiving weak light.

以上の実施例はPINホトダイオードの場合であるが、
アバランシェホトダイオード(APD)の場合もPIN
ホトダイオードの場合に準した考え方でよい。第5図は
本発明方法によって製造されたAPDの構成図を示し、
同図中、第2図と同一構成部分には同一番号を付してそ
の説明を省略する。第5図中、4aはパイルアップ防止
のためのInGaAsPバッファ層、4bはn”−In
P層、4cはn−1nP増倍層、6aはガードリング、
9は無反射コートであり、APDを構成する。なお、構
造上は従来のものと同じである。
The above example is a case of a PIN photodiode, but
PIN also for avalanche photodiode (APD)
The same concept as in the case of a photodiode may be used. FIG. 5 shows a configuration diagram of an APD manufactured by the method of the present invention,
In the figure, the same components as those in FIG. 2 are given the same numbers and their explanations will be omitted. In FIG. 5, 4a is an InGaAsP buffer layer for preventing pile-up, and 4b is an n''-In
P layer, 4c is n-1nP multiplication layer, 6a is guard ring,
9 is a non-reflection coat and constitutes an APD. Note that the structure is the same as the conventional one.

このAPDのエピタキシャルウェハの製造に際し、成長
圧力を76 torr、成長温度を630°Cとし、A
sH3を使用し、不純物はStをドーピングし、InG
aAs層3のRgを211m /Hr、 xAsH3を
1.25X 10 ”2.  X Asoz/ XTL
を14としてエピタキシャルウェハの成長を行なう。こ
の結果、このエピタキシャルウェハを用いて作成したA
PDの暗電流(1d)は10nAと、前述の従来例(百
数士nA)に比して大幅に小さくでき、弱い光を受けた
時にでも十分な出力電流を取出すことができる。APD
の場合も、従来の成長条件で成長を行なうと、InGa
As層3とInGaAsPバッファ層4aとの間にIn
)’Ga++−y+ ASXP ++−x+  (A 
S Xが多量に含まれる)なる中間層か形成されるが、
本発明の成長条件にすればこの中間層が形成されないと
考えられ、又、I nGaAs層3の結晶性を改善でき
ると考えられる。この場合、Rg及びX A 8 H3
を夫々前記の1/2にすると、暗電流を更に小さくする
ことかできる。
When manufacturing this APD epitaxial wafer, the growth pressure was 76 torr, the growth temperature was 630°C, and
sH3 is used, the impurity is St doped, and InG
Rg of aAs layer 3 is 211m/Hr, xAsH3 is 1.25X 10"2.
The epitaxial wafer is grown by setting 14. As a result, A
The dark current (1d) of the PD is 10 nA, which is significantly smaller than that of the conventional example described above (more than 100 nA), and a sufficient output current can be extracted even when receiving weak light. APD
In the case of , if growth is performed under conventional growth conditions, InGa
In between the As layer 3 and the InGaAsP buffer layer 4a
)'Ga++-y+ ASXP ++-x+ (A
An intermediate layer containing a large amount of S
It is believed that this intermediate layer is not formed under the growth conditions of the present invention, and that the crystallinity of the InGaAs layer 3 can be improved. In this case, Rg and X A 8 H3
By reducing each to 1/2 of the above value, the dark current can be further reduced.

更に他の実施例として、第6図に示す半導体レーザかあ
るが、この場合のエピタキシャルウェハの製造について
も前述の実施例と同様の考え方でよい。第6図中、IO
はp−1nP基板、11はp−1nPバッファ層、12
はInGaAsP活性層、13はn−InPクラッド層
であり、構造上は従来のものと同じである。その製造に
際し、InGaAsP活性層12(波長は1.3μm)
の成長を成長温度630℃、成長圧カフ 6 torr
、 Rg”1.5 μm /Hr、 XAs++2=5
.9 X 10−’、 XA5H2/X[=8.3の諸
条件で行ない、成長後のウェハをストライブ状にメサエ
ッチ後、従来と同様にLPE法で埋込み、その後素子化
する。このようにして製造された半導体レーザの微分効
率は従来例に比して25%程度改善され、0.2 mW
/ mA程度のものが得られた。このように前述の各実
施例と同様の考え方に基づく成長条件で成長した場合、
■nGaAsP層12とInP層1層上3界面状態か前
述の実施例のように改善され、この界面でのパワーロス
か少なくなるためと考えられる。
As yet another embodiment, there is a semiconductor laser shown in FIG. 6, and the manufacturing of an epitaxial wafer in this case may be carried out in the same manner as in the above-mentioned embodiment. In Figure 6, IO
is a p-1nP substrate, 11 is a p-1nP buffer layer, 12
1 is an InGaAsP active layer, and 13 is an n-InP cladding layer, which is structurally the same as the conventional one. During its manufacture, InGaAsP active layer 12 (wavelength: 1.3 μm)
Growth temperature: 630℃, growth pressure cuff: 6 torr
, Rg”1.5 μm/Hr, XAs++2=5
.. The growth was performed under the following conditions: 9×10−′, XA5H2/X[=8.3, and after the grown wafer was mesa-etched in stripes, it was buried by the LPE method as in the conventional method, and then devices were formed. The differential efficiency of the semiconductor laser manufactured in this way is improved by about 25% compared to the conventional example, and is 0.2 mW.
/ mA was obtained. In this way, when grown under growth conditions based on the same concept as each of the above-mentioned examples,
(2) This is thought to be because the state of the interface between the nGaAsP layer 12 and the InP layer 1 is improved as in the previous embodiment, and the power loss at this interface is reduced.

なお、As化合物としてターシャルブチルアルンン(T
BA)を用いると分解率か高くなるので、A s H2
の代りにこのTEAを用いてもよい。TEAを用いると
、更に気相中のモル比XTl1Aを下げることかでき、
更に暗電流を下げることかできる。
In addition, tertiary butylaluminum (T) is used as an As compound.
BA) will increase the decomposition rate, so A s H2
This TEA may be used instead of. By using TEA, it is possible to further lower the molar ratio XTl1A in the gas phase,
It is possible to further reduce the dark current.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、InGaAs層を
、Rgか2.5 μm /Hr以下で、かつ、Asの化
合物原料の気相中のモル比か2.5×10−2以下で成
長させているため、InGaAsの結晶性、及びこれら
2層の界面状態を改善でき、これらの相乗作用によりA
PDやPINホトダイオードでは従来例よりも暗電流を
小さくでき、又、半導体レーザでは従来例よりも効率の
高いものを得ることかできる。
As explained above, according to the present invention, the InGaAs layer is grown at Rg of 2.5 μm/Hr or less and at a molar ratio of As compound raw material in the gas phase of 2.5×10 −2 or less. As a result, the crystallinity of InGaAs and the interface state between these two layers can be improved, and the synergistic effect of these two layers improves A.
With PD and PIN photodiodes, dark current can be made smaller than in conventional examples, and with semiconductor lasers, it is possible to obtain higher efficiency than in conventional examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明によって製造されたPINホトダイオー
ドの構成図、 第3図はPINホトダイオードのRg対対電電流特性図 第4図はPINホトダイオードのX A、、、対暗電流
特性図、 第5図は本発明によって製造されたAPDの構成図、 第6図は本発明によって製造された半導体レーザの構成
図である。 図において、 1、lOはInP基板、 2.11はInPバッファ層、 3はInGaAs層、 4はInPキャップ層、 4aはInGaAsPバッファ層、 4b、4C,6,11,13はInP層、5は窒化珪素
膜、 7はp電極、 8はn電極、 9は無反射コート、 12はInGaAsP活性層、 20はInP単結晶基板、 21はInPの第1の半導体層、 22はInGa、Asの第2の半導体層、23はInP
の第3の半導体層 を示す。
FIG. 1 is a diagram of the principle of the present invention. FIG. 2 is a configuration diagram of a PIN photodiode manufactured according to the present invention. FIG. 3 is a diagram of the Rg versus current characteristic of the PIN photodiode. FIG. 4 is a diagram of the XA of the PIN photodiode. , , Dark current characteristic diagram, FIG. 5 is a block diagram of an APD manufactured by the present invention, and FIG. 6 is a block diagram of a semiconductor laser manufactured by the present invention. In the figure, 1, 1O is the InP substrate, 2.11 is the InP buffer layer, 3 is the InGaAs layer, 4 is the InP cap layer, 4a is the InGaAsP buffer layer, 4b, 4C, 6, 11, 13 are the InP layers, and 5 is the InP layer. Silicon nitride film, 7 is a p-electrode, 8 is an n-electrode, 9 is an anti-reflective coating, 12 is an InGaAsP active layer, 20 is an InP single crystal substrate, 21 is an InP first semiconductor layer, 22 is an InGa, As first semiconductor layer 2 semiconductor layer, 23 is InP
The third semiconductor layer of FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)InP単結晶基板(20)上に、少なくともIn
Pの第1の半導体層(21)、該基板(20)と格子整
合したInGaAsの第2の半導体層(22)、InP
の第3の半導体層(23)を有機金属気相成長法で連続
して結晶成長してダブルヘテロ構造の半導体装置を製造
する方法において、 上記第2の半導体層(22)を、結晶成長速度が2.5
μm/Hr以下で、かつ、Asの化合物原料の気相中の
モル比が2.5×10^−^3以下で成長させる工程を
含むことを特徴とする半導体装置の製造方法。
(1) At least InP on the InP single crystal substrate (20)
A first semiconductor layer (21) of P, a second semiconductor layer (22) of InGaAs lattice-matched to the substrate (20), and a second semiconductor layer (22) of InP
In a method for manufacturing a double heterostructure semiconductor device by successively growing crystals of the third semiconductor layer (23) using metal-organic vapor phase epitaxy, the second semiconductor layer (22) is grown at a crystal growth rate of is 2.5
A method for manufacturing a semiconductor device, comprising the step of growing at a rate of μm/Hr or less and at a molar ratio of As compound raw material in a gas phase of 2.5×10^-^3 or less.
(2)上記第2の半導体層(22)を、Asの化合物原
料の気相中のモル比と、III族の化合物原料せることを
特徴とする請求項1記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that the second semiconductor layer (22) is formed using a group III compound raw material in a molar ratio of a compound raw material of As in the gas phase.
(3)上記第2の半導体層(22)は、Pを含む層であ
ることを特徴とする請求項1記載の半導体装置の製造方
法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the second semiconductor layer (22) is a layer containing P.
JP30665690A 1990-11-13 1990-11-13 Method for manufacturing semiconductor device Expired - Lifetime JP2945464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30665690A JP2945464B2 (en) 1990-11-13 1990-11-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30665690A JP2945464B2 (en) 1990-11-13 1990-11-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04177881A true JPH04177881A (en) 1992-06-25
JP2945464B2 JP2945464B2 (en) 1999-09-06

Family

ID=17959742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30665690A Expired - Lifetime JP2945464B2 (en) 1990-11-13 1990-11-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2945464B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828541B2 (en) * 2000-07-18 2004-12-07 Nippon Sheet Glass Co., Ltd. Light receiving element array having isolated pin photodiodes
WO2005048332A1 (en) * 2003-11-12 2005-05-26 Sumitomo Chemical Company, Limited Method for manufacturing compound semiconductor epitaxial substrate
JP2015211166A (en) * 2014-04-28 2015-11-24 日本電信電話株式会社 Semiconductor light-receiving element and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828541B2 (en) * 2000-07-18 2004-12-07 Nippon Sheet Glass Co., Ltd. Light receiving element array having isolated pin photodiodes
WO2005048332A1 (en) * 2003-11-12 2005-05-26 Sumitomo Chemical Company, Limited Method for manufacturing compound semiconductor epitaxial substrate
GB2423637A (en) * 2003-11-12 2006-08-30 Sumitomo Chemical Co Method for manufacturing compound semiconductor epitaxial substrate
GB2423637B (en) * 2003-11-12 2007-05-23 Sumitomo Chemical Co Method for manufacturing compound semiconductor epitaxial substrate
US7393412B2 (en) 2003-11-12 2008-07-01 Sumitomo Chemical Company, Limited Method for manufacturing compound semiconductor epitaxial substrate
JP2015211166A (en) * 2014-04-28 2015-11-24 日本電信電話株式会社 Semiconductor light-receiving element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2945464B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US10593831B2 (en) Nitride semiconductor multilayer film reflector and light-emitting device using the same
US20120086030A1 (en) Light-emitting element
JPH02234477A (en) Photo-election semiconductor element
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
JP3571401B2 (en) Manufacturing method of semiconductor light emitting device
JPH0864866A (en) Manufacture of semiconductor light emitting device
JPH0864870A (en) Semiconductor light emitting element
JPH04177881A (en) Manufacture of semiconductor device
Tsang et al. InGaAs/InP p‐i‐n photodiodes grown by chemical beam epitaxy
JPH06268315A (en) Semiconductor laser
JPH0897469A (en) Semiconductor light emitting device
JPH08204215A (en) Series connected solar cell
US4284467A (en) Method for making semiconductor material
JPH0883956A (en) Semiconductor light-emitting device
JP3432444B2 (en) Semiconductor light emitting device
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JPS6244717B2 (en)
JP3703927B2 (en) Semiconductor laser element
JPH01202880A (en) Double hetero junction type semiconductor laser device
JP3140121B2 (en) Semiconductor light emitting device
JP2804093B2 (en) Optical semiconductor device
JPH04260386A (en) Manufacture of optical semiconductor device
JPH08306957A (en) Light emitting diode and its manufacture
JP3556593B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JPS621293A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11