JPH10208936A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH10208936A
JPH10208936A JP944797A JP944797A JPH10208936A JP H10208936 A JPH10208936 A JP H10208936A JP 944797 A JP944797 A JP 944797A JP 944797 A JP944797 A JP 944797A JP H10208936 A JPH10208936 A JP H10208936A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
film
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP944797A
Other languages
Japanese (ja)
Inventor
Toshiharu Suzuki
俊治 鈴木
Tomohisa Suzuki
友久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP944797A priority Critical patent/JPH10208936A/en
Publication of JPH10208936A publication Critical patent/JPH10208936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic efficiency of a magnetic recording medium and simplify the manufacturing process of the medium by constituting the magnetic recording layer of the medium mainly of a hard magnetic phase associated with a subordinate nonmagnetic phase or a composite phase of a nonmagnetic phase and a magnetic phase and specifying the inclination of the axis of easy magnetization of the magnetic recording layer against the surface of the recording layer. SOLUTION: A magnetic medium layer 2 composed of a yoke layer 3 coating the upper surface of a substrate 1, a magnetic recording layer 4 formed on the surface of the layer 2, and a boundary section formed between the layers 3 and 4 is formed on the upper surface of the substrate 1. When the yoke layer 3 is made of a soft magnetic material or a ferromagnetic material having an axis in the direction of the surface of the substrate 1, vertical anisotropy is given to the magnetic recording layer 4 so that the inclination θ of the axis of easy magnetization from the surface of the substrate 1 may become 1<=θ<=900 deg.. The yoke layer 3 and recording layer 4 are not separated definitely from each other by the boundary section 5, but are intermixed together and the composition of one layer is gradually reduced toward the other layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータの外
部記憶装置である磁気記録装置や音楽、画像の記憶に使
用される磁気記録媒体に関する。
The present invention relates to a magnetic recording device which is an external storage device of a computer and a magnetic recording medium used for storing music and images.

【0002】[0002]

【従来の技術】磁気記録媒体は、音楽や画像のデータの
記録媒体のみならず、コンピュータの外部記憶装置とし
ても広く用いられている。例えばコンピュータの外部記
憶装置について考察してみると、近年磁気記録装置にお
いて高密度記録を可能にするため、記録方式や記録媒体
において様々な工夫がなされている。一例として、記録
方式では従来の長手記録に対して垂直記録方式が提案さ
れている。また、記録媒体では材質と磁気特性の異なる
2層或いは3層の媒体が一部に用いられている。
2. Description of the Related Art Magnetic recording media are widely used not only as recording media for music and image data but also as external storage devices for computers. Considering, for example, an external storage device of a computer, in recent years, various methods have been devised in a recording method and a recording medium in order to enable high-density recording in a magnetic recording device. As an example, as a recording method, a perpendicular recording method has been proposed with respect to the conventional longitudinal recording. Further, in the recording medium, a two-layer or three-layer medium having different materials and magnetic properties is used in part.

【0003】[0003]

【発明が解決しようとする課題】下層に軟磁性のパーマ
ロイ等の磁性膜を形成して、その上層に硬磁性のCoー
Cr系膜を形成してなる垂直記録媒体の場合、硬磁性膜
が下層の結晶性の影響を受け、膜面に対して垂直異方性
を持ちにくいために、合金組成やスパッタリング諸条件
を厳しく管理して成膜している。或いは、このような下
層の影響を除くために上層と下層の界面に薄いバッファ
層を設けることが行われているが、いずれの場合にも、
工程数が増えるだけでなく磁気的な効率を著しく下げる
ことになり、記録再生効率や信号対ノイズ比の低下や記
録磁化状態の安定性を損なう要因となっている。本発明
は上記課題に鑑みてなされたものであり、その目的は、
磁気効率の向上と製造プロセスの簡略化を目的とした新
規な磁気記録媒体を提供しようとするものである。
In the case of a perpendicular recording medium in which a soft magnetic permalloy or the like magnetic film is formed as a lower layer and a hard magnetic Co—Cr based film is formed as an upper layer, the hard magnetic film is Due to the influence of the crystallinity of the lower layer, it is difficult to have perpendicular anisotropy with respect to the film surface. Therefore, the film is formed by strictly controlling the alloy composition and sputtering conditions. Alternatively, a thin buffer layer is provided at the interface between the upper layer and the lower layer in order to eliminate the influence of the lower layer. In any case,
Not only does this increase the number of steps, but also significantly lowers the magnetic efficiency, which is a factor that lowers the recording / reproducing efficiency, the signal-to-noise ratio, and impairs the stability of the recording magnetization state. The present invention has been made in view of the above-mentioned problems, and its purpose is to
It is an object of the present invention to provide a novel magnetic recording medium for the purpose of improving magnetic efficiency and simplifying a manufacturing process.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は磁気記録媒体の基板上に、該基板面と概ね
同方向に磁束を通過させるヨーク層と、該ヨーク層の上
面に形成される磁気記録層とを具備する磁気記録媒体に
おいて、上記磁気記録層とヨーク層とから成る合金膜が
一体不可分に形成され、且つ3−15at%のY、L
a、ランタナイド属元素のいずれか一種以上希土類元素
と0.02−20at%の元素Mおよび残り鉄とを必須
元素として含み、いずれか一方の層から他方の層に向か
って成分組成が漸減する構成から成り、さらに該磁気記
録層が主たる硬磁性相と従たる非磁性相、若しくは硬磁
性相より低保磁力の磁性相との複合相から成り、さらに
該磁気記録層の磁化容易軸の傾きθが膜面に対して、0
≦θ≦90°である。但し、元素MはCo,Ni,A
l,Si,Ti,V,Cr,Mn,Zr,Nb,Mo,
Ga,Sn,Hf,Ta,Wのいずれか一種以上。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a yoke layer on a substrate of a magnetic recording medium that allows a magnetic flux to pass in substantially the same direction as the surface of the substrate, and an upper surface of the yoke layer. In a magnetic recording medium having a magnetic recording layer to be formed, an alloy film composed of the magnetic recording layer and the yoke layer is integrally formed, and 3 to 15 at% of Y, L
a, a composition containing one or more rare earth elements of the lanthanide element, 0.02 to 20 at% element M, and the remaining iron as essential elements, and the component composition gradually decreases from one layer to the other layer And the magnetic recording layer further comprises a composite phase of a main hard magnetic phase and a subordinate nonmagnetic phase or a magnetic phase having a lower coercive force than the hard magnetic phase, and furthermore, the inclination θ of the axis of easy magnetization of the magnetic recording layer. Is 0 with respect to the film surface.
≤ θ ≤ 90 °. However, the element M is Co, Ni, A
1, Si, Ti, V, Cr, Mn, Zr, Nb, Mo,
Any one or more of Ga, Sn, Hf, Ta, and W.

【0005】また、該磁気記録層の磁化容易軸が膜面に
対し凡そ垂直或いは平行であることとする。さらに、磁
気記録層が主たる硬磁性相と従たる非磁性相若しくは硬
磁性相より低保磁力の硬性相との複合相から成る。さら
に、上記磁気記録層とヨーク層とから成る合金膜が、T
2 Zn17,Th2Ni17,TbCu7 ,ThMn12
3 (Fe,M)29型いずれか1つの結晶構造をもつ。
さらに、上記磁気記録層の上面に保護膜が被着されてい
る。
It is assumed that the axis of easy magnetization of the magnetic recording layer is substantially perpendicular or parallel to the film surface. Further, the magnetic recording layer is composed of a composite phase of a main hard magnetic phase and a secondary nonmagnetic phase or a hard phase having a lower coercive force than the hard magnetic phase. Further, the alloy film composed of the magnetic recording layer and the yoke layer is
h 2 Zn 17 , Th 2 Ni 17 , TbCu 7 , ThMn 12 ,
It has any one of the crystal structures of R 3 (Fe, M) 29 type.
Further, a protective film is provided on the upper surface of the magnetic recording layer.

【0006】本発明の、磁気記録層とヨーク層とが一体
不可分に形成された磁気記録媒体の構造原理は以下のよ
うである。例えば、スパッタリングによって、初期にS
m−Feターゲットを用いてSm2 Fe17膜を形成し、
途中でFe−Tiターゲットを追加してSm−Feとの
2元同時スパッタを行い、上層にSmFe11Ti膜を形
成する。このとき、軟磁性Sm2 Fe17結晶のC軸が基
板面と垂直になるよう形成すると、硬磁性のSmFe11
Ti上層は結晶C軸が基板面と平行になるよう形成さ
れ、従って硬磁性記録層の磁化容易方向は膜面と平行方
向になる。この他にも、合金の結晶構造と成分組成を適
切に選定することによって、硬軟両磁性と異方性を制御
した磁性膜の製作が可能となる。
The structural principle of the magnetic recording medium according to the present invention in which the magnetic recording layer and the yoke layer are integrally formed is as follows. For example, by sputtering, S
forming an Sm 2 Fe 17 film using an m-Fe target,
An Fe—Ti target is added on the way, and binary simultaneous sputtering with Sm—Fe is performed to form an SmFe 11 Ti film as an upper layer. In this case, C-axis of the soft magnetic Sm 2 Fe 17 crystal form so that the substrate surface and perpendicular to, the hard magnetic SmFe 11
The Ti upper layer is formed so that the crystal C axis is parallel to the substrate surface, and therefore, the easy magnetization direction of the hard magnetic recording layer is parallel to the film surface. In addition, by appropriately selecting the crystal structure and the component composition of the alloy, it is possible to manufacture a magnetic film in which both hard and soft magnetism and anisotropy are controlled.

【0007】本発明の成膜方法については、スパッタリ
ング、蒸着、メッキ、レーザーデポジション、CVDな
どを用いることが出来る。また合金膜の成分について
は、ランタナイド属の希土類元素一種以上と鉄、および
元素M(Co,Ni,Al,Si,Ti,V,Cr,M
n,Zr,Nb,Mo,Ga,Sn,Hf,Ta,W)
のいずれか一種以上を必須元素として含み、その組成範
囲については、希土類元素が3%未満では保磁力が小さ
く、磁気記録層に必要な保磁力が得られない。一方、1
5%を越えると飽和磁化が低下し、また希土類含有率が
多くなるために膜の耐酸化性が損なわれる。また、元素
Mの一種以上の添加により合金の結晶構造の安定化や磁
気特性の調整をすることができる。但し、元素Mの総量
が0.02%未満では磁気特性の調整効果がほとんど見
られず、一方20%を越えると合金本来の結晶構造が維
持できなくなって、磁気特性が著しく損なわれる。
As the film forming method of the present invention, sputtering, vapor deposition, plating, laser deposition, CVD and the like can be used. Regarding the components of the alloy film, one or more rare earth elements of the lanthanide genus, iron, and the element M (Co, Ni, Al, Si, Ti, V, Cr, M
n, Zr, Nb, Mo, Ga, Sn, Hf, Ta, W)
If the rare earth element is less than 3%, the coercive force is small and the coercive force required for the magnetic recording layer cannot be obtained. Meanwhile, 1
If it exceeds 5%, the saturation magnetization decreases, and the rare earth content increases, so that the oxidation resistance of the film is impaired. Further, by adding one or more elements M, the crystal structure of the alloy can be stabilized and the magnetic characteristics can be adjusted. However, if the total amount of the element M is less than 0.02%, the effect of adjusting the magnetic properties is hardly observed, while if it exceeds 20%, the original crystal structure of the alloy cannot be maintained, and the magnetic properties are significantly impaired.

【0008】また、本発明の合金膜はTh2 Zn17,T
2 Ni17,TbCu7 ,ThMn12,R3 (Fe,
M)29型などの化合物を種々選定して構成される。例え
ばTh2 Zn17結晶構造を持つSm2 Fe17組成の合金
のC面(001)上に、Tiを添加したSm2 Fe17Ti2
組成の上層合金膜を形成すると、結晶積み重ねの有利さ
から、上層はThMn12型結晶構造をもちそのC軸は膜
面と平行になる。他の例では、ThMn12構造を持つN
dFe11V組成の合金のC面(001) 上に、同じ結晶構造
のNdFe10VMo組成の上層膜を形成する。この場合
には、下層は軟磁性と硬磁性との中間的な磁性を示し、
上層は硬磁性を示して膜面と垂直方向の磁化容易軸をも
つ。
The alloy film of the present invention is made of Th 2 Zn 17 , T
h 2 Ni 17 , TbCu 7 , ThMn 12 , R 3 (Fe,
M) It is constituted by selecting various compounds such as type 29 . For example, on the C-plane (001) of an alloy having a composition of Sm 2 Fe 17 having a crystal structure of Th 2 Zn 17 , Sm 2 Fe 17 Ti 2 containing Ti is added.
When an upper alloy film having a composition is formed, the upper layer has a ThMn 12 type crystal structure and its C axis is parallel to the film surface due to the advantage of crystal stacking. In another example, N having a ThMn 12 structure
An upper layer film of NdFe 10 VMo composition having the same crystal structure is formed on the C-plane (001) of the alloy having dFe 11 V composition. In this case, the lower layer shows intermediate magnetism between soft magnetism and hard magnetism,
The upper layer exhibits hard magnetism and has an easy axis of magnetization perpendicular to the film surface.

【0009】さらに、硬磁性上層は上記の結晶構造のい
ずれかを主相とし、且つ非磁性若しくは低保磁力の第2
あるいは第3磁性相との複合体とすることによって、記
録ビットの分離を助長して高密度記録化を有利にするこ
とができる。例えば従来のCo−Cr系合金媒体は、単
磁区粒径より微細なCoリッチ相とCrリッチ相との複
合体から成っている。本発明においても、合金成分組成
の選定と熱処理の工夫によって、Sm2 (Fe,Ti)
17やNd(Fe,V)12硬磁性相の結晶粒界や結晶内
に、Fe2 TiやSm23 などの非磁性相、若しくは
(Sm,Ce)2Fe17相など低保磁力相を設けること
ができる。なお、一般に希土類鉄系合金は化学的に活性
であるために、実用においては合金膜上部に酸化や磨耗
を防止するための酸化ケイ素やカーボン、あるいは高分
子等の保護膜を被着させている。上記のように構成した
磁気記録媒体は、上下層境界面での乱れがないために、
平滑性に優れるだけでなく、従来の二層膜にみられる磁
気的はギャップも生じないために、記録再生特性や信号
ノイズ比が高く、かつ記録磁化状態の安定性にも優れ
る。
Further, the hard magnetic upper layer has one of the above crystal structures as a main phase and has a nonmagnetic or low coercivity second layer.
Alternatively, by forming a composite with the third magnetic phase, separation of recording bits can be promoted, and high-density recording can be advantageously performed. For example, a conventional Co—Cr alloy medium is composed of a composite of a Co-rich phase and a Cr-rich phase finer than a single magnetic domain particle size. Also in the present invention, Sm 2 (Fe, Ti) is selected by selecting the alloy composition and devising the heat treatment.
A non-magnetic phase such as Fe 2 Ti or Sm 2 O 3 or a low coercive force phase such as (Sm, Ce) 2 Fe 17 phase is present in the grain boundaries or in the crystal of the 17 or Nd (Fe, V) 12 hard magnetic phase. Can be provided. In general, since a rare-earth iron-based alloy is chemically active, a protective film such as silicon oxide, carbon, or a polymer for preventing oxidation or wear is deposited on the alloy film in practical use. . The magnetic recording medium configured as described above has no disturbance at the boundary between the upper and lower layers.
In addition to being excellent in smoothness, since there is no magnetic gap seen in the conventional two-layer film, the recording / reproducing characteristics and the signal noise ratio are high, and the stability of the recording magnetization state is also excellent.

【0010】[0010]

【発明の実施の形態】次に本発明の一実施形態を、図面
を用いて詳細に説明する。図1は、本発明に係る磁気記
録媒体の部分断面図である。図1において、1はガラス
等からなる基板である。該基板1の上面には、磁気媒体
層2が形成されている。該磁気媒体層2は基板上に被着
されたヨーク層3と表面の磁気記録層4とその間に形成
されている境界部分5とからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial sectional view of a magnetic recording medium according to the present invention. In FIG. 1, reference numeral 1 denotes a substrate made of glass or the like. On the upper surface of the substrate 1, a magnetic medium layer 2 is formed. The magnetic medium layer 2 comprises a yoke layer 3 attached on a substrate, a magnetic recording layer 4 on the surface, and a boundary portion 5 formed therebetween.

【0011】基板1は、機械的強度が高く、温度変化に
より膨張収縮が小さいSiO2 系のガラスが使用され
る。ヨーク層3は、軟磁性体からなるか、あるいは基板
1の平面方向に磁気異方性の邦軸が揃った強磁性体から
なり、いずれも該基板1の平面と同方向に磁束を通過さ
せることができるように構成されている。磁気記録層4
は、ヨーク層3が軟磁性体からなるときあるいは基板1
の平面方向に軸が揃った強磁性体からなるときには、基
板1の平面に対して垂直方向の異方性を持たせることが
でき、また、ヨーク層3が軟磁性体からなるときには基
板1の平面方向に異方性を持たせることもでき、いずれ
にせよ優れた硬磁気特性を示す磁気記録層である。境界
部分5は明確にヨーク層3と磁気記録層4とが面で隔離
されているわけではなく、双方が入り交った状態となっ
ており、それらの境界部分において、いずれか一方の層
に向かって他方の層の組成が漸減する構成により両者の
境界部分が形成されているが、その詳細については後に
詳細に説明する。なお、磁気記録層の厚みは、磁気記録
層境界部分ヨーク層全体の厚みのほぼ2〜50%であ
る。
The substrate 1 is made of SiO 2 glass having high mechanical strength and small expansion and contraction due to temperature change. The yoke layer 3 is made of a soft magnetic material or a ferromagnetic material having a uniform magnetic anisotropy axis in the plane direction of the substrate 1, and both pass a magnetic flux in the same direction as the plane of the substrate 1. It is configured to be able to. Magnetic recording layer 4
Indicates that the yoke layer 3 is made of a soft magnetic material or the substrate 1
When the yoke layer 3 is made of a soft magnetic material, it can have anisotropy in the direction perpendicular to the plane of the substrate 1. The magnetic recording layer can have anisotropy in the plane direction and exhibit excellent hard magnetic characteristics in any case. The boundary portion 5 is not clearly separated from the yoke layer 3 and the magnetic recording layer 4 by a plane, but is in a state in which both are intermingled. The boundary between the two layers is formed by a configuration in which the composition of the other layer gradually decreases, and the details will be described later. The thickness of the magnetic recording layer is approximately 2 to 50% of the thickness of the entire yoke layer at the boundary between the magnetic recording layers.

【0012】基板1は上述のようにガラスにより構成す
ることもできるが、図2に示すように、基板6をアルミ
ニウムにより構成することもでき、この場合、基板6と
磁気媒体層2との間に非磁性の金属からなる下地膜7を
形成し、アルミ基板表面の欠陥を補修すると同時に、磁
気媒体層2と基板6間に生じる物理的ひずみを吸収させ
るように構成するとよい。更に基板1はシリコンにより
構成することもできる。
The substrate 1 can be made of glass as described above. Alternatively, as shown in FIG. 2, the substrate 6 can be made of aluminum. In this case, the substrate 6 and the magnetic medium layer 2 It is preferable to form a base film 7 made of a non-magnetic metal to repair defects on the surface of the aluminum substrate and absorb physical strain generated between the magnetic medium layer 2 and the substrate 6 at the same time. Further, the substrate 1 can be made of silicon.

【0013】[0013]

【実施例】【Example】

実施例1.対向ターゲット型スパッタリング装置にSm
−Fe−Co−V組成の合金ターゲットを装着し、厚さ
0.7mm径3.5インチのガラス基板上に、11.3
at%Sm−5.4at%Co−13.4at%V−残
Fe組成の下層磁性膜を形成した。成膜条件は、ターゲ
ットと基板間に6W/cm2 の電力パワー密度を加え、
50cc/分のアルゴンガスを流しながら、基板加熱温
度350℃の下で行った。続いてFe−Co−Vタ−ゲ
ットを追加し、基板面に垂直方向に磁場を加えながら2
元同時スパッタを行って、9.8at%Sm−7.6a
t%CO−18.5at%V−残Fe組成の上層磁性膜
を形成し、さらに420℃で90分間熱処理をした。得
られた磁性膜の総厚は500nmで全体の成分組成は1
0.7at%Sm−6.3at%Co−15.4at%
V−残Feであり、これを本発明試料(A)とした。ま
た別途磁気特性測定用に、上層膜あるいは下層膜のみの
参考試料と、比較例用にガラス基板上に厚さ400nm
のパーマロイ膜と80nmのCo−Cr−Ta膜を形成
した試料(B)を製作した。
Embodiment 1 FIG. Sm for facing target type sputtering equipment
An alloy target having an Fe—Co—V composition was mounted, and a glass substrate having a thickness of 0.7 mm and a diameter of 3.5 inches was placed on a glass substrate having a thickness of 11.3 mm.
A lower magnetic film of at% Sm-5.4 at% Co-13.4 at% V-remaining Fe composition was formed. The deposition conditions are as follows: a power density of 6 W / cm 2 is applied between the target and the substrate;
The test was performed at a substrate heating temperature of 350 ° C. while flowing an argon gas at 50 cc / min. Subsequently, an Fe-Co-V target is added, and a magnetic field is applied in a direction perpendicular to the substrate surface.
9.8 at% Sm-7.6a
An upper magnetic film having a composition of t% CO-18.5at% V-remaining Fe was formed, and further heat-treated at 420 ° C. for 90 minutes. The total thickness of the obtained magnetic film is 500 nm, and the total component composition is 1
0.7 at% Sm-6.3 at% Co-15.4 at%
V—residual Fe, which was designated as Sample (A) of the present invention. In addition, for the magnetic property measurement, a reference sample of only the upper layer film or the lower layer film, and a 400 nm thick glass substrate for the comparative example.
(B) on which a permalloy film of No. 1 and a Co—Cr—Ta film of 80 nm were formed.

【0014】試料(A)はThMn12型の結晶構造をも
ち、下層膜は結晶のC軸が基板面と平行に形成され、上
層部は磁場印加の影響によって結晶のC軸が基板面と垂
直に形成されていた。また、透過型電子顕微鏡による微
細組織の観察結果、20−40nm径のSm−Co−V
−Fe主相周辺に、10nm以下のSmFe7 軟磁性副
相、および微量のアモルファス状の酸化サマリウム相が
認められた。さらに、上層・下層膜共に硬磁性を示して
おり、上層は膜面と垂直に、下層は膜面に平行方向の異
方性を有していた。これら試料の合金膜の保磁力は図3
の通りとなり、本発明試料は高保磁力特性を示して高記
録密度に好適な膜が得られた。なお、上下層ともに硬磁
性を示す本発明例試料においては、下層が磁束を通過さ
せるヨーク層の役割を果たすことになる。
[0014] Samples (A) has a crystal structure of 12-inch ThMn, lower film C-axis of the crystal is formed in parallel with the substrate surface, the upper portion is C-axis substrate surface and vertical crystals due to the influence of the magnetic field applied Was formed. In addition, as a result of observation of the microstructure by a transmission electron microscope, it was found that Sm-Co-V having a diameter of 20 to 40 nm was used.
SmFe 7 soft magnetic sub-phase of 10 nm or less and a small amount of amorphous samarium oxide phase were observed around the -Fe main phase. Further, both the upper layer and the lower layer showed hard magnetism, and the upper layer had anisotropy in a direction perpendicular to the film surface and the lower layer had anisotropy in a direction parallel to the film surface. The coercive force of the alloy films of these samples is shown in FIG.
As a result, the sample of the present invention exhibited high coercive force characteristics, and a film suitable for high recording density was obtained. In the sample of the present invention in which both the upper and lower layers show hard magnetism, the lower layer plays the role of a yoke layer for passing magnetic flux.

【0015】次に、試料(A)、(B)の膜表面にフロ
ロカーボン膜を5nm塗布した後、垂直磁気ヘッドを用
いて記録再生特性を測定した。なお、一般に保護膜とし
てはダイヤモンドライクカーボン(DLC)や酸化珪素
が、また、潤滑膜としてはグラファイトや摩擦係数の小
さい高分子膜が用いられる。
Next, a fluorocarbon film was coated on the film surfaces of the samples (A) and (B) to a thickness of 5 nm, and the recording / reproducing characteristics were measured using a perpendicular magnetic head. Generally, diamond-like carbon (DLC) or silicon oxide is used as the protective film, and graphite or a polymer film having a small friction coefficient is used as the lubricating film.

【0016】図4に、試料(A)および(B)を媒体に
用い、垂直磁気記録で一般的に使用される単磁極ヘッド
を使用した場合の、記録再生特性を示す。トラック幅は
10μm、コイル巻き数は26ターン、周速は10m/
sとした。この結果、試料(A)は(B)と比較して再
生出力が高く、また、高記録密度の目安となるD50も高
い。再生出力やD50を高くするためには、保磁力が高い
ことと同時に、記録層の磁化遷移領域が狭い、即ち保磁
力の分散が小さいことが要求される。従って、試料
(A)は記録層とヨーク相との境界面が一体不可分で且
つ平滑であり、さらに記録情報を担う硬磁性相が微細に
分離されているために、保磁力の分散が小さい記録媒体
であることがわかる。さらに、信号とノイズの比である
SN比は(A)が−47dBで(B)は−36dBとな
り、良好な値を示した。この理由は、本発明の媒体が下
層から上層まで連続した工程で成膜されているために、
静磁的結合が強まったことによる。
FIG. 4 shows recording / reproducing characteristics when the samples (A) and (B) are used as a medium and a single pole head generally used for perpendicular magnetic recording is used. The track width is 10 μm, the number of coil turns is 26 turns, and the peripheral speed is 10 m /
s. As a result, sample (A) has a higher compared to reproduction output (B), and also, D 50 is high which is a measure of the high recording density. In order to increase the reproduced output and D 50 is at the same time as the higher coercive force, the magnetization transition region of the recording layer is narrow, i.e. the dispersion of coercive force is small is required. Accordingly, in the sample (A), the boundary between the recording layer and the yoke phase is inseparable and smooth, and the hard magnetic phase, which carries the recording information, is finely separated. It turns out that it is a medium. Further, the SN ratio, which is the ratio of signal to noise, was -47 dB in (A) and -36 dB in (B), indicating a good value. This is because the medium of the present invention is formed in a continuous process from the lower layer to the upper layer,
This is due to the stronger magnetostatic coupling.

【0017】この実施例では、図5に示すように、基板
1の上層は基板面と水平方向の異方性を示す硬磁性のヨ
ーク層3が形成され、最上層膜は基板面に対して垂直方
向に異方性を示す硬磁性体の磁気記録層4を形成する。
そして、これらの中間の境界部分5では、いずれか一方
の層に向かって他方の層の組成が漸減する構成を持って
いる。なお、8は保護膜である。
In this embodiment, as shown in FIG. 5, a hard magnetic yoke layer 3 having anisotropy in the horizontal direction with respect to the substrate surface is formed on the upper layer of the substrate 1, and the uppermost film is formed on the substrate surface with respect to the substrate surface. A magnetic recording layer 4 of a hard magnetic material exhibiting anisotropy in the vertical direction is formed.
The intermediate boundary portion 5 has a configuration in which the composition of the other layer gradually decreases toward one of the layers. Reference numeral 8 denotes a protective film.

【0018】実施例2.Sm−Feターゲットを用いて
実施例1と同様にアルゴンガス中で初期スパッタリング
を行った後、さらにFe−Tiターゲットを追加し、磁
場を加えずににSm−Feとの2元同時スパッタを行
い、シリコン基板上に8.3at%Sm−5.4at%
Ti−残Fe組成の合金膜を形成して、本発明試料
(C)とした。この膜は下層がTh2 Zn17型の結晶構
造をもち、およその組成がSm2 Fe17であり、その結
晶のC軸が基板面と平行に形成されていた。一方、上層
はThMn12型の結晶構造をもち、およその組成がSm
Fe11Tiであり、その結晶のC軸が基板面と平行に形
成されていた。また上層部の微細組織の観察結果、20
−50nm径のSm−Ti−Fe主相周辺に約10nm
のFe2 Ti非磁性副相が認められた。さらに下層は軟
磁性を示す一方、上層は硬磁性を示してその異方性方向
は膜面に平行であった。この試料(C)の保磁力は、上
層が2630Oeで下層が1.1Oeであった。
Embodiment 2 FIG. After performing initial sputtering in argon gas in the same manner as in Example 1 using an Sm-Fe target, an additional Fe-Ti target was added, and binary simultaneous sputtering with Sm-Fe was performed without applying a magnetic field. 8.3 at% Sm-5.4 at% on silicon substrate
An alloy film having a Ti-residual Fe composition was formed to obtain a sample (C) of the present invention. The lower layer of this film had a Th 2 Zn 17 type crystal structure, the approximate composition was Sm 2 Fe 17 , and the C axis of the crystal was formed parallel to the substrate surface. On the other hand, the upper layer has a ThMn 12 type crystal structure, and the approximate composition is Sm.
Fe 11 Ti, and the C axis of the crystal was formed parallel to the substrate surface. In addition, as a result of observing the fine structure of the upper layer, 20
About 10 nm around the Sm-Ti-Fe main phase having a diameter of -50 nm
Fe 2 Ti nonmagnetic subphase was observed. Further, the lower layer showed soft magnetism, while the upper layer showed hard magnetism, and its anisotropic direction was parallel to the film surface. The coercive force of this sample (C) was 2630 Oe for the upper layer and 1.1 Oe for the lower layer.

【0019】試料(C)を媒体に用い、垂直磁気記録で
一般的に使用される単磁極ヘッドを使用して、記録再生
特性の評価を行った。トラック幅は10μm、コイル巻
き数は26ターン、周速は10m/sとした。この結
果、試料(C)は比較例試料(B)と比較して再生出力
が74%高く、また高記録密度の目安となるD50も38
%高いことがわかった。さらに、SN比は−44dBで
良好な値を示した。
Using the sample (C) as a medium, a recording / reproducing characteristic was evaluated using a single pole head generally used in perpendicular magnetic recording. The track width was 10 μm, the number of coil turns was 26 turns, and the peripheral speed was 10 m / s. As a result, sample (C) Comparative Example Sample (B) compared to the reproduction output and 74% higher, also D 50 which is a measure of the high recording density 38
% Higher. Further, the SN ratio was a good value at -44 dB.

【0020】この実施例では、図6に示すように、下層
膜は、軟磁性を示して磁束を通すヨーク層3となる。ま
た、上層膜は、硬磁性で膜面と平行方向の異方性を持っ
た磁気記録層4を形成する。また、ヨーク層3と磁気記
録層4とは一体不可分に形成され、それらの境界部分5
では、いずれか一方の層に向かって他方の層の組成が漸
減する構成を持っている。8は保護膜である。
In this embodiment, as shown in FIG. 6, the lower layer film becomes the yoke layer 3 which exhibits soft magnetism and allows magnetic flux to pass. The upper layer film forms the magnetic recording layer 4 which is hard magnetic and has anisotropy in the direction parallel to the film surface. Further, the yoke layer 3 and the magnetic recording layer 4 are formed integrally and inseparably, and their boundary portions 5
Has a configuration in which the composition of the other layer gradually decreases toward one of the layers. 8 is a protective film.

【0021】実施例3.Sm−Ce−FeとFe−Mo
の2種ターゲットを用いて、基板面に対して垂直方向に
磁場を加えながら、アルゴンガス中でスパッタリングを
行った。この際、時間の経過に従ってSm−Ce−Fe
ターゲットの開口面積を絞ることによってFe−Moタ
ーゲットからのスパッタ率を上げて成膜をし、無電解ニ
ッケルメッキを施したアルミ基板上に6.4at%Sm
−1.8at%Ce−6.5at%Mo−残Fe組成の
合金膜を形成して本発明試料(D)とした。この膜は、
最下層がTh2 Zn17型の化合物相を主体とし、磁場印
加の効果によってその結晶のC軸が基板面と平行に形成
されていた。一方、最上層はThMn12型の化合物相を
主体とし、その結晶のC軸が基板面と垂直方向に形成さ
れていた。また、上層部の微細組織の観察結果、10−
30nm径のSm−Ce−Mo−Fe主相周辺に、約2
0−50nm径のα−Fe軟磁性副相が認められた。こ
れらの結果、下層から上層に向かって磁性は軟磁性から
硬磁性に変化し、さらに異方性の方向は膜面に対して垂
直方向に傾斜していた。
Embodiment 3 FIG. Sm-Ce-Fe and Fe-Mo
Sputtering was performed in an argon gas while applying a magnetic field in a direction perpendicular to the substrate surface using the two types of targets. At this time, as time elapses, Sm-Ce-Fe
A film is formed by increasing the sputtering rate from the Fe-Mo target by narrowing the opening area of the target, and 6.4 at% Sm is formed on an aluminum substrate subjected to electroless nickel plating.
An alloy film having a composition of -1.8 at% Ce-6.5 at% Mo-remaining Fe was formed to obtain a sample (D) of the present invention. This membrane
The lowermost layer was mainly composed of a Th 2 Zn 17 type compound phase, and the C axis of the crystal was formed parallel to the substrate surface due to the effect of applying a magnetic field. On the other hand, the uppermost layer was mainly composed of a ThMn 12 type compound phase, and the C axis of the crystal was formed in a direction perpendicular to the substrate surface. In addition, as a result of observation of the fine structure of the upper layer, 10-
Around the main phase of Sm-Ce-Mo-Fe having a diameter of 30 nm, about 2
An α-Fe soft magnetic subphase having a diameter of 0 to 50 nm was observed. As a result, the magnetism changed from soft magnetic to hard magnetic from the lower layer to the upper layer, and the direction of anisotropy was inclined in the direction perpendicular to the film surface.

【0022】試料(D)を媒体に用い、垂直磁気記録で
一般的に使用される単磁極ヘッドを使用して、記録再生
特性の評価を行った。トラック幅は10μm、コイル巻
き数は26ターン、周速は10m/sとした。この結
果、試料(D)は比較例試料(B)と比較して再生出力
が62%高く、また高記録密度の目安となるD50も28
%高いことがわかった。さらに、SN比は−42dBで
良好な値を示した。
Using the sample (D) as a medium, the recording / reproducing characteristics were evaluated using a single pole head generally used in perpendicular magnetic recording. The track width was 10 μm, the number of coil turns was 26 turns, and the peripheral speed was 10 m / s. As a result, the reproduction output of the sample (D) was 62% higher than that of the sample (B) of the comparative example, and D 50 which is a measure of high recording density was also 28.
% Higher. Furthermore, the SN ratio showed a good value at -42 dB.

【0023】この実施例では、図7に示すように、最下
層膜は基板と平行方向に異方性を示すヨーク層3とな
り、境界部分5は下層膜から上層膜に向かって、異方性
の方向が水平から徐々に垂直方向に向き、最上層は基板
に対してい垂直方向に異方性を示す磁気記録層4とな
る。8は保護膜である。
In this embodiment, as shown in FIG. 7, the lowermost film becomes the yoke layer 3 exhibiting anisotropy in a direction parallel to the substrate, and the boundary portion 5 becomes anisotropic from the lower film toward the upper film. Is gradually turned from the horizontal direction to the vertical direction, and the uppermost layer becomes the magnetic recording layer 4 exhibiting anisotropy in the direction perpendicular to the substrate. 8 is a protective film.

【0024】以上、本発明を上述の実施形態ないし実施
例により説明したが、本発明の主旨の範囲内で種々の変
形や応用が可能であり、これらの変形や応用を本発明の
範囲から排除するものではない。
Although the present invention has been described with reference to the above-described embodiments and examples, various modifications and applications are possible within the scope of the gist of the present invention, and these modifications and applications are excluded from the scope of the present invention. It does not do.

【0025】[0025]

【発明の効果】以上説明したように、本発明による磁気
記録層とヨーク層との組成が変移し且つ一体不可分に形
成された磁気記録媒体によれば、単一合金膜内で硬軟両
磁性や異方性を制御することにより、従来の二層膜にな
い優れた磁気的性質を具備する。その特徴は、境界面で
の乱れがなく平滑性に優れ、磁気的なギャップも生じな
いために、記録再生特性や信号対ノイズ比の向上に効果
ある。さらに、二種の磁性層を成膜する必要がないため
に製造プロセスの簡略化にも寄与する。
As described above, according to the magnetic recording medium of the present invention in which the compositions of the magnetic recording layer and the yoke layer change and are integrally formed, hard and soft bimagnetism and By controlling the anisotropy, it has excellent magnetic properties not found in the conventional two-layer film. The feature is that there is no disturbance at the boundary surface, the smoothness is excellent, and there is no magnetic gap, which is effective for improving the recording / reproducing characteristics and the signal-to-noise ratio. Further, since it is not necessary to form two types of magnetic layers, it contributes to simplifying the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の磁気記録媒体の部分断面図で
ある。
FIG. 1 is a partial sectional view of a magnetic recording medium of the present invention.

【図2】図2は、本発明の他の磁気記録媒体の部分断面
図である。
FIG. 2 is a partial cross-sectional view of another magnetic recording medium of the present invention.

【図3】図3は、本発明の第1の実施例と従来例との比
較表図である。
FIG. 3 is a comparison table diagram between the first embodiment of the present invention and a conventional example.

【図4】図4は、本発明の第1の実施例と従来例との記
録密度の比較表図である。
FIG. 4 is a comparison chart of recording densities between the first embodiment of the present invention and a conventional example.

【図5】図5は、本発明の第1の実施例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a first embodiment of the present invention.

【図6】図6は、本発明の第2の実施例を示す断面図で
ある。
FIG. 6 is a sectional view showing a second embodiment of the present invention.

【図7】図7は、本発明の第3の実施例を示す断面図で
ある。
FIG. 7 is a sectional view showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・基板 2・・・・・磁気媒体層 3・・・・・ヨーク層 4・・・・・磁気記録層 5・・・・・境界部分 6・・・・・基板 7・・・・・下地膜 8・・・・・保護膜 1 ... substrate 2 ... magnetic medium layer 3 ... yoke layer 4 ... magnetic recording layer 5 ... boundary 6 ... substrate 7 .... Undercoat 8 ... Protective film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁気記録媒体の基板上に、該基板面と概ね
同方向に磁束を通過させるヨーク層と、該ヨーク層の上
面に形成される磁気記録層とを具備する磁気記録媒体に
おいて、 上記磁気記録層とヨーク層とからなる合金膜が一体不可
分に形成され、且つ3〜15at%のY、La、ランタ
ナイド属元素のいずれか一種以上の希土類元素と0.0
2〜20at%の元素Mと残り鉄とを必須元素として含
み、いずれか一方の層から他方の層に向かって成分組成
が漸減する構成からなり、更に該磁気記録層が主たる硬
磁性相と従たる非磁性相、若しくは該硬磁性相より低保
持力の磁性相との複合相からなり、その磁気記録層の磁
化容易軸の傾きθが膜面に対して、0≦θ≦90°であ
ることを特徴とする磁気記録媒体。ただし、元素Mは、
Co,Ni,Al,Si,Ti,V,Cr,Mn,Z
r,Nb,Mo,Ga,Sn,Hf,Ta,Wのいずれ
か一種以上。
1. A magnetic recording medium comprising: a yoke layer on a substrate of a magnetic recording medium that allows a magnetic flux to pass in substantially the same direction as the substrate surface; and a magnetic recording layer formed on an upper surface of the yoke layer. An alloy film composed of the magnetic recording layer and the yoke layer is integrally formed as an integral part, and 3 to 15 at% of one or more rare earth elements of any one of Y, La, and lanthanide elements is added to the alloy film.
The magnetic recording layer contains 2 to 20 at% of the element M and the remaining iron as essential elements, and the component composition gradually decreases from one layer to the other layer. The magnetic recording layer is composed of a non-magnetic phase or a composite phase with a magnetic phase having a lower coercive force than the hard magnetic phase, and the inclination θ of the axis of easy magnetization of the magnetic recording layer is 0 ≦ θ ≦ 90 ° with respect to the film surface. A magnetic recording medium characterized by the above-mentioned. Where the element M is
Co, Ni, Al, Si, Ti, V, Cr, Mn, Z
Any one or more of r, Nb, Mo, Ga, Sn, Hf, Ta, and W.
【請求項2】上記磁気記録層の磁化容易軸の方向が膜面
に対して凡そ平行であることを特徴とする請求項1に記
載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the direction of the axis of easy magnetization of said magnetic recording layer is substantially parallel to the film surface.
【請求項3】上記磁気記録層の磁化容易軸の方向が膜面
に対して凡そ垂直であることを特徴とする請求項1に記
載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the direction of the axis of easy magnetization of the magnetic recording layer is substantially perpendicular to the film surface.
【請求項4】上記磁気記録層とヨーク層とからなる合金
膜が、Th2 Zn17,Th2 Ni17,TbCu7 ,Th
Mn12,R3 (Fe,M)29型のいずれか1つの結晶構
造を有することを特徴とする請求項1又は請求項2又は
請求項3に記載の磁気記録媒体。但し、RはY、La、
ランタナイド属希土類元素を示す。
4. An alloy film comprising the magnetic recording layer and the yoke layer is made of Th 2 Zn 17 , Th 2 Ni 17 , TbCu 7 , Th.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a crystal structure of any one of Mn 12 and R 3 (Fe, M) 29 type. Where R is Y, La,
Indicates a lanthanide-based rare earth element.
【請求項5】上記磁気記録層の上面に保護膜が被着され
ていることを特徴とする請求項1又は請求項2又は請求
項3に記載の磁気記録媒体。
5. A magnetic recording medium according to claim 1, wherein a protective film is provided on an upper surface of said magnetic recording layer.
JP944797A 1997-01-22 1997-01-22 Magnetic recording medium Pending JPH10208936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP944797A JPH10208936A (en) 1997-01-22 1997-01-22 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP944797A JPH10208936A (en) 1997-01-22 1997-01-22 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10208936A true JPH10208936A (en) 1998-08-07

Family

ID=11720557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP944797A Pending JPH10208936A (en) 1997-01-22 1997-01-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10208936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310671A (en) * 2018-03-20 2019-10-08 富士胶片株式会社 Magnetic recording ferromagnetism powder and magnetic recording media
US11488627B2 (en) 2018-03-20 2022-11-01 Fujifilm Corporation Ferromagnetic powder for magnetic recording and magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310671A (en) * 2018-03-20 2019-10-08 富士胶片株式会社 Magnetic recording ferromagnetism powder and magnetic recording media
CN110310671B (en) * 2018-03-20 2022-09-20 富士胶片株式会社 Ferromagnetic powder for magnetic recording and magnetic recording medium
US11488627B2 (en) 2018-03-20 2022-11-01 Fujifilm Corporation Ferromagnetic powder for magnetic recording and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4169663B2 (en) Perpendicular magnetic recording medium
US5543221A (en) Magnetic recording medium
JP5103097B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
US20100165510A1 (en) Vertical magnetic recording medium and magnetic recording reproducing apparatus
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
KR100699761B1 (en) Magnetic recording medium and magnetic storage device
JP2007164941A (en) Perpendicular magnetic recording medium
US6916530B2 (en) Perpendicular magnetic recording medium
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JPH10208936A (en) Magnetic recording medium
KR20040029495A (en) Magnetic recording media
JP2007102833A (en) Perpendicular magnetic recording medium
JPWO2004019322A1 (en) Backed magnetic film
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3647379B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2014524633A (en) Recording stack with double continuous layers
JP4389381B2 (en) Magnetic recording medium and magnetic recording apparatus
JPH10208935A (en) Magnetic recording medium
JP2001283427A (en) Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device
JP3911678B2 (en) Multilayer perpendicular magnetic recording medium
JPH10233014A (en) Magnetic recording medium
JPH10229012A (en) Manufacture of magnetic recording medium
JPH10247607A (en) Manufacture of magnetic recording medium