JPH0417310A - Magnetic multilayer film - Google Patents

Magnetic multilayer film

Info

Publication number
JPH0417310A
JPH0417310A JP11978090A JP11978090A JPH0417310A JP H0417310 A JPH0417310 A JP H0417310A JP 11978090 A JP11978090 A JP 11978090A JP 11978090 A JP11978090 A JP 11978090A JP H0417310 A JPH0417310 A JP H0417310A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
multilayer film
layers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11978090A
Other languages
Japanese (ja)
Inventor
Yoshihiro Motomura
嘉啓 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11978090A priority Critical patent/JPH0417310A/en
Publication of JPH0417310A publication Critical patent/JPH0417310A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Abstract

PURPOSE:To obtain a magnetic multilayer film whose Bs is high, whose magnetically soft characteristic is good and whose heat-resistant property is excellent by a method wherein first magnetic layers composed of an alloy whose main component is Fe and second magnetic layers composed of an NiFe alloy or the like are laminated alternately and one or more kinds of elements out of B, C, Al, Si and Cr are contained in the first magnetic layers. CONSTITUTION:This magnetic multilayer film has a cyclic structure in which the following are laminated alternately on a substrate 1: first magnetic layers 2 composed of an alloy whose main component is Fe; and second magnetic layers 3 composed of an NiFe alloy or an alloy whose main component is the NiFe alloy. At least one kind of element out of B, C, Al, Si and Cr is contained in the first magnetic layers 2. For example, an Fe/NiFe multilayer film in which Fe alloy layers 2 and NiFe alloy layers 3 (82% Ni and 18% Fe), whose film thickness is 8nm each, are laminated alternately and continuously on a substrate 1 is formed by an electron-beam vacuum deposition method using two evaporation sources. At this time, the Fe alloy layers 2 have a composition which contains 2.5wt.% of B. A glass substrate is used for the substrate 1; the total film thickness is set at 200nm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気記録用磁気ヘッドの磁極等に適する磁性
多層膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic multilayer film suitable for the magnetic pole of a magnetic head for magnetic recording.

[従来の技術およびその課題] 近年、コンピュータ用リジッド磁気ディスク装置を始め
として、フレキシブル磁気ディスク装置、磁気テープ装
置等の磁気記録装置の高密度化が進められている。磁気
記録の高密度化のためには、記録媒体の保磁力(HC)
を大きくすることが不可欠である。一方、信号の記録を
行う磁気ヘッドには、このような高保磁力媒体を十分に
磁化するため、高飽和磁束密度(BS>を有する材料が
必要とされる。また、信号の再生時に記録媒体からの信
号磁界を効率良く集束するために、磁気ヘッド材料は良
好な軟磁特性を併せ持つ必要がある。
[Background Art and its Problems] In recent years, the density of magnetic recording devices such as rigid magnetic disk devices for computers, flexible magnetic disk devices, and magnetic tape devices has been increased. In order to increase the density of magnetic recording, the coercive force (HC) of the recording medium is
It is essential to increase the On the other hand, a magnetic head that records signals requires a material with a high saturation magnetic flux density (BS>) in order to sufficiently magnetize such a high coercive force medium. In order to efficiently focus the signal magnetic field, the magnetic head material must also have good soft magnetic properties.

このような磁気ヘッド材料として、従来酸化鉄フェライ
ト(BS〜3 kGauss )が広く用いられてきた
。ざらに、高Bsの軟磁性材料として、NFC合金(1
3s 〜9 kGauss ) 、FeS i A1合
金(BS〜11 kGauss )等の合金系軟磁性薄
膜が現在用いられているが、10000e以上の高保磁
力媒体に書き込むことは困難である。
Conventionally, iron oxide ferrite (BS~3 kGauss) has been widely used as such a magnetic head material. In general, NFC alloy (1
Although alloy-based soft magnetic thin films such as 3s to 9 kGauss) and FeS i A1 alloy (BS to 11 kGauss) are currently used, it is difficult to write on high coercive force media of 10,000e or more.

これら合金系以外の新しい高BS軟磁性材料として、高
Bsを有するFeを非磁性の中間層材料と交互に積層し
て多層膜とすることによって軟磁気特性を得る、Fe/
C多層膜、Fe/5i02多層膜等のFe系多層膜が注
目され、広く研究されている(例えば、千田正勝他著:
電子情報通信学会技術報告、88巻(1988年)17
ページ、小林他著:ジャーナル・オブ・アプライド・フ
ィジックス、63巻(1988年>  3203ページ
)。しかし、これらの多層膜では中間層の非磁性体によ
ってBSが低下するという欠点がある。
As a new high-BS soft magnetic material other than these alloys, Fe/
Fe-based multilayer films such as C multilayer films and Fe/5i02 multilayer films have been attracting attention and being widely studied (for example, by Masakatsu Senda et al.
IEICE Technical Report, Volume 88 (1988) 17
Page, Kobayashi et al.: Journal of Applied Physics, Volume 63 (1988 > 3203 pages). However, these multilayer films have the disadvantage that the BS is lowered by the nonmagnetic material in the intermediate layer.

そこで、中間層として強磁性体を用いたFe/Ni多層
膜、Fe/FeC0多層膜、Fe/NFC多層膜(例え
ば、特開昭64−39012号公報、アイ・イー・イー
・イー・トランザクションズ・オン・マグネティクス、
23巻(1987年)  2746ベージ)等が検討さ
れている。中でもF e/NFe多層膜は、中間層とし
て軟磁気特性に優れたNiFe合金を用いているため、
磁気ヘッド用高BS軟磁性材料として特に優れた特性が
期待される。しかし、このような多層膜材料は、加熱す
ると層間の拡散によって積層構造が崩れてしまうため、
合金材料に比べて耐熱性が劣るといった問題点があった
Therefore, Fe/Ni multilayer film, Fe/FeC0 multilayer film, Fe/NFC multilayer film using ferromagnetic material as an intermediate layer (for example, Japanese Patent Laid-Open No. 64-39012, IE Transactions)・On Magnetics,
23 volumes (1987) 2746 pages) are being considered. Among them, the Fe/NFe multilayer film uses a NiFe alloy with excellent soft magnetic properties as the intermediate layer, so
It is expected to have particularly excellent properties as a high BS soft magnetic material for magnetic heads. However, when such multilayer film materials are heated, the laminated structure collapses due to diffusion between the layers.
There was a problem that heat resistance was inferior compared to alloy materials.

本発明の目的は、高BSで良好な軟磁気特性を有し、し
かも耐熱性に優れた磁性多層膜を提供することにある。
An object of the present invention is to provide a magnetic multilayer film having high BS, good soft magnetic properties, and excellent heat resistance.

[課題を解決するための手段] 本発明は、基板上に、Feを主成分とする合金からなる
第1の磁性層と、N i Fe合金またはN i Fe
合金を主成分とする合金からなる第2の磁性層とを交互
に積層した周期構造を有する磁性多層膜であって、第1
の磁性層中に、B、C。
[Means for Solving the Problems] The present invention provides a first magnetic layer made of an alloy containing Fe as a main component, and a N i Fe alloy or a N i Fe alloy on a substrate.
A magnetic multilayer film having a periodic structure in which a first magnetic layer is alternately laminated with a second magnetic layer made of an alloy containing an alloy as a main component.
B, C in the magnetic layer.

八β、SiあるいはCrのうち少なくとも1種類の元素
を含有することを特徴とする磁性多層膜である。
The magnetic multilayer film is characterized by containing at least one element selected from the group consisting of 8β, Si, and Cr.

以下、図面を参照して本発明をざらに詳細に説明する。Hereinafter, the present invention will be roughly described in detail with reference to the drawings.

第1図は本発明の磁性多層膜の一例を示す部分断面図で
ある。本発明の磁性多層膜は、基板1上に、Feを主成
分とする第1の磁性層2とN i FeまたはNiFe
を主成分とする第2の磁性層3とが交互に積層された繰
り返しによる周期構造を有する。第1図では基板上にま
ずFe合金層が形成され、次にN i Fe層が形成さ
れ、最後の層もN i Fe層で終わるように記しであ
るが、本発明の磁性多層膜はこれらの層の積層順序には
よらない。
FIG. 1 is a partial cross-sectional view showing an example of the magnetic multilayer film of the present invention. The magnetic multilayer film of the present invention has a first magnetic layer 2 containing Fe as a main component on a substrate 1, and a first magnetic layer 2 containing Fe as a main component and NiFe or NiFe.
It has a periodic structure in which second magnetic layers 3 mainly composed of are repeatedly stacked alternately. In FIG. 1, the Fe alloy layer is first formed on the substrate, then the Ni Fe layer is formed, and the last layer ends with the Ni Fe layer, but the magnetic multilayer film of the invention It does not depend on the stacking order of the layers.

本発明に係わる基板1の材料には、ガラス。The material of the substrate 1 according to the present invention is glass.

Si、Al2203.TiC,SiC,Al2O3とT
iCとの焼結体、フェライト等を用いることができ、ま
た第1の磁性層2には、FeまたはFe−Co、Fe−
N i等の強磁性合金、あるいはこれらに添加物を加え
たものに、B、C,A1 。
Si, Al2203. TiC, SiC, Al2O3 and T
A sintered body with iC, ferrite, etc. can be used, and for the first magnetic layer 2, Fe, Fe-Co, Fe-
Ferromagnetic alloys such as Ni or additives added to these, B, C, A1.

3iあるいはCrのうち少なくとも1種類の元素を添加
したものが用いられる。また、本発明に係わる第2の磁
性層3の材料としては、NiFe合金、あるいはこれに
添加物を加えたものが用いられる。
A material to which at least one element of 3i or Cr is added is used. Further, as the material for the second magnetic layer 3 according to the present invention, a NiFe alloy or a NiFe alloy with additives added thereto is used.

本発明による磁性多層膜は、例えば、上記の第1の強磁
性材料と第2の強磁性材料とを2基の蒸発源を持つ真空
蒸着装置、もしくは2基のターゲットを持つスパッタリ
ング装置で蒸発させ、2基の蒸発源のシャッタを交互に
開閉したり、あるいは基板を2基の蒸発源上を交互に通
過させることによって製造することができる。
The magnetic multilayer film according to the present invention can be produced by, for example, evaporating the first ferromagnetic material and the second ferromagnetic material using a vacuum evaporation device having two evaporation sources or a sputtering device having two targets. , by alternately opening and closing the shutters of the two evaporation sources, or by alternately passing the substrate over the two evaporation sources.

[作用] 本発明の磁性多層膜は、Feを主成分とする合金からな
る第1の磁性層中にB、C,AI、、51あるいはCr
のうち、少なくとも1種類の元素を含有しており、これ
によって耐熱性が大幅に改善される。
[Function] The magnetic multilayer film of the present invention has B, C, AI, .
Among these, it contains at least one type of element, which significantly improves heat resistance.

このように、B、C,AI S+あるいはCr等の添加
によって耐熱性が改善される原因は明らかではないが、
これらの添加元素がFeの結晶粒の粒界に偏析し、Fe
、NiFe層間の拡散を妨げるために耐熱性が改善され
るものと考えられる。
Although it is not clear why the heat resistance is improved by the addition of B, C, AI S+ or Cr, etc.,
These additive elements segregate at the grain boundaries of Fe crystal grains, and Fe
, it is thought that the heat resistance is improved because diffusion between the NiFe layers is prevented.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

2基の蒸発源を用いた電子ビーム真空蒸着法により、基
板上にFe合金層とN i Fe合金(N82%、Fe
lB%)層とを交互に連続的に@居したFe/N i 
Fe多層膜を作成した。この時、Fe合金層は第1表に
示す種々の組成のものを用いた。基板にはガラス基板を
用い、基板温度は100℃とした。成膜速度はo、in
m/秒とし、各蒸発源のシャッタの開閉時間を変えて各
層の膜厚を制御した。蒸着中の真空度は5X10−8 
Torrであった。また、成膜中に基板面内に5000
eの直流磁界を印加して、膜中に一軸性の磁気異方性を
誘起した。膜全体の厚さは、全て200 nmと一定に
した。
An Fe alloy layer and a NiFe alloy (N82%, Fe
1B%) layer continuously and alternately
A Fe multilayer film was created. At this time, Fe alloy layers having various compositions shown in Table 1 were used. A glass substrate was used as the substrate, and the substrate temperature was 100°C. The film formation rate is o, in
m/sec, and the film thickness of each layer was controlled by changing the opening/closing time of the shutter of each evaporation source. Vacuum degree during vapor deposition is 5X10-8
It was Torr. Also, during film formation, 5000
A DC magnetic field of e was applied to induce uniaxial magnetic anisotropy in the film. The thickness of the entire film was kept constant at 200 nm.

これらの試料の飽和磁束密度(BS)を振動試料型磁力
計で測定した。また、軟磁気特性を代表する量として困
難軸方向の比透磁率(μ)を10MHzの周波数で測定
した。さらに、これらの膜を種々の温度で1時間熱処理
し、比透磁率の値が初期値の70%に低下する温度を耐
熱温度として求めた。
The saturation magnetic flux density (BS) of these samples was measured using a vibrating sample magnetometer. Further, the relative magnetic permeability (μ) in the hard axis direction was measured at a frequency of 10 MHz as a quantity representative of soft magnetic properties. Furthermore, these films were heat-treated at various temperatures for 1 hour, and the temperature at which the relative magnetic permeability value decreased to 70% of the initial value was determined as the heat-resistant temperature.

以上の測定結果を第1表kまとめた。表中、多層膜の膜
構成Fe (X>/N i Fe (Y)と記したのは
、Fe合金層X nmとNiFe合金層Y nmの積層
構造であることを示している。
The above measurement results are summarized in Table 1k. In the table, the film structure of the multilayer film Fe (X>/N i Fe (Y)) indicates a stacked structure of an Fe alloy layer of X nm and a NiFe alloy layer of Y nm.

第1表の結果から明らかなように、本発明の添加元素を
含んだFe合金層を用いた多層膜試料(2〜6)は、添
加元素を含まない多層膜試料(1)に比へて、同等以上
の優れた磁気特性を有し、しかも耐熱温度が100℃以
上高くなっている。
As is clear from the results in Table 1, the multilayer film samples (2 to 6) using the Fe alloy layer containing the additive element of the present invention are superior to the multilayer film sample (1) that does not contain the additive element. , has superior magnetic properties equivalent to or better than that, and has a heat resistance temperature that is 100°C or more higher.

(以下余白) [発明の効果] 以上説明したように、本発明による磁性多層膜は高い飽
和磁束密度と良好な軟磁気特性を有し、しかも高い耐熱
性を有するもので、磁気ヘッド用材料として特に優れた
特性を備えたものでおる。
(The following is a blank space) [Effects of the Invention] As explained above, the magnetic multilayer film according to the present invention has a high saturation magnetic flux density, good soft magnetic properties, and high heat resistance, and is suitable as a material for magnetic heads. It has particularly excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁性多層膜の一例の部分断面図である
。 1・・・基板 2・・・第1の磁性層 3・・・第2の磁性層
FIG. 1 is a partial cross-sectional view of an example of the magnetic multilayer film of the present invention. 1... Substrate 2... First magnetic layer 3... Second magnetic layer

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に、Feを主成分とする合金からなる第1
の磁性層と、NiFe合金またはNiFe合金を主成分
とする合金からなる第2の磁性層とを交互に積層した周
期構造を有する磁性多層膜であって、第1の磁性層中に
、B,C,Al,SiあるいはCrのうち少なくとも1
種類の元素を含有することを特徴とする磁性多層膜。
(1) A first layer made of an alloy mainly composed of Fe is placed on the substrate.
A magnetic multilayer film having a periodic structure in which a magnetic layer of B, At least one of C, Al, Si or Cr
A magnetic multilayer film characterized by containing different types of elements.
JP11978090A 1990-05-11 1990-05-11 Magnetic multilayer film Pending JPH0417310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11978090A JPH0417310A (en) 1990-05-11 1990-05-11 Magnetic multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11978090A JPH0417310A (en) 1990-05-11 1990-05-11 Magnetic multilayer film

Publications (1)

Publication Number Publication Date
JPH0417310A true JPH0417310A (en) 1992-01-22

Family

ID=14770043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11978090A Pending JPH0417310A (en) 1990-05-11 1990-05-11 Magnetic multilayer film

Country Status (1)

Country Link
JP (1) JPH0417310A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS6481208A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Soft magnetic film and its manufacture
JPH01119005A (en) * 1987-10-31 1989-05-11 Nec Home Electron Ltd Magnetic film and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS6481208A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Soft magnetic film and its manufacture
JPH01119005A (en) * 1987-10-31 1989-05-11 Nec Home Electron Ltd Magnetic film and manufacture thereof

Similar Documents

Publication Publication Date Title
US6395413B1 (en) Perpendicular magnetic recording medium
US5029032A (en) Magnetic head for high density recording
JP2698814B2 (en) Soft magnetic thin film
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
US4609593A (en) Magnetic recording medium
JPH0417310A (en) Magnetic multilayer film
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JPS5911605A (en) Magnetic recording element
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH0517608B2 (en)
JP3911678B2 (en) Multilayer perpendicular magnetic recording medium
JPH0389502A (en) Magnetic multilayer film
JP3232592B2 (en) Magnetic head
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPH0483313A (en) Soft magnetic thin film and magnetic head
JP3386270B2 (en) Magnetic head and magnetic recording device
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JP2782994B2 (en) Manufacturing method of magnetic head
JP2979557B2 (en) Soft magnetic film
JP2000268341A (en) Vertical magnetic recording medium
JP2621601B2 (en) Magnetoresistive head
JP2666195B2 (en) Iron oxygen aluminum based perpendicular magnetic anisotropic thin film
JPH10208936A (en) Magnetic recording medium
JPH05325165A (en) Magnetic recording medium
JPS63164049A (en) Magneto-optical recording medium and its production