JPH04172159A - Method for detecting abnormality in immersion nozzle in continuous casting - Google Patents

Method for detecting abnormality in immersion nozzle in continuous casting

Info

Publication number
JPH04172159A
JPH04172159A JP30036690A JP30036690A JPH04172159A JP H04172159 A JPH04172159 A JP H04172159A JP 30036690 A JP30036690 A JP 30036690A JP 30036690 A JP30036690 A JP 30036690A JP H04172159 A JPH04172159 A JP H04172159A
Authority
JP
Japan
Prior art keywords
gate
molten steel
mold
immersion nozzle
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30036690A
Other languages
Japanese (ja)
Inventor
Toyotsugu Tsuda
津田 豊継
Tetsuya Moriya
守屋 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30036690A priority Critical patent/JPH04172159A/en
Publication of JPH04172159A publication Critical patent/JPH04172159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To accurately decide nozzle clogging and inclusion dropping by detecting the change with the lapse of time in difference between the theoretical value of a gate opening degree based on molten steel surface level in a tundish, molten steel surface level in a mold and drawing velocity and the gate opening degree at the time of actually casting. CONSTITUTION:The molten steel 2 is received into the tundish 3 from a ladle 1 and poured into the mold 6 through an immersion nozzle 5 while adjusting flow rate with the gate 4. The drawing velocity, the molten steel surface level in the mold, the molten steel surface level in the tundish, cross sectional area of the mold and opening degree meter signal of the gate, are inputted in a calculater. Based on these values, the theoretical opening degree of gate 4 is calculated, and by the change with the lapse of time in the difference from the actual opening degree, conditional variation of the immersion nozzle 5 is decided. In the case the stuck inclusion in the immersion nozzle 5 is dropped, the difference is reduced and in the case the immersion nozzle is clogged, the difference is made large.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、連続鋳造時における“浸漬ノズル詰り”や
“浸漬ノズル内に付着していた介在物のモールド内への
落下”等の如き浸漬ノズル内異常を的確に検知する方法
に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention is intended to prevent immersion problems such as "immersion nozzle clogging" and "falling of inclusions attached to the immersion nozzle into the mold" during continuous casting. The present invention relates to a method for accurately detecting an abnormality in a nozzle.

〈従来技術とその課題〉 連続鋳造においては、従来から、タンデイツシュに設け
た浸漬ノズル内にAN 203系等の介在物が付着する
現象が問題になっており、特にこの介在物によるノズル
詰りゃノズルに詰った介在物のモールド内への落下は鋳
造作業や製品品質に大きな悪影響を及ぼすことから、浸
漬ノズル内の状況把握は極めて重要な課題となっていた
<Prior art and its problems> In continuous casting, the problem has been that inclusions such as AN 203 adhere to the immersed nozzle installed in the tundish. The falling of clogging inclusions into the mold has a major negative impact on casting work and product quality, so understanding the situation inside the immersion nozzle has become an extremely important issue.

もっとも、これまでにもノズル詰りゃノズル内に付着し
た介在物の落下を検出する手段に関しての提案も幾つか
なされてきたが、その代表的なものとして例えば次の方
法がある。
However, several proposals have been made so far regarding means for detecting the falling of inclusions adhering to the inside of the nozzle in case of nozzle clogging, and the following method is a typical example.

fat  引抜速度やタンディシュ内溶鋼レベルが安定
している状況下においてモールド内溶綱レベルが急変し
たことを“介在物の剥離落下”と判定する方法(特開昭
62−227564号)。
fat A method of determining that a sudden change in the level of molten steel in the mold under conditions where the drawing speed and the level of molten steel in the tundish are stable is ``exfoliation and falling of inclusions'' (Japanese Patent Application Laid-Open No. 62-227564).

(b)  タンディシュからの溶鋼流入量を検知する注
入弁開度計の開度急減少信号により“介在物の剥離落下
”を判断する方法(特開昭58−159956号)。
(b) A method of determining "separation and falling of inclusions" based on a signal of a sudden decrease in the opening of an injection valve opening meter that detects the flow of molten steel from the tundish (Japanese Patent Laid-Open No. 159956/1983).

(C1溶鋼流入量調整ゲートの理想開度と実開度との差
の絶対値が所定値を超えたことを“介在物の剥離落下”
と判定する方法(特開昭62−192246号)。なお
、この提案における理想開度は次の計算式によって求め
たものである。即ち、Q、 −c 、5b−r”i丁r
犯       ・・・・・・(1)口n  −5n 
・ v、l                    
 ・・・・・・(2)なる式が成立するが、ここで 口、  −Ill。
(The absolute value of the difference between the ideal opening degree and the actual opening degree of the C1 molten steel inflow adjustment gate exceeds a predetermined value is called “Inclusions peeling off and falling.”)
A method for determining this (Japanese Patent Application Laid-open No. 192246/1983). Note that the ideal opening degree in this proposal was determined by the following calculation formula. That is, Q, -c, 5b-r”i-dingr
Crime ・・・・・・(1) Mouth n -5n
・v,l
...The equation (2) holds true, where -Ill.

の関係にあることから、 が成立する。そして、ゲートの開口面積を調整するシリ
ンダーストロークをa、開口部の半径をbとすると Sb = 2 d ”cos−’(−) −2a 、/
TT’−丁万・・・・・・(4) が成り立ち、この(4)式の関係からシリンダーストロ
ーク(即ち“理想開度”)aを求める。
Since there is a relationship, the following holds true. Then, if the cylinder stroke that adjusts the opening area of the gate is a, and the radius of the opening is b, then Sb = 2 d ``cos-'(-) -2a, /
TT' - Dingman (4) holds true, and the cylinder stroke (ie, "ideal opening degree") a is determined from the relationship of equation (4).

しかしながら、前記(a)法や(b)法で“介在物の剥
離落下”を判定できるのは、「引抜速度が一定でタンデ
ィシュ内溶鋼しヘルも一定である」と言ったように操業
が安定している時に限られ。しかも、前記+al法の判
定基準となる「モールド内溶綱レベル急変(急上昇)」
はモールド内?gtiAレベル計への外乱(例えば、放
射線方式のレベル計ではパウダーの投入、電磁誘導式で
は導電体のセンサーへの接近等)によっても起きるもの
であり、従って前記(bl法では介在物の落下を的確に
判断することは難しかった。また、「注入弁開度の急減
少」も「モールド内溶鋼レベルの急上昇」が起きた時に
生じる現象であることから、前記Cbl法も先に説明し
た(al法の場合と同様の理由によって介在物の落下を
的確に判断することが難しいと言わねばならなかった。
However, methods (a) and (b) above can only determine whether the inclusions are peeling off or falling when the operation is stable, such as when the drawing speed is constant, the steel is molten in the tundish, and the heat is also constant. Only when doing so. Moreover, "the level of molten metal in the mold suddenly changes (rapidly)", which is the criterion for the above-mentioned +al method.
Is it in the mold? This is also caused by disturbances to the gtiA level meter (for example, powder is thrown into the radiation type level meter, conductive material approaches the sensor in the electromagnetic induction type), and therefore, the above-mentioned (BL method) prevents the falling of inclusions. It was difficult to make an accurate judgment.Furthermore, the Cbl method was also explained earlier (al. It must be said that it is difficult to accurately judge the falling of inclusions for the same reason as in the case of the law.

一方、溶鋼流入量調整ゲートの理想開度と実開度との差
の絶対値が所定値を超えたことで“介在物の剥離落下”
を判断する前記(C1法については、ゲート開口部が新
しい時に限ると流量係数が正しければ通常は実開度と理
論開度がほぼ等しくなるので適切な判定は可能であるが
、実際には操業時間の経過につれてゲート開口部の溶損
があり、このため理論開度と実開度の差が発生して正確
な判断ができないと言う問題があった。
On the other hand, as the absolute value of the difference between the ideal opening degree and the actual opening degree of the molten steel inflow adjustment gate exceeded a predetermined value, “inclusions were peeled off and fell.”
(For the C1 method, when the gate opening is new, if the flow coefficient is correct, the actual opening and the theoretical opening will usually be approximately equal, so an appropriate judgment can be made. However, in actual operation There was a problem in that the gate opening was eroded over time, which caused a difference between the theoretical opening and the actual opening, making it impossible to make accurate judgments.

く課題を解決するための手段〉 本発明は、従来の浸漬ノズル内異常の判定方法に指摘さ
れる上述の如き問題を解消し、“ノズル詰り”や“介在
物のモールド内への落下”を的確に判定し得る手段を提
供すべくなされたもので、[開口を有するゲート部及び
浸漬ノズルをタンディシュに設け、モールド内溶鋼レベ
ルが一定となるようにゲート部の開口面積を調整しつつ
溶鋼をモールドに注入する連続鋳造において、 “タン
ディシュ内?容鋼レベル、モールド内溶鋼レベル及び引
抜速度をも基にして算出した理論値から求まるゲート開
度”と“実鋳込み時のゲート開度”との差の経時変化に
より浸漬ノズル内の状況変化を検出することにより、連
続鋳造における浸漬ノズル内異常を的確に検知し得るよ
うにした点」に大きな特徴を有するものである。
Means for Solving the Problems> The present invention solves the above-mentioned problems pointed out in the conventional method for determining abnormalities inside a submerged nozzle, and eliminates "nozzle clogging" and "falling of inclusions into the mold." This method was designed to provide a means for accurate determination. [A gate with an opening and an immersion nozzle are provided in the tundish, and the opening area of the gate is adjusted so that the molten steel level in the mold is kept constant. In continuous casting when pouring into a mold, the difference between "the gate opening obtained from the theoretical value calculated based on the steel level in the tundish, the molten steel level in the mold, and the drawing speed" and the "gate opening during actual pouring" is determined. The major feature is that it is possible to accurately detect abnormalities in the immersed nozzle during continuous casting by detecting changes in the situation inside the immersed nozzle based on changes in the difference over time.

即ち、本発明は、操業中のゲートの実開度と操業中に得
られる情報からの理論開度との差の時系列的な変化(相
対的な変化)により、“ノズル詰り”や“介在物のモー
ルド内への落下”を適正に判定できるようにしたもので
あるが、以下、実施例に従って本発明をより具体的に説
明する。
That is, the present invention detects "nozzle clogging" and "intervention" by chronological changes (relative changes) in the difference between the actual opening of the gate during operation and the theoretical opening based on information obtained during operation. The present invention is designed to be able to appropriately determine whether an object has fallen into a mold, and the present invention will be described in more detail below with reference to Examples.

第1図は、本発明法を実施するのに好適な連続鋳造装置
例の概要図であって、レードル(1)からの溶鋼(2)
を−旦タンディシュ(3)に受容し、これをゲート(4
1にて流量を調整しつつ浸漬ノズル(5)を介してモー
ルド(6)内へ注入する連続鋳造設備(図中の符号7は
ピンチロールを示す)に、“計算機”を含む浸漬ノズル
内異常の検出機構を付設したものが示されている。
FIG. 1 is a schematic diagram of an example of a continuous casting apparatus suitable for carrying out the method of the present invention, in which molten steel (2) is produced from a ladle (1).
is received in the tandish (3) and sent to the gate (4).
In the continuous casting equipment (numeral 7 in the figure indicates a pinch roll) that injects into the mold (6) through the immersion nozzle (5) while adjusting the flow rate in step 1, there is an abnormality in the immersion nozzle including the "calculator". A device equipped with a detection mechanism is shown.

このような連続鋳造装置による鋳込み操業中、計算機に
は操業データとして“引抜速度”、“モールド内湯面レ
ベル”、“タンディシュ内溶鋼レベル(タンディシュ重
量から求めることも可能)′、“モールド断面積(モー
ルド厚、モールド幅)”、“理論値と比較するためのゲ
ート開度計信号”及び“レベル制御開始信号”が取り込
まれる。
During casting operations using such continuous casting equipment, the computer records operating data such as "pulling speed,""molten metal level in the mold,""molten steel level in the tundish (which can also be determined from the tundish weight)," and "mold cross-sectional area ( ``mold thickness, mold width)'', ``gate opening degree meter signal for comparison with theoretical value'', and ``level control start signal'' are captured.

計算機の信号取り込み周期は100m5〜1秒程度で良
いが、この類の操業で通常使用される計算機の処理能力
からすれば1秒程度が実用的であるかもしれない。
The signal acquisition period of the computer may be about 100m5 to 1 second, but considering the processing power of computers normally used in this type of operation, about 1 second may be practical.

次に、取り込まれたデータより下記算式によって理論開
度が求められる。即ち、 Qc = c −5ciτHt        ・−・
・・−(5)L Qll= V、1・W−D+W−D ・−・・・・・・
(6)t が成立するので、 Qc= Q、1 の関係から、理論ゲート開口面積を求める。
Next, the theoretical opening degree is determined from the captured data using the following formula. That is, Qc = c -5ciτHt ・-・
・・−(5)L Qll=V, 1・WD+WD−・・・・・・・
(6) Since t holds, the theoretical gate opening area is determined from the relationship Qc=Q,1.

ここで、ゲート開度の極性を合わせるため“レベル変動
”の項における「+」を「−」に変更すると、前記(7
)式は となる。
Here, in order to match the polarity of the gate opening degree, if "+" in the "Level fluctuation" section is changed to "-", the above (7
) is the formula.

そして、ゲートの開口面積を調整するシリンダーストロ
ークをXい ゲート開口部直径をRとすると ・・・・・・(8) なる関係式が成り立ち、この(8)式からシリンダース
・トローツ(理論開度)xmを求める(計算して求めて
も良いし、関係曲線をテーブル化しておいてS、に相当
する開度を求めても良い)。
Then, if the cylinder stroke for adjusting the opening area of the gate is degree)xm (this may be obtained by calculation, or the relational curve may be made into a table and the opening degree corresponding to S may be obtained).

続いて、実開度X、と理論開度x1との差Xx  ””
  xl、−xs を求め、その経時変化を監視して浸漬ノズル内の状況変
化を検知する。
Next, the difference Xx between the actual opening X and the theoretical opening x1
xl and -xs are determined, and their changes over time are monitored to detect changes in the situation inside the immersion nozzle.

浸漬ノズル内の状況変化は、実開度と理論開度との差X
に次のような影響を与える。
The change in the situation inside the immersion nozzle is the difference between the actual opening and the theoretical opening
has the following impact on

A) tjQノズル に・ した   くモール′第2
図で示すように、介在物が落下した場合には、その後の
ゲート実開度X、は詰っていた介在物が落下した分だけ
小さくなり、そのためその後の実開度と理論開度との差
Xも当然小さくなる。
A) tjQ nozzle second mall
As shown in the figure, when an inclusion falls, the subsequent actual gate opening X becomes smaller by the amount that the clogging inclusion has fallen, and therefore the difference between the subsequent actual opening and the theoretical opening. Naturally, X also becomes smaller.

B)??ノズルが計ったllA 第3図で示すように、ゲート実開度X、は介在物の付着
・堆積につれて徐々に大きくなってくるため、当然、実
開度と理論開度との差Xも徐々に大きくなる。
B)? ? llA measured by the nozzle As shown in Figure 3, the actual gate opening X gradually increases as inclusions adhere and accumulate, so naturally the difference X between the actual opening and the theoretical opening also gradually increases. becomes larger.

このようなことから、“しきいイ直”をLM(負)。For this reason, "Shikii Direct" is LM (negative).

LP(正)とすると、第4図で示すようにXL−x、、
≦L8 となった場合を「介在物の落下」と、また第5図示すよ
うに xo−X@≧L。
Assuming LP (positive), as shown in Figure 4, XL-x,
The case where ≦L8 is defined as "falling of inclusions", and as shown in Fig. 5, xo-X@≧L.

の場合を「ノズル詰り」とそれぞれ判断し、それぞれに
対応する警報及びランプ等にてそれを出力する。
Each case is determined to be a "nozzle clogging", and the corresponding alarm and lamp are outputted accordingly.

計算機の処理としては、信号は常時取り込んでいても良
いが、浸漬ノズル内異常の判定(判定のための各計算)
を開始するのはモールド内湯面レベル制御を自動で行っ
てからであるため(調節計等を使用用している場合)、
モールド場面レベル制御が自動の時のみ信号を取り込ん
で処理し、判定を行うのが良い。
As for computer processing, signals may be captured all the time, but it is also necessary to determine whether there is an abnormality in the immersion nozzle (each calculation for determination).
The process starts after the mold level is automatically controlled (if a controller, etc. is used).
It is preferable to take in the signal, process it, and make a judgment only when the mold scene level control is automatic.

また、何らかの理由で操業中に自動モールド場面レベル
制御をOFFにした場合は、計算中の値を全て初期化し
、再度、自動制御がONになった時から計算を開始する
(手動でのレベル制御時の情報を参考にしない)。
In addition, if automatic mold scene level control is turned off during operation for some reason, initialize all the values being calculated and start calculation again when automatic control is turned on (manual level control (Do not refer to current information).

なお、第6図は浸漬ノズル内異常検知の的確性を本発明
法と従来法(特開昭62−192246号に係る方法)
とで比較した結果を示しているが、この第6図からも、
本発明法によるとノズル内異常を十分適切に判定できる
ことが明らかである。
Furthermore, Figure 6 shows the accuracy of abnormality detection in a submerged nozzle using the method of the present invention and the conventional method (method according to JP-A-62-192246).
Figure 6 shows the results of a comparison between
It is clear that the method of the present invention allows for a sufficiently appropriate determination of abnormalities within the nozzle.

(効果の総括〉 以上に説明した如(、本発明によれば、理論開度の計算
式にモールド内湯面レベル、引抜速度。
(Summary of Effects) As explained above, according to the present invention, the melt level in the mold and the drawing speed are included in the formula for calculating the theoretical opening.

タンディシュ内溶鋼レベルを取り入れて用いるため、浸
漬ノズル内異常の判定が外乱の影響を受けにくく、また
理論開度と実開度の差の時系列な変化(相対的変化)で
上記判定を行うために操業変動による誤判定も少なくな
り、正確にノズル詰まり及び介在物落下を判定すること
が可能となるなど、産業上有用な効果がもたらされる。
Since the molten steel level in the tundish is incorporated and used, the determination of abnormalities in the immersed nozzle is less affected by external disturbances, and the above determination is made based on time-series changes (relative changes) in the difference between the theoretical opening and the actual opening. In addition, erroneous judgments due to operational fluctuations are reduced, and nozzle clogging and falling inclusions can be accurately judged, which brings about industrially useful effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明法を実施するのに好適な連続鋳造装置
例の概要図である。 第2図は、介在物が落下した場合における各情報の挙動
を示したグラフである。 第3図は、ノズル詰りの場合における各情報の挙動を示
したグラフである。 第4図は、介在物落下と判断される“実開度と理論開度
との差の経時変化”を説明したグラフである。 第5図は、ノズル詰りと判断される“実開度と理論開度
との差の経時変化”を説明したグラフである。 第6図は、浸漬ノズル内異常検知の的確性を本発明法と
従来法とで比較した結果を示すものである。 図面において 1・・・レードル、      2・・・ン容鋼。 3・・・タンディシュ、   4・・・ゲート。 5・・・浸漬ノズル、    6・・・モールド。 7・・・ピンチロール。
FIG. 1 is a schematic diagram of an example of a continuous casting apparatus suitable for carrying out the method of the present invention. FIG. 2 is a graph showing the behavior of each piece of information when an inclusion falls. FIG. 3 is a graph showing the behavior of each information in the case of nozzle clogging. FIG. 4 is a graph illustrating the "time-dependent change in the difference between the actual opening and the theoretical opening" which is determined to be the falling of an inclusion. FIG. 5 is a graph illustrating the "change over time of the difference between the actual opening and the theoretical opening" which is determined to be nozzle clogging. FIG. 6 shows the results of comparing the accuracy of abnormality detection in a submerged nozzle between the method of the present invention and the conventional method. In the drawings, 1... Ladle, 2... Container steel. 3...Tandish, 4...Gate. 5... Immersion nozzle, 6... Mold. 7...Pinch roll.

Claims (1)

【特許請求の範囲】[Claims] 開口を有するゲート部及び浸漬ノズルをタンディシュに
設け、モールド内溶鋼レベルが一定となるようにゲート
部の開口面積を調整しつつ溶鋼をモールドに注入する連
続鋳造において、“タンディシュ内溶鋼レベル、モール
ド内溶鋼レベル及び引抜速度をも基にして算出した理論
値から求まるゲート開度”と“実鋳込み時のゲート開度
”との差の経時変化により浸漬ノズル内の状況変化を検
出することを特徴とする、連続鋳造における浸漬ノズル
内異常の検知方法。
In continuous casting, a gate with an opening and an immersion nozzle are provided in the tundish, and molten steel is injected into the mold while adjusting the opening area of the gate so that the molten steel level in the tundish remains constant. It is characterized by detecting changes in the situation inside the immersion nozzle based on the change over time in the difference between the "gate opening obtained from a theoretical value calculated based on the molten steel level and drawing speed" and the "gate opening during actual pouring". A method for detecting abnormalities inside an immersion nozzle during continuous casting.
JP30036690A 1990-11-05 1990-11-05 Method for detecting abnormality in immersion nozzle in continuous casting Pending JPH04172159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30036690A JPH04172159A (en) 1990-11-05 1990-11-05 Method for detecting abnormality in immersion nozzle in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30036690A JPH04172159A (en) 1990-11-05 1990-11-05 Method for detecting abnormality in immersion nozzle in continuous casting

Publications (1)

Publication Number Publication Date
JPH04172159A true JPH04172159A (en) 1992-06-19

Family

ID=17883913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30036690A Pending JPH04172159A (en) 1990-11-05 1990-11-05 Method for detecting abnormality in immersion nozzle in continuous casting

Country Status (1)

Country Link
JP (1) JPH04172159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307608A (en) * 2006-05-22 2007-11-29 Kobe Steel Ltd Method for detecting dropping-down of skull in pouring tube
KR100946059B1 (en) * 2002-09-30 2010-03-09 주식회사 포스코 Monitoring method of dip condition of shroud nozzle in continuous casting machine
KR100957949B1 (en) * 2002-09-30 2010-05-13 주식회사 포스코 Continuous casting method by calculating melten steel level of tundish in continuous casting equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946059B1 (en) * 2002-09-30 2010-03-09 주식회사 포스코 Monitoring method of dip condition of shroud nozzle in continuous casting machine
KR100957949B1 (en) * 2002-09-30 2010-05-13 주식회사 포스코 Continuous casting method by calculating melten steel level of tundish in continuous casting equipment
JP2007307608A (en) * 2006-05-22 2007-11-29 Kobe Steel Ltd Method for detecting dropping-down of skull in pouring tube

Similar Documents

Publication Publication Date Title
US6929773B2 (en) Slag detector for molten steel transfer operations
CN110851997B (en) System and method for measuring and predicting thickness of real initial solidified blank shell in crystallizer
US5158129A (en) Method and device for feeding a powdered or granular material into a continuous casting mold
WO2005062846A2 (en) Tundish control
JPH04172159A (en) Method for detecting abnormality in immersion nozzle in continuous casting
JP2007268559A (en) Method and apparatus for controlling solidification completion position of continuously cast slab and method for producing continuously cast slab
JP4364428B2 (en) Method for producing CV graphite cast iron or spheroidal graphite cast iron and apparatus therefor
JPH06304727A (en) Device for controlling casting velocity
JP3604661B2 (en) Method and device for judging completion of molten steel injection
GB1602327A (en) Method and apparatus for continuous casting
JPH10146658A (en) Method for controlling molten metal surface level in continuous casting
JPH08168871A (en) Apparatus for pouring molten metal
JP2856077B2 (en) Method and apparatus for controlling powder layer thickness for continuous casting
JPH06320245A (en) Heat extraction control device in mold
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
US4787604A (en) Slag retention on discharge of a ladle
JPS58125350A (en) Detection of clogging of nozzle for charging molten metal into continuous casting mold
JPS62179859A (en) Auto-start controlling method for continuous casting machine
JP2665260B2 (en) Estimation method of flow rate into mold in continuous casting
JP2668872B2 (en) Breakout prediction method in continuous casting.
JPH0127816B2 (en)
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation
JP2653124B2 (en) Level control method for molten metal level in continuous casting mold
JPH05228580A (en) Continuous casting method
CN116727628A (en) Crystallizer immersed nozzle blockage inhibition and elimination method and device and electronic device