JPH04173957A - Formation of boron nitride film - Google Patents

Formation of boron nitride film

Info

Publication number
JPH04173957A
JPH04173957A JP29978090A JP29978090A JPH04173957A JP H04173957 A JPH04173957 A JP H04173957A JP 29978090 A JP29978090 A JP 29978090A JP 29978090 A JP29978090 A JP 29978090A JP H04173957 A JPH04173957 A JP H04173957A
Authority
JP
Japan
Prior art keywords
gas
boron nitride
ion
nitride film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29978090A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Wada
哲義 和田
Nobuki Yamashita
信樹 山下
Makoto Ogawa
真 小川
Tadashi Rokkaku
正 六角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29978090A priority Critical patent/JPH04173957A/en
Publication of JPH04173957A publication Critical patent/JPH04173957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a hard BN film excellent in heat conductivity and electrical insulating property by irradiating the surface of a substrate with the ion of B or a B compd. and the ion of N or an N compd. along with a rare gas or hydrogen gas with a specified ion energy. CONSTITUTION:A vacuum chamber 1 contg. an ion source 5 opposed to a substrate 3 such as an Si wafer is evacuated, the gaseous B or B2H6 and the gaseous N2 or N compd. are mixed with a rare gas such as Ar, and the mixture is supplied to the ion source 5 from a gas inlet pipe 6. The ion source 5 is then driven, the substrate 3 is irradiated with the mixed gas ions at the energy of 50-5000eV, and a high-hardness BN film contg. cubic BN and excellent in heat conductivity and electrical insulating property is formed on the surface of the substrate 3 with high adhesion.

Description

【発明の詳細な説明】 〈産業上の利用公費〉 本発明は、窒化ホウ素、特に立方晶窒化ホウ素の結晶粒
を含み硬質であり、熱伝導性、電気絶縁性に優れた窒化
ホウ素膜の形成方法に関する。
[Detailed description of the invention] <Public funds for industrial use> The present invention is directed to the formation of a boron nitride film, which is hard and contains crystal grains of boron nitride, particularly cubic boron nitride, and has excellent thermal conductivity and electrical insulation properties. Regarding the method.

〈従来の技術〉 窒化ホウ素は大別すると、■常温で容易に合成され軟質
で潤滑性に優れた六方晶窒化ホウ素(hBN )と、■
高温、高圧で合成され、硬質で熱伝導性、電気絶縁性に
優れた立方晶窒化ホウ素(CBN)  とに分けられる
が、この中でCBNはダイヤモンドに次ぐ硬度を有する
と共に反応性が低いため、優れた耐摩耗性材料として知
られている。
<Conventional technology> Boron nitride can be roughly divided into two types: ■ Hexagonal boron nitride (hBN), which is easily synthesized at room temperature, is soft, and has excellent lubricity;
Cubic boron nitride (CBN) is synthesized at high temperature and high pressure, and is hard and has excellent thermal conductivity and electrical insulation. Among these, CBN has a hardness second only to diamond and has low reactivity. Known as an excellent wear-resistant material.

一方、このような窒化ホウ素を被膜として合成する方法
は、化学的蒸着法(CVD法)と物理的蒸暑法(PVD
法)とに分けられる。ここでCVD法は、ハロゲン化ホ
ウ素やジボラン(B、H,)といったホウ素化物と、窒
素あるいはアンモニアとをチャンバー内で熱励起法等の
手段を用いて分解・活性化し、これを基材上に堆積させ
る方法である。またPVD法は、窒素ガスプラズマ中で
金属ホウ素を蒸発し、これを基材上に堆積させる方法で
ある。
On the other hand, methods for synthesizing boron nitride as a film include chemical vapor deposition (CVD) and physical vapor deposition (PVD).
law). Here, in the CVD method, boron halides and diborane (B, H, This is a method of depositing. Furthermore, the PVD method is a method in which metallic boron is evaporated in nitrogen gas plasma and deposited on a base material.

〈発明が解決しようとする課題〉 しかし、従来のCVD法又はPVD法により基材上に形
成された窒化ホウ素膜は共に立方晶窒化ホウ素の結晶粒
を含むものではなく、シたがって、従来の方法では高硬
度の窒化ホウ素膜が得られないという問題がある。
<Problems to be Solved by the Invention> However, boron nitride films formed on substrates by conventional CVD or PVD methods do not contain cubic boron nitride crystal grains; The problem with this method is that a boron nitride film with high hardness cannot be obtained.

本発明はこのような事情に鑑み、立方晶窒化ホウ素を被
膜内に含み、硬質で、熱伝導性、電気絶縁性に優れた窒
化ホウ素膜の形成方法を提供することを目的とする。
In view of these circumstances, an object of the present invention is to provide a method for forming a boron nitride film that contains cubic boron nitride in the film and is hard and has excellent thermal conductivity and electrical insulation.

く課題を解決するための手段〉 前記目的を達成する本発明に係る窒化ホウ素膜の形成方
法は、真空中でホウ素及び/又はホウ素を含む化合物の
ガスイオンと、窒素を含む化合物のガスイオンと、希ガ
ス及び/又は水素のガスイオンとを基材に対して照射し
、且つその時のイオンのエネルギーを50〜5000 
eVとすることを特徴とする。
Means for Solving the Problems> A method for forming a boron nitride film according to the present invention that achieves the above object comprises using gas ions of boron and/or a compound containing boron and gas ions of a compound containing nitrogen in a vacuum. , rare gas and/or hydrogen gas ions are irradiated onto the base material, and the energy of the ions at that time is set to 50 to 5000.
It is characterized by being eV.

〈作   用〉 ホウ素及び/又はホウ素を含む化合物のガスイオンと、
窒素又は窒素を含む化合物のガスイオンとからなる原料
ガスイオンが、主にエネルギーを与えるための希ガス及
び/又は水素のガスイオンと共に基材に照射されると、
基材上に立方晶窒化ホウ素が混在する又は立方晶窒化ホ
ウ素からなる窒化ホウ素が堆積する。これにより硬質で
、表面平滑性が高く熱伝導性、電気絶縁性に富む窒化ホ
ウ素膜が形成される。
<Action> Gas ions of boron and/or a compound containing boron,
When raw material gas ions consisting of nitrogen or gas ions of a compound containing nitrogen are irradiated onto the base material together with gas ions of a rare gas and/or hydrogen mainly for imparting energy,
Boron nitride mixed with cubic boron nitride or consisting of cubic boron nitride is deposited on the substrate. As a result, a hard boron nitride film with high surface smoothness, thermal conductivity, and electrical insulation properties is formed.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

まず、本実施例を実施するための装置を第1図を参照し
ながら説明する。同図中、lば真空を保持することが可
能なチャンバであり、その排気口IAは図示しない真空
源に連通している。チャンバ1の天井には基材ホルダ2
が取付けられ、この基材ホルダ2の下側には基材3が保
持されており、この基材3は冷却水給排管4を介して導
入される冷却水により冷却されるようになっている。一
方、チャンバ1の下部には基材3に相対向するようにイ
オン源5が設けられている。このイオン源5は、例えば
イオンビーム径100m程度のマイクロ波放電型イオン
源であり、ガスが供給されるガス導入管6を備えている
。そして、このガス導入管6から、ホウ素及び又はホウ
素を含む化合物のガス(す下、ホウ素系ガスという)と
、窒素及び/又は窒素を含む化合物のガス(以下、窒素
系ガスという)と、希ガス及び/又は水素のガスとから
なる混合ガスを供給すると、この混合ガスはイオン化さ
れ、大面積、大電流にて混合イオン7として上記基材3
へ向って照射される。
First, an apparatus for carrying out this embodiment will be explained with reference to FIG. In the figure, l is a chamber capable of maintaining a vacuum, and its exhaust port IA communicates with a vacuum source (not shown). On the ceiling of chamber 1 is a substrate holder 2.
is attached, and a base material 3 is held below this base material holder 2, and this base material 3 is cooled by cooling water introduced via a cooling water supply/discharge pipe 4. There is. On the other hand, an ion source 5 is provided at the bottom of the chamber 1 so as to face the base material 3 . The ion source 5 is, for example, a microwave discharge type ion source with an ion beam diameter of about 100 m, and includes a gas introduction tube 6 to which gas is supplied. Then, from this gas introduction pipe 6, a gas of boron and/or a compound containing boron (hereinafter referred to as boron-based gas), a gas of nitrogen and/or a compound containing nitrogen (hereinafter referred to as nitrogen-based gas), and a rare gas are introduced. When a mixed gas consisting of gas and/or hydrogen gas is supplied, this mixed gas is ionized and is applied to the base material 3 as mixed ions 7 in a large area and with a large current.
It is irradiated towards.

次にこのような装置を用いて窒化ホウ素膜を形成する例
を示す。
Next, an example of forming a boron nitride film using such an apparatus will be described.

まず、Siウェ八へらなる基材3を基材ホルダ2に取付
けた。その後、チャンバ1内を排気口IAを介して図示
しない真空源に連通し、該チャンバ1内を2 X 10
−6torr以上に予備排気した。この真空度は通常2
 X 10−5torr以下程度が好ましいが、例えば
、N2置換等すればこのような値に限定されないのは言
うまでもない。
First, the base material 3 made of Si wafer was attached to the base material holder 2. Thereafter, the inside of the chamber 1 is communicated with a vacuum source (not shown) via the exhaust port IA, and the inside of the chamber 1 is
Preliminary exhaust was performed to -6 torr or higher. This degree of vacuum is usually 2
It is preferable to set the value to about X 10-5 torr or less, but it goes without saying that the value is not limited to such a value if, for example, N2 substitution is performed.

一方、ホウ素系ガスとしてのジボラン(H,B、)ガス
と、窒業系ガスとしての窒素ガスと、希ガスとしてのア
ルゴンガスとを、じポランガス15体積%、窒素ガス1
5体積%、アルビンガスフ0体積%の割合でガス導入管
6がら供給し1,7オン源5を駆動した。これにより、
イオン源5から100 eV、200 μA/−の混合
イオン7を基材3に照射し、基材3上に窒化ホウ素@S
を約1μmの厚さに形成した。
On the other hand, diborane (H, B,) gas as a boron-based gas, nitrogen gas as a nitriding gas, and argon gas as a rare gas were mixed with 15% by volume of diborane gas and 1% by volume of nitrogen gas.
The 1,7-on source 5 was driven by supplying gas through the gas introduction pipe 6 at a ratio of 5% by volume and 0% by volume of Albin gas. This results in
The base material 3 is irradiated with mixed ions 7 of 100 eV and 200 μA/- from the ion source 5, and boron nitride @S is deposited on the base material 3.
was formed to a thickness of about 1 μm.

なお、このときの真空度はI X 10”torr程度
であった。
Note that the degree of vacuum at this time was approximately I x 10''torr.

このようにして形成した窒化ホウ素膜8を赤外吸収スペ
クト分析により分析したところ、立方晶窒化ホウ素固有
の100an’付近の波長の吸収が認められたが、六万
品窒化ホウ素固有の1400cm1及び800cni’
付近の吸収は認められなかった。また、電子線回折装置
による電子回折環図形からも、上記窒化ホウ素膜8は、
立方晶窒化ホウ素の多形晶体膜であることが確認された
When the boron nitride film 8 thus formed was analyzed by infrared absorption spectrum analysis, absorption at wavelengths around 100 an', which is unique to cubic boron nitride, was observed; '
No nearby absorption was observed. Further, from the electron diffraction ring pattern obtained by an electron beam diffraction device, the boron nitride film 8 is
It was confirmed that the film was a polymorphic crystal film of cubic boron nitride.

さらに、上記窒化ホウ素膜8の硬さ乞よ、荷重10gに
対してビッカース硬度4800 kg/m2と高硬度を
示した。また、窒化ホウ素膜の表面粗さを測定したとこ
ろ、JIS最大高さRmaxが0.03μm程度と推定
され、膜表面の平滑性も優れていることが確認された。
Further, the hardness of the boron nitride film 8 was as high as 4800 kg/m<2 >with respect to a load of 10 g. Furthermore, when the surface roughness of the boron nitride film was measured, the JIS maximum height Rmax was estimated to be about 0.03 μm, and it was confirmed that the film surface had excellent smoothness.

上述した実施例の他、混合イオン7のエネルギーを覆々
変更させて窒化ホウ素膜8を形成し、その硬度を測定し
た。この結果を第2図に示す。この結果、イオンびエネ
ルギーを70〜3000 eVの範囲とすると立方晶窒
化ホウ素の結晶粒からなる窒化ホウ素膜が得られ、また
、乙の範囲を外れても50〜5000eVの範囲では立
方晶窒化ホウ素及び六方晶窒化ホウ素の結晶粒が混在す
る窒化ホウ素膜が得られることが確認された。なお、イ
オンのエネルギーが5000 eVを越えるとエネルギ
ーが大きすぎて窒化ホウ素膜の形成そのものが起こらず
、また、イオンのエネルギーが50 eV未満では立方
晶窒化ホウ素の割合が少なくて六方晶窒化ホウ素の割合
が極めて多くなり、本発明の目的を達成できず、共に好
ましくない。
In addition to the examples described above, a boron nitride film 8 was formed by varying the energy of the mixed ions 7, and its hardness was measured. The results are shown in FIG. As a result, when the ionization energy is in the range of 70 to 3000 eV, a boron nitride film consisting of crystal grains of cubic boron nitride can be obtained; It was confirmed that a boron nitride film containing hexagonal boron nitride crystal grains was obtained. Note that if the ion energy exceeds 5000 eV, the energy is too large and the formation of the boron nitride film itself does not occur, and if the ion energy is less than 50 eV, the proportion of cubic boron nitride is small and the hexagonal boron nitride film is not formed. The ratio becomes extremely high, making it impossible to achieve the object of the present invention, which is both undesirable.

上述した実施例では、ホウ素系ガスとしてB2残ガスを
用し)たが、これ以外のホウ素系ガス、!=l、Tlf
、BCJ、、 BF、、 B5N5H,等を挙げること
ができる。また、窒素系ガスとしては、窒素ガスの他、
アンモニア(NH,)等を用いることができる。さらに
、希ガスとしては、アルゴンガスの他、ヘリウム、ネオ
ン、キセノン、クリプトン等を用いることができる。
In the above-mentioned embodiment, B2 residual gas was used as the boron-based gas, but other boron-based gases! =l, Tlf
, BCJ, BF, B5N5H, and the like. In addition to nitrogen gas, nitrogen-based gases include
Ammonia (NH, ) or the like can be used. Further, as the rare gas, in addition to argon gas, helium, neon, xenon, krypton, etc. can be used.

なお、希ガスと共に、又は希ガスに代えて水素ガスを用
いることができるが、水素ガスを用いた場合には、エネ
ルギーを付与するという作用よりも化学的な作用が大き
いものと考えられる。
Note that hydrogen gas can be used together with or in place of the rare gas, but when hydrogen gas is used, it is thought that the chemical effect is greater than the effect of imparting energy.

また、本発明方法を実施すチャンバ1内の真空度は、イ
オン源5が作動して所定のエネルギーを有するイオンが
照射されろ範囲であれば、特に限定されるものではない
Further, the degree of vacuum in the chamber 1 in which the method of the present invention is carried out is not particularly limited as long as the ion source 5 is activated and ions having a predetermined energy are irradiated.

さらに、本発明では、被膜形成の初期段階でイオンが基
材の内部まで進入するような高いエネルギーでイオンを
照射することにより基在及び被膜の成分が混じり合った
境界層を形成し、その後、被膜を形成するようにすると
、被膜の基材に対する密着性が高くなるという効果が得
られる。
Furthermore, in the present invention, a boundary layer in which base and film components are mixed is formed by irradiating ions with such high energy that the ions penetrate into the interior of the base material at the initial stage of film formation, and then, Forming a film has the effect of increasing the adhesion of the film to the base material.

す上説明したように、本発明方法によると、立方晶ホウ
素を含む窒化ホウ素膜を容易に形成することができる。
As explained above, according to the method of the present invention, a boron nitride film containing cubic boron can be easily formed.

また、この方法は、イオン照射のみで被膜が形成できる
ので、作業効率が良好であり、さらに、イオンビームに
指向性があるので、装置のレイアウトが自由にできると
いう利点も有する。
Furthermore, this method has the advantage that the coating can be formed only by ion irradiation, so the work efficiency is good, and since the ion beam has directivity, the layout of the apparatus can be freely designed.

〈発明の効果〉 以上説明したように、本発明はホウ素系ガスと窒素系ガ
スと希ガス及び/又は水素との混合ガスのイオンを所定
のエネルギーで照射することにより被膜とするので、立
方晶窒化ホウ素からなる、又は立方晶窒化ホウ素を含み
、硬質で、熱伝導性、電気絶縁性に優れた窒化ホウ累膜
を形成することができろという効果を秦する。
<Effects of the Invention> As explained above, the present invention forms a film by irradiating ions of a mixed gas of boron-based gas, nitrogen-based gas, rare gas, and/or hydrogen with a predetermined energy. The present invention has the effect of forming a hard boron nitride film that is made of boron nitride or contains cubic boron nitride, and has excellent thermal conductivity and electrical insulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例を実施するための被膜形成装置を示す
説明図、第2図は実施例の結果を示すグラフである。 図  面  中、 1はチャンバ、 2は基材ホルダ、 3は基材、 5はイオン源、 6はガス導入管、 7は混合イオン、 8は窒化ホウ素膜である。
FIG. 1 is an explanatory diagram showing a film forming apparatus for carrying out this example, and FIG. 2 is a graph showing the results of the example. In the drawing, 1 is a chamber, 2 is a substrate holder, 3 is a substrate, 5 is an ion source, 6 is a gas introduction tube, 7 is a mixed ion, and 8 is a boron nitride film.

Claims (1)

【特許請求の範囲】[Claims]  真空中でホウ素及び/又はホウ素を含む化合物のガス
イオンと、窒素を含む化合物のガスイオンと、希ガス及
び/又は水素のガスイオンとを基材に対して照射し、且
つその時のイオンのエネルギーを50〜5000eVと
することを特徴とする窒化ホウ素膜の形成方法。
A base material is irradiated with boron and/or gas ions of a boron-containing compound, gas ions of a nitrogen-containing compound, and rare gas and/or hydrogen gas ions in a vacuum, and the energy of the ions at that time is A method for forming a boron nitride film, characterized in that the voltage is 50 to 5000 eV.
JP29978090A 1990-11-07 1990-11-07 Formation of boron nitride film Pending JPH04173957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29978090A JPH04173957A (en) 1990-11-07 1990-11-07 Formation of boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29978090A JPH04173957A (en) 1990-11-07 1990-11-07 Formation of boron nitride film

Publications (1)

Publication Number Publication Date
JPH04173957A true JPH04173957A (en) 1992-06-22

Family

ID=17876865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29978090A Pending JPH04173957A (en) 1990-11-07 1990-11-07 Formation of boron nitride film

Country Status (1)

Country Link
JP (1) JPH04173957A (en)

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
Diani et al. Search for carbon nitride CNx compounds with a high nitrogen content by electron cyclotron resonance plasma deposition
JPH0841633A (en) Transparent amorphous hydrogenated hard boron nitride film and its production
US6383465B1 (en) Cubic boron nitride and its gas phase synthesis method
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
Loeffler et al. PACVD nano-crystalline B C N thin films obtained by use of an organoboron precursor
JPH04173957A (en) Formation of boron nitride film
Kiel et al. Comparison of the properties of BN films synthesized by inductively coupled rf and microwave plasmas
JP2761026B2 (en) Method for manufacturing boron nitride film
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0649637B2 (en) High hardness boron nitride synthesis method
JP2680574B2 (en) Method for producing cubic boron nitride film
JPH03211268A (en) Low-pressure synthesizing method of cubic boron nitride
JPS6240376A (en) Method for synthesizing cubic boron nitride
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPH0421776A (en) Insulating film forming device
JPH02111882A (en) Producing device of cubic boron nitride film
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS6369973A (en) Production of cubic boron nitride film
JPH0397847A (en) Formation of boron nitride film
JPH04136157A (en) Member coated with boron nitride
JPS6330397A (en) Method for synthesizing diamond
JPH08158039A (en) Formation of thin carbon nitride film
JPH04341567A (en) Method for synthesizing cubic boron nitride