JPH01202880A - Double hetero junction type semiconductor laser device - Google Patents

Double hetero junction type semiconductor laser device

Info

Publication number
JPH01202880A
JPH01202880A JP2648388A JP2648388A JPH01202880A JP H01202880 A JPH01202880 A JP H01202880A JP 2648388 A JP2648388 A JP 2648388A JP 2648388 A JP2648388 A JP 2648388A JP H01202880 A JPH01202880 A JP H01202880A
Authority
JP
Japan
Prior art keywords
lattice
layer
type
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2648388A
Other languages
Japanese (ja)
Other versions
JP2645055B2 (en
Inventor
Yasuhiko Tsuburai
粒来 保彦
Yasuo Oba
康夫 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2648388A priority Critical patent/JP2645055B2/en
Publication of JPH01202880A publication Critical patent/JPH01202880A/en
Application granted granted Critical
Publication of JP2645055B2 publication Critical patent/JP2645055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce lattice mismatching of a p-clad layer and to make it possible to control both of p- and n-clad layers to have lattice mismatching coefficients within + or -0.1%, by deviating the lattice mismatching coefficient of the n-clad layer to the plus side when forming a double hetero structure. CONSTITUTION:In a double hetero junction type semiconductor laser device formed on a GaAs substrate 10 which is provided with an active layer 12 between an n-type and p-type In1-y(Ga1-xAlx)yP(0<=x<=1, 0<=y<=1) clad layers 11, 13, the ratio a/a0 of the lattice constant (a) of the n-type clad layer 11 in the vertical direction of the substrate 10 and the lattice constant a0 of the GaAs substrate 10 is set at 1.0005<=a/a0<=1.001. By forming the lattice mismatching coefficient of the n-type In1-y(Ga1-xAlx)xP clad layer 11 deviated to more than +0.05% in this way, deviation of about 0.1-0.15% to the minus side developed by Zn doping in the growth of the p-clad layer 13 is compensated. The lattice mismatching coefficient can be thereby controlled within + or -0.1% for both of p- and n-quantity clad layers.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、In    (GaAJ)Pl−y   
 1−x   x  y 混晶をクラッド層として用いるダブルへテロ接合型半導
体レーザ装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to In (GaAJ)Pl-y
The present invention relates to a double heterojunction semiconductor laser device using a 1-x x y mixed crystal as a cladding layer.

(従来の技術) In   (GaAIl )P混晶は、1−y    
l−X   x  y ■−v族化合物半導体の中で最も直接遷移バンドキャッ
プが大きいことから、短波長の発光素子用材料として注
目されている。最近MOCVD法(有機金属熱分解気相
成長法)による可視半導体レーザが報告されている。
(Prior art) In(GaAIl)P mixed crystal is 1-y
Since it has the largest direct transition bandgap among the l-X x y ■-v group compound semiconductors, it is attracting attention as a material for short-wavelength light-emitting devices. Recently, visible semiconductor lasers based on MOCVD (metal organic pyrolysis vapor deposition) have been reported.

一例として第4図に示すような内部狭容型レーザがある
。図中、(10)はn−GaAs基板、 (11)はn
−In   (Ga   AJ!   )   Pクラ
0.5   0.5  0..5. 0.5ツドW(S
tドープ: 5 X 1017am−j、1.0μm)
 。
An example is an internal narrow cavity type laser as shown in FIG. In the figure, (10) is an n-GaAs substrate, (11) is an n-GaAs substrate, and (11) is an n-GaAs substrate.
-In (Ga AJ!) Pcra 0.5 0.5 0. .. 5. 0.5 Tsudo W(S
T-doping: 5 x 1017am-j, 1.0μm)
.

(12)はIn   Ga   P活硅層(7:/F−
0,50,5 プ、 0.1 μm) 、 (13)はP−1n   
(G a o 、 5O05 AJ!   )   Pクラッド1i(Znドープ:5
0.5 0.5 x 10  cIll、  1.0 μm) 、  (
14)はP−In、50a   Pキ+yプ層(Znド
ープニア×10170.5 cm−3,0,05a m) 、 (15)はn−Ga
As電流狭用度(Stドープ: 2 X 1 G 18
cm−3,1,0μm) 。
(12) is an InGaP active silicon layer (7:/F-
(13) is P-1n
(G ao, 5O05 AJ!) P clad 1i (Zn doped: 5
0.5 0.5 x 10 cIll, 1.0 μm), (
14) is P-In, 50a P cap layer (Zn doped nia x 10170.5 cm-3,0,05am), (15) is n-Ga
As current narrowness (St doping: 2 X 1 G 18
cm-3, 1, 0 μm).

(16)はP−GaAsコンタクト層(Znドープ:3
 X 1 G ”an−3,3,0u m) 、  (
17>(1g)はオーミック電極である。
(16) is a P-GaAs contact layer (Zn doped: 3
X 1 G ”an-3,3,0um) , (
17>(1g) is an ohmic electrode.

このような多元混晶にょるヘテロ構造の作製に際しては
、基板結晶とエピタキシャル層との格子整合が重要であ
る。この場合GaAsと1 nGaP、InGaAJP
との格子整合が必要となる。
When producing a heterostructure using such a multicomponent mixed crystal, lattice matching between the substrate crystal and the epitaxial layer is important. In this case, GaAs and 1 nGaP, InGaAJP
lattice matching is required.

GaAs基板の格子定数:aoとGaAs基板にエピタ
キシャル成長して、歪んだ1 n l−。
Lattice constant of GaAs substrate: 1 n l− epitaxially grown and strained on ao and GaAs substrates.

(Ga1−x Aix)y Pの基板と垂直方向の格子
定数:aとのずれを格子不整合率:Δa / a Oと
して、Δa/ao = [(a−ao ) /ao ]
 X100(%)と定義すると、一般に良好な可視半導
体レーザを作製するためにはΔa/ag −±0.1%
以内に制御することが必要である。
(Ga1-x Aix)y The deviation between the lattice constant: a in the direction perpendicular to the substrate of P is the lattice mismatch rate: Δa/aO, Δa/ao = [(a-ao)/ao]
If defined as
It is necessary to control within

上記の構造をMOCVD法を用いて形成する場合、In
   GaXP層の成長については、Ga−x Asと格子整合する組成(X40.5)となるような気
相組成に流量制御した原料ガスを供給することによって
格子整合性の良好なヘテロ成長が可能である。このとき
のガス流量条件は例えば次のようにして決めることがで
きる。P(リン)及びfn(インジウム)の供給量を一
定としてGa(ガリウム)の供給量を変化させたとき、
Gaの供給量、即ち気相組成Xgと格子不整合率Δa/
aQの関係は第5図のようになる。この図がらΔa /
 a Oが0%となる気相組成XgOを得ることができ
る。In    (Ga   Al)yPの1−2  
  1−x   x 場合も同様にして格子整合する流量条件が求められる。
When forming the above structure using the MOCVD method, In
Regarding the growth of the GaXP layer, hetero-growth with good lattice matching is possible by supplying a raw material gas whose flow rate is controlled to have a gas phase composition that is lattice-matched to Ga-x As (X40.5). be. The gas flow conditions at this time can be determined, for example, as follows. When the supply amount of Ga (gallium) is changed while keeping the supply amount of P (phosphorus) and fn (indium) constant,
Ga supply amount, that is, gas phase composition Xg and lattice mismatch rate Δa/
The relationship of aQ is as shown in FIG. In this figure Δa /
A gas phase composition XgO in which a O is 0% can be obtained. 1-2 of In(GaAl)yP
In the case of 1-x x , the flow rate conditions for lattice matching are similarly determined.

しかしこのようにして作製したダブルへテロウェハのX
線ロッキングカーブを調べてみると?i6図のような形
状を示した、最も強度の強いGaAs基板のピークと、
この右裾部分にほぼ重なってnクラッド層のピークがあ
り、Pクラッド層のピークは小角度側に離れている。こ
の結果から各クラッド層の格子不整合率Δa / a 
oを、求めるとnクラッドが+0.01%、pクラッド
が−0,11%であった。このようなダブルへテロ構造
のp型。
However, the X of the double hetero wafer produced in this way
What if we look at the line rocking curve? The peak of the strongest GaAs substrate, which shows the shape as shown in the i6 diagram,
There is a peak of the n-cladding layer almost overlapping with this right hem part, and a peak of the p-cladding layer is separated to the small angle side. From this result, the lattice mismatch rate Δa/a of each cladding layer
When o was calculated, it was +0.01% for n-cladding and -0.11% for p-cladding. This is a p-type double heterostructure.

n型クラッド層で格子不整合率が異なる現象にっいてさ
らに検討したところ、不純物のドーピン(G a lっ
/lx’I yPの格子不整合率がマイナス側にずれる
、即ちp−In   (Ga1−y  、    1−
x AI2x)yPの格子定数がアンドープあるいはnドー
プのそれより小さくなる傾向が−あることがわかった。
Further investigation into the phenomenon of different lattice mismatch rates in the n-type cladding layer revealed that the lattice mismatch rate of impurity doping (Ga l/lx'I yP shifts to the negative side, that is, p-In (Ga1 -y, 1-
It was found that the lattice constant of x AI2x)yP tends to be smaller than that of undoped or n-doped.

Znドーピングによる格子不整合のずれは、1x101
8程度のドーピングでマイナス側へ約0.1〜0.15
%であった。
The lattice mismatch shift due to Zn doping is 1x101
Approximately 0.1 to 0.15 to the negative side with doping of about 8
%Met.

以上のようにIn   (Ga   A、g  )  
Pl−y      l−x ダブルへテロ接合型レーザでは、不純物のドーピングに
よって、格子定数が変わり、punクラッドの一方で格
子不整合率が0%で整合しても他方はずれてしまう。結
晶成長及びウェハ市内でのバラツキを考慮すると最大0
.2%以上ずれる可能性がある。格子不整合率は、ミス
フィツト転位等結晶欠陥発生の原因となる。又、GaA
s基板と格子整合した活性層を挟んで片側に大きい格子
不整合が有ることで活性層に応力が加わり特性の劣化を
引き起こすことが考えられる。
As mentioned above, In (Ga A, g )
In the Pl-y l-x double heterojunction laser, the lattice constant changes due to impurity doping, and even if one of the pun clads is matched with a lattice mismatch rate of 0%, the other is mismatched. Considering crystal growth and variations within the wafer, the maximum is 0.
.. There is a possibility of deviation of 2% or more. The lattice mismatch rate causes crystal defects such as misfit dislocations to occur. Also, GaA
It is conceivable that a large lattice mismatch on one side of the active layer that is lattice matched to the s-substrate causes stress to be applied to the active layer, causing deterioration of characteristics.

(発明が解決しようとする課題) 以上述べたようにIn   (Qa t−21−x Alり、Pをクラッド層とするダブルへテロ接合型レー
ザでは不純物のドーピング、特にZnのドーピングによ
ってpクラッド層の格子定数が変わり、一方のクラッド
層で格子整合がとれた場合でも他方はずれてしまうとい
う問題があった。
(Problems to be Solved by the Invention) As described above, in a double heterojunction laser in which In (Qa t-21-x Al or P) is used as a cladding layer, the p-cladding layer is There was a problem in that the lattice constant of the cladding layer changed, and even if lattice matching was achieved in one cladding layer, the lattice matching would be mismatched in the other.

この発明は上記不純物ドーピングによる格子不整合を改
善したダブルへテロ接合型レーザを提供するものである
。・ [発明の構成] (課題を解決するための手段) この発明の骨子は、’ Z nをドーピングしたp−I
n     (Ga 1−2   1−x ”、x )V Pクラッド層の格
子定数がnドープあるいはアンドープのIn     
(Ga t−y    1−31 AJx) 、 Pに対して小
さくなることに注目し、nクラッド層の格子不整合率を
予めプラス側にずらして形成するという簡便な方法によ
ってpクラッド層の格子不整合を低減するものである。
The present invention provides a double heterojunction laser in which the lattice mismatch caused by impurity doping is improved. - [Structure of the invention] (Means for solving the problem) The gist of this invention is that 'Zn-doped p-I
n (Ga 1-2 1-x ”, x)V P cladding layer has n-doped or undoped In
(Ga ty 1-31 AJx) By paying attention to the fact that the lattice mismatch rate of the p-cladding layer becomes smaller with respect to P, the lattice mismatch of the p-cladding layer can be reduced by a simple method of shifting the lattice mismatch rate of the n-cladding layer to the positive side in advance. It reduces alignment.

(作 用) MOCVD法によってダブルへテロ構造を形成する際、
n型In   (Ga   AJ  )  PL−y 
   1−x   x  x クラッド層の格子不整合率を+0.05%以上にずらし
て形成することにより、p−クラッド層成長時にZnド
ーピングによって生じる格子不整合率の0.1〜0.1
5%程度のマイナス側へのずれを補償する。これにより
、一方のクラッド層が格子整合した場合でも他方は0.
1%程度、結晶成長のばらつき等によっては0.2%以
上の格子不整合になっていたものがp、n全クラッド層
共に+0.15以内に制御することが可能となる。
(Function) When forming a double heterostructure by MOCVD method,
n-type In (Ga AJ) PL-y
1-x x x By forming the cladding layer with the lattice mismatch rate shifted by +0.05% or more, the lattice mismatch rate caused by Zn doping during growth of the p-clad layer can be reduced by 0.1 to 0.1.
Compensates for a deviation of about 5% to the negative side. As a result, even if one cladding layer is lattice matched, the other cladding layer is lattice matched.
A lattice mismatch of about 1% or more than 0.2% depending on variations in crystal growth can now be controlled to within +0.15 for both the p and n cladding layers.

(実施例) 以下にこの発明の実施例について図面を参照して説明す
る。第1図はこの発明の一実施例に係わる半導体レーザ
を作製する行程断面図である。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a process for manufacturing a semiconductor laser according to an embodiment of the present invention.

このレーザは以下のようにして作製される。This laser is manufactured as follows.

先ず、n−GaAs基板10(Siドープ:2×10′
18cII+″″3)の上にM OCV D法によりn
−In    (Ga   A4   )   Pクラ
ッド層0.5   0.3  0.7 0.511(S
t ドープ: 5 X 10 ’cm−3)  1.0
μm。
First, an n-GaAs substrate 10 (Si doped: 2×10'
18cII+″″3) using the M OCV D method.
-In (Ga A4) P cladding layer 0.5 0.3 0.7 0.511 (S
t-doping: 5 X 10'cm-3) 1.0
μm.

アンドープIn   Ga   P活性層12 (0,
10,50,5 μm )  、  p + I  n O+5    
  0.3  A I D、?  )  o、5(Ga Pクラッド層13(Znドープ: 5 X 10 ’c
m−3)Ga   Pキャップ層 1.0μm1p−”0.5   0.514(Znドー
プニア X 10 ’cm−3) 0.05μm、 。
Undoped InGaP active layer 12 (0,
10,50,5 μm), p+InO+5
0.3 AID,? ) o, 5 (Ga P cladding layer 13 (Zn doped: 5 x 10'c
m-3) GaP cap layer 1.0 μm 1p-”0.5 0.514 (Zn doped Nia X 10′ cm-3) 0.05 μm.

n−GaAs電流狭窄層15(Siドープ:2 X 1
018cm−”)  LOu mを連続的ニ形成する(
第1図(a) ) 、このときI n o、s  (G
 a t、aAJ!   )   Pは第2図に示す気
相組成Xgと0.7   0.5 格子不整合率ΔB / a Oとの関係から、Ino、
5(Qa、3Ax   )   Pの格子不整合率Δa
O,70,5 /aOが+0.05から+0.1%の範囲となるような
気相組成XglからXg2の間の条件で行う。
n-GaAs current confinement layer 15 (Si doped: 2 x 1
018 cm-”) Continuously form Lou m (
(Fig. 1(a)), at this time I no,s (G
a t, aAJ! ) P is Ino, from the relationship between the gas phase composition
5(Qa, 3Ax) Lattice mismatch rate Δa of P
It is carried out under conditions such that the gas phase composition is between Xgl and Xg2 such that O,70,5/aO is in the range of +0.05 to +0.1%.

次に一般的なフォトリソグラフィー行程でn−GaAs
電流狭窄Jiffl15を幅7μmのストライプ状に除
去する(第1図(b))。そして再度MOCVD法によ
りp−QaAsコンタクト層を成長する。電流狭窄層形
成までの第一の結晶成長条件は、サセプタ温度Tg−8
00℃、成長圧力Pg−257orr+総流量F=10
4/m1n、V/ I[I−500+  p−G a 
A 8 :lンタクトを成長する第二の結晶成長条件は
、Tg−700℃。
Next, in a general photolithography process, n-GaAs is
The current confinement Jiffl 15 is removed in a stripe shape with a width of 7 μm (FIG. 1(b)). Then, a p-QaAs contact layer is grown again by MOCVD. The first crystal growth condition until the formation of the current confinement layer is a susceptor temperature of Tg-8.
00°C, growth pressure Pg-257orr + total flow rate F = 10
4/m1n, V/I [I-500+ p-G a
A8: The second crystal growth condition for tact growth is Tg-700°C.

Pg−50Torr、F−104!/win、 V/I
II −300である。
Pg-50Torr, F-104! /win, V/I
II-300.

作製したダブルへテロウェハのX線回折スペクトルを調
べたところ第3図のようなプロファイルが得られた、格
子不整合率はnクラッド層が+ 0.055%、pクラ
ッド層が−0,06%であった。
When we examined the X-ray diffraction spectrum of the fabricated double hetero wafer, we obtained a profile as shown in Figure 3. The lattice mismatch rate was +0.055% for the n-cladding layer and -0.06% for the p-cladding layer. Met.

このウェハから試作したレーザ素子はウェハの周辺部に
至るまで良好な特性を示し、スクリーニング試験でも目
立りた劣化は見られなかった。又聞−の条件で成長した
数回の成長でも両クラッド共に+0.15以内の格子不
整合率に制御されていた。
A laser device prototyped from this wafer showed good characteristics up to the periphery of the wafer, and no noticeable deterioration was observed in screening tests. Even after several growths under different conditions, both claddings were controlled to a lattice mismatch ratio within +0.15.

[発明の効果] この発明により、ダブルへテロ構造を形成する際nクラ
ッド層の格子不整合率をプラス側にずらしておくことに
よって、pクラッド層の格子不整合を低減することがで
き、p、n’両クラッド層共に+0 、196以内の格
子不整合率に制御されたダブルヘテロ接合レーザを得る
ことが可能となり、高信頓の短波長レーザを歩留りよく
作製できる。
[Effects of the Invention] According to the present invention, by shifting the lattice mismatch rate of the n-clad layer to the positive side when forming a double heterostructure, the lattice mismatch of the p-clad layer can be reduced, and the lattice mismatch of the p-clad layer can be reduced. , n' It becomes possible to obtain a double heterojunction laser in which both cladding layers are controlled to have a lattice mismatch ratio of within +0 and 196, and a high-density short wavelength laser can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の詳細な説明するための半導体レーザ
の作製行程断面図、第2図はIno、5(Ga   A
J!   )   Pに於ける気相組成と0.3  0
.7 0.5 格子不整合率の関係を示す図、第3図は本発明の実施例
で作製したダブルへテロウニ/%のX線ロッキングカー
ブを示す図、第4図は従来技術による半導体レーザの断
面図、第5図はIno4Ga   Pに於ける気相組成
と格子不整合率との0.5 関係を示す図、第6図は従来技術によるダブルへテロ接
合レーザのX線ロッキングカーブを示す図である。 10 ”・n −G a A s基板(Siドープ:2
x1018cm−3)、 (Ga   AJ   ) 11°””   ’ nO,50,30,70,5Pク
ラッド層(stドープ: 5 X 1017cm−3)
、Ga   P活性層、 12 ・・・アンドープInO,50,5(Ga   
AJ2   ) 13°”p−”0.5    0.3   0.7  
0.5Pクラッド層(Znドープ: 5 X 10 ’
an−3)、1 4 ・・・p −1n    G a
o、5  0.5Pキャップ層 (Znドープ: 7 X 1017cm−3)、15 
・・n −G a A s電流狭窄層(Siドープ:2
 X 10 ”am−3)、 16・・・p−GaAsコンタクト層 17.18・・・オーミック電極。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor laser for explaining the present invention in detail, and FIG.
J! ) Gas phase composition in P and 0.3 0
.. 7 0.5 A diagram showing the relationship between lattice mismatch ratios, FIG. 3 is a diagram showing the X-ray rocking curve of the double heteronymous/% fabricated in the example of the present invention, and FIG. A cross-sectional view, FIG. 5 is a diagram showing the 0.5 relationship between the gas phase composition and the lattice mismatch rate in Ino4GaP, and FIG. 6 is a diagram showing the X-ray rocking curve of a conventional double heterojunction laser. It is. 10”・n-GaAs substrate (Si doped: 2
x1018cm-3), (Ga AJ) 11°"'' nO,50,30,70,5P cladding layer (st dope: 5 x 1017cm-3)
, Ga P active layer, 12 ... undoped InO, 50,5 (Ga
AJ2) 13°”p-”0.5 0.3 0.7
0.5P cladding layer (Zn doped: 5 x 10'
an-3), 1 4 ... p -1n G a
o, 5 0.5P cap layer (Zn doped: 7 X 1017 cm-3), 15
...n-G a As current confinement layer (Si doped: 2
X 10 "am-3), 16...p-GaAs contact layer 17.18... Ohmic electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)活性層をn型及びp型In_1_−_y(Ga_
1_−_xAl_x)_yP(0≦x≦1、0≦y≦1
)クラッド層で挟んでなる、GaAs基板上に形成され
たダブルヘテロ接合型半導体レーザ装置に置いて、前記
基板と垂直方向におけるn型クラッド層の格子定数:a
とGaAs基板の格子定数:a_0との比a/a_0を
1.0005≦a/a_0≦1.001とすることを特
徴とするダブルヘテロ接合型半導体レーザ装置。
(1) The active layer is n-type and p-type In_1_-_y(Ga_
1_-_xAl_x)_yP(0≦x≦1, 0≦y≦1
) In a double heterojunction semiconductor laser device formed on a GaAs substrate sandwiched between cladding layers, the lattice constant of the n-type cladding layer in the direction perpendicular to the substrate: a
A double heterojunction type semiconductor laser device characterized in that the ratio a/a_0 of the lattice constant of the GaAs substrate and the lattice constant a_0 of the GaAs substrate is 1.0005≦a/a_0≦1.001.
(2)前記p型クラッド層のアクセプタ不純物をZnと
することを特徴とする請求項1記載のダブルヘテロ接合
型半導体レーザ装置。
(2) The double heterojunction semiconductor laser device according to claim 1, wherein the acceptor impurity of the p-type cladding layer is Zn.
JP2648388A 1988-02-09 1988-02-09 Double hetero wafer and double hetero junction type semiconductor laser device Expired - Lifetime JP2645055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2648388A JP2645055B2 (en) 1988-02-09 1988-02-09 Double hetero wafer and double hetero junction type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2648388A JP2645055B2 (en) 1988-02-09 1988-02-09 Double hetero wafer and double hetero junction type semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01202880A true JPH01202880A (en) 1989-08-15
JP2645055B2 JP2645055B2 (en) 1997-08-25

Family

ID=12194743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2648388A Expired - Lifetime JP2645055B2 (en) 1988-02-09 1988-02-09 Double hetero wafer and double hetero junction type semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2645055B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189680A (en) * 1991-04-16 1993-02-23 Mitsubishi Denki Kabushiki Kaisha Visible light laser diode
JP2001308463A (en) * 2000-04-27 2001-11-02 Sony Corp Compound semiconductor device and its manufacturing method and semiconductor light emitting device and its manufacturing method
CN1322643C (en) * 2003-07-22 2007-06-20 夏普株式会社 Semiconductor laser device and method of producing the same
JP2007258641A (en) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd Semiconductor laser element, and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189680A (en) * 1991-04-16 1993-02-23 Mitsubishi Denki Kabushiki Kaisha Visible light laser diode
JP2001308463A (en) * 2000-04-27 2001-11-02 Sony Corp Compound semiconductor device and its manufacturing method and semiconductor light emitting device and its manufacturing method
JP4560885B2 (en) * 2000-04-27 2010-10-13 ソニー株式会社 Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
CN1322643C (en) * 2003-07-22 2007-06-20 夏普株式会社 Semiconductor laser device and method of producing the same
JP2007258641A (en) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd Semiconductor laser element, and its manufacturing method
US7711023B2 (en) 2006-03-27 2010-05-04 Panasonic Corporation Semiconductor laser device and fabrication method therefor

Also Published As

Publication number Publication date
JP2645055B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH0650723B2 (en) Epitaxial growth method
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
JPH01202880A (en) Double hetero junction type semiconductor laser device
JP2642404B2 (en) Manufacturing method of semiconductor laser
JP4199835B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2945464B2 (en) Method for manufacturing semiconductor device
JP3665911B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH07120838B2 (en) Semiconductor light emitting device
JP2728672B2 (en) Semiconductor laser device, double hetero wafer, and method of manufacturing the same
JPH0684805A (en) Compound semiconductor crystalline growth method
JP3543295B2 (en) Crystal growth method for compound semiconductor and semiconductor light emitting device
JP2967719B2 (en) Semiconductor crystal growth method and semiconductor device
JPH09232691A (en) Semiconductor laser
JPH1168235A (en) Crystal growth method of algaas compound semiconductor and manufacture of semiconductor laser
JPH0387019A (en) Manufacture of iii-v compound semiconductor element
JPH04137577A (en) Manufacture of semiconductor laser
JPH02156522A (en) Manufacture of semiconductor device
JPH0888185A (en) Semiconductor crystal growth method
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPH0448669A (en) Semiconductor laser device and its manufacture
JP2949886B2 (en) Semiconductor wafer and method of manufacturing the same
JP4157903B2 (en) Manufacturing method of semiconductor light emitting device
JPH0936494A (en) Fabrication of compound semiconductor device
JPH05198510A (en) Organic metal vapor phase growth

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11