JP2007307608A - Method for detecting dropping-down of skull in pouring tube - Google Patents

Method for detecting dropping-down of skull in pouring tube Download PDF

Info

Publication number
JP2007307608A
JP2007307608A JP2006141955A JP2006141955A JP2007307608A JP 2007307608 A JP2007307608 A JP 2007307608A JP 2006141955 A JP2006141955 A JP 2006141955A JP 2006141955 A JP2006141955 A JP 2006141955A JP 2007307608 A JP2007307608 A JP 2007307608A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
temperature
injection pipe
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006141955A
Other languages
Japanese (ja)
Other versions
JP4871023B2 (en
Inventor
Atsuhiko Yoshida
敦彦 吉田
Takeshi Inoue
健 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006141955A priority Critical patent/JP4871023B2/en
Publication of JP2007307608A publication Critical patent/JP2007307608A/en
Application granted granted Critical
Publication of JP4871023B2 publication Critical patent/JP4871023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting the dropping-down of a skull for specifying the portion mixed with exfoliated refractory by detecting the dropping-down of the skull stuck to a pouring tube for pouring molten steel from a ladle to a tundish. <P>SOLUTION: In the method for detecting the dropping-down of the skull in the pouring tube 1 when the molten steel is poured into the tundish 2 with the pouring tube 1 from the ladle and this molten steel is continuously cast; the temperature of the molten steel in the tundish 2 is continuously detected, and the variation of the molten steel weight in the tundish 2 is under a stable state in the range of ±0.5 ton, and in the case that the dropping speed of the molten steel temperature detected with the temperature detecting means is a pre-set setting value or higher, it is determined that the skull stuck to the pouring tube at the time starting the drop-down of the temperature, is dropped down. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼等の連続鋳造において、製品品質上有害となる非金属介在物が製品に混入するのを防止するため、注入管へ付着した地金の落下によるタンディシュ内溶鋼への混入を検知する技術に関する。   In the present invention, in continuous casting of steel, etc., in order to prevent non-metallic inclusions that are harmful to product quality from entering the product, detection of entry into the molten steel in the tundish due to the fall of the metal attached to the injection pipe is detected. Related to technology.

溶鋼の連続鋳造においては、製品品質の悪化を防止するために溶鋼の再酸化を抑制する必要がある。特に、タンディシュにおいては、取鍋からタンディシュへの溶鋼流、およびタンディシュ内の溶鋼の再酸化を抑制するために、タンディシュ内の溶鋼にその一端を浸漬させた注入管が一般的に使用されている。   In continuous casting of molten steel, it is necessary to suppress reoxidation of molten steel in order to prevent deterioration of product quality. In particular, in the tundish, in order to suppress the molten steel flow from the ladle to the tundish and the re-oxidation of the molten steel in the tundish, an injection pipe having one end immersed in the molten steel in the tundish is generally used. .

しかし、この注入管においては、タンディシュ内溶鋼湯面に浸漬された注入管の下端部分が冷却されて生じる地金に、取鍋からの溶鋼注入流が溶鋼湯面に衝突する際に発生するスプラッシュが注入管内壁に飛び散り、これが冷却されることにより生成する地金が次第に堆積し、鋳造中にその地金が落下した際に同伴剥離した耐火物が混入することにより製品に対し有害な介在物となる。   However, in this injection pipe, a splash is generated when the molten steel injection flow from the ladle collides with the molten steel surface on the bare metal generated by cooling the lower end portion of the injection pipe immersed in the molten steel surface in the tundish. Splatters on the inner wall of the injection pipe, and the metal that is generated by cooling it gradually accumulates, and the inclusion of refractory that has been peeled off when the metal falls during casting is harmful to the product. It becomes.

従来、有害介在物の一つである耐火物からの溶鋼への混入という問題について、製造段階で介在物の混入を検知し、これを阻止することは困難とされている。何故なら、このような介在物の大きさは数μm〜数百μmと小さいため、鋳造のどの段階で耐火物から溶鋼へ混入したかをオンラインで検出することが難しく、これまでの適用例も見当たらない。   Conventionally, it has been difficult to detect and prevent inclusion inclusion at the manufacturing stage with respect to the problem of contamination of molten steel from refractory which is one of harmful inclusions. Because the size of such inclusions is as small as several μm to several hundreds of μm, it is difficult to detect on-line at which stage of casting the refractory is mixed into the molten steel. I can't find it.

タンディシュ用注入管においては、地金付着という問題が必然的に伴い、鋳造時の地金付着を防止するための措置が考案されている。通常、このような地金付着に対しては、前記注入管内に不活性ガスを導入して、溶鋼の再酸化を防止することが基本となり、従来より様々な工夫がなされている。   Tundish injection pipes are inevitably accompanied by the problem of metal adhesion, and measures have been devised to prevent metal adhesion during casting. Usually, for such metal adhesion, it is fundamental to introduce an inert gas into the injection tube to prevent reoxidation of the molten steel, and various devices have been made conventionally.

このような注入管の地金付着防止に対して提案されている従来技術に関し、以下図11を参照しながら説明する。図11は、従来例に係るタンディシュ注入管の構造を示す説明図である。そして、図11(a)はこの従来例に係る注入管を組み込んだ全体説明図であり、同図(b)は注入管の周壁部の構造を示す拡大説明図である。   The prior art proposed for preventing the adhesion of the injection pipe to the metal will be described below with reference to FIG. FIG. 11 is an explanatory view showing the structure of a tundish injection pipe according to a conventional example. FIG. 11 (a) is an overall explanatory view incorporating the injection tube according to this conventional example, and FIG. 11 (b) is an enlarged explanatory view showing the structure of the peripheral wall portion of the injection tube.

図11において、この従来例に係る注入管34の下部における内壁面に、不活性ガスを吹き出し可能な有孔性耐火物38を、タンディシュ33内溶鋼35の湯面の上下近傍、即ち、注入管高さLの1/4〜1/3倍の範囲に位置するように埋設し、前記溶鋼35の湯面近傍に不活性ガスを吹き出すことで、溶鋼35のシール効果を得るとともに、不活性ガス吹き出し部への地金付着を抑制している(例えば、特許文献1参照)。しかしながら、このような従来例においては、注入管への地金付着防止方法に関するものであって、付着した地金が脱落することを検知する技術についての記載はない。   In FIG. 11, a porous refractory 38 capable of blowing an inert gas is placed on the inner wall surface at the lower part of the injection pipe 34 according to this conventional example, in the vicinity of the upper and lower sides of the molten steel 35 in the tundish 33, that is, the injection pipe. It is embedded so as to be located in a range of 1/4 to 1/3 times the height L, and the inert gas is blown out in the vicinity of the molten metal surface of the molten steel 35, thereby obtaining the sealing effect of the molten steel 35 and the inert gas. The adhesion of the bullion to the blowing part is suppressed (for example, see Patent Document 1). However, such a conventional example relates to a method for preventing the adhesion of a bare metal to an injection pipe, and there is no description of a technique for detecting that the attached bare metal falls off.

一方、タンディシュ内の溶鋼温度を測定する従来技術に関し、以下図12〜14を参照しながら説明する。図12は従来例に係る連続鋳造用タンディシュ内の溶鋼温度測定方法を適用した装置の概要図、図13は他の従来例に係るタンディシュ内溶鋼の連続測温位置を示す取鍋、タンディシュ、鋳型近傍の断面図、図14は前記従来例に係る実施例による溶鋼連続測温状況を示す断面図である。   On the other hand, the prior art for measuring the molten steel temperature in the tundish will be described below with reference to FIGS. FIG. 12 is a schematic diagram of an apparatus to which the molten steel temperature measuring method in a continuous casting tundish according to a conventional example is applied, and FIG. 13 is a ladle, a tundish, and a mold showing continuous temperature measuring positions of the molten steel in the tundish according to another conventional example. FIG. 14 is a cross-sectional view showing a state of continuous temperature measurement of molten steel according to the embodiment according to the conventional example.

図12における従来例に係る溶鋼温度測定方法は、鋼の連続鋳造において、タンディシュ41内の溶鋼46中にモリブテン電極44を連続的あるいは間欠的に浸入させ、このモリブテン電極44とタンディシュ41の耐火物41B内にタンディシュ41内の溶鋼46とその一部が接触するように埋設された鉄電極42とで熱電対を形成し、この熱電対の熱起電力を測定することによって、タンディシュ41内の溶鋼46温度を連続的に測定するものである(特許文献2参照)。   The molten steel temperature measuring method according to the conventional example in FIG. 12 is such that the molybdenum electrode 44 is continuously or intermittently infiltrated into the molten steel 46 in the tundish 41 in continuous casting of steel, and the refractories of the molybdenum electrode 44 and the tundish 41 are refractory. By forming a thermocouple with the molten steel 46 in the tundish 41 and the iron electrode 42 embedded so that a part of the molten steel 46 is in contact with 41B, and measuring the thermoelectromotive force of this thermocouple, the molten steel in the tundish 41 46 temperature is measured continuously (refer patent document 2).

また、他の従来例に係る溶鋼温度測定方法は、図13に示す如き連続鋳造用タンディシュ52を用い、連鋳中の溶鋼54の温度を測温位置QおよびRにおいて、図14に示す如き熱電対51を収容したZrB製保護管58の外周のスラグライン近傍に、溶損防止用プロテクター57を装着した連続測温装置を浮上保持して連続測温する方法である。そして、前記スラグ中にMgO5Bを添加して、CaO系スラグ5AのMgO濃度を5〜30重量%として、少なくとも1800℃以上の高融点スラグとする連続測温方法である(特許文献3参照)。
特開平5−293614号公報 特許平6−26938号公報 特許平6−79422号公報
Further, a molten steel temperature measuring method according to another conventional example uses a continuous casting tundish 52 as shown in FIG. 13, and the temperature of the molten steel 54 during continuous casting is measured at temperature measuring positions Q and R as shown in FIG. In this method, a continuous temperature measuring device equipped with a protector 57 for melting damage is levitated and held in the vicinity of the slag line on the outer periphery of the ZrB 2 protective tube 58 containing the pair 51 to continuously measure the temperature. And it is the continuous temperature measurement method which adds MgO5B in the said slag, makes MgO density | concentration of CaO type | system | group slag 5A 5-30 weight%, and makes it high melting point slag of 1800 degreeC or more (refer patent document 3).
JP-A-5-293614 Japanese Patent No. 6-26938 Japanese Patent No. 6-79422

しかしながら、上記従来例に係る溶鋼温度測定方法は、前者は連続鋳造における溶鋼温度測定における応答遅れの改善に関し、後者は連続測温用保護管の溶損による寿命延長に関するものであり、何れも本発明の目的とする、注入管に付着した地金が脱落した際の検知方法という観点からは何らの記載もない。   However, in the molten steel temperature measurement method according to the above-described conventional example, the former relates to improvement of response delay in molten steel temperature measurement in continuous casting, and the latter relates to extension of life due to melting damage of the protective tube for continuous temperature measurement. There is no description from the viewpoint of the detection method when the metal attached to the injection pipe falls off, which is the object of the invention.

従って、本発明はこのような事情を鑑みてなされたものであって、その目的は、取鍋からタンディシュへ注入する注入管に付着した地金が落下したことを検知し、剥離した耐火物が混入した部位を特定するための地金落下検知方法を提供することにある。   Therefore, the present invention has been made in view of such circumstances, the purpose of which is to detect that the ingot attached to the injection pipe injected from the ladle into the tundish has dropped, and the peeled refractory is An object of the present invention is to provide a metal fall detection method for specifying a mixed site.

前記目的を達成するために、本発明の請求項1に係る注入管の地金落下検知方法が採用した手段は、取鍋から注入管によりタンディシュに溶鋼を注入し、この溶鋼を連続的に鋳造する際の前記注入管の地金落下検知方法であって、前記タンディシュ内の溶鋼温度を連続的に検出し、前記タンディシュ内溶鋼重量変化が±0.5トン(±500kg)の範囲内の安定状態の下に、検出された前記溶鋼温度の降下速度が予め設定された設定値以上であった場合に、その温度降下開始時刻にて注入管に付着していた地金が落下したと判定することを特徴とするものである。   In order to achieve the above-mentioned object, the means adopted by the method for detecting the fall of the ingot of the injection pipe according to claim 1 of the present invention is to inject molten steel into the tundish from the ladle with the injection pipe, and continuously casting this molten steel. A method for detecting the fall of a molten metal in the injection tube when the molten steel temperature in the tundish is continuously detected, and the weight change in the molten steel in the tundish is stable within a range of ± 0.5 tons (± 500 kg). When the detected temperature drop of the molten steel is equal to or higher than a preset value, it is determined that the metal attached to the injection pipe has dropped at the temperature drop start time. It is characterized by this.

本発明の請求項2に係る注入管の地金落下検知方法が採用した手段は、請求項1に記載の注入管の地金落下検知方法において、前記溶鋼温度の検出を、タンデッシュ内に設置された温度検出手段によって行なうことを特徴とするものである。   According to claim 2 of the present invention, the method adopted by the method for detecting metal drop of the injection pipe according to claim 1 is the method for detecting metal drop of the injection pipe according to claim 1, wherein the detection of the molten steel temperature is installed in the tundish. It is characterized in that it is performed by a temperature detecting means.

本発明の請求項3に係る注入管の地金落下検知方法が採用した手段は、請求項1または2に記載の注入管の地金落下検知方法において、前記タンディシュ内に収納する溶鋼重量を30トン(30000kg)以下とするとともに、予め設定された前記設定値を0.8℃/minとしたことを特徴とするものである。   According to a third aspect of the present invention, there is provided a method for detecting the fall of a molten metal contained in the tundish according to claim 1 or 2 of the present invention. Ton (30000 kg) or less, and the preset set value is set to 0.8 ° C./min.

本発明の請求項4に係る注入管の地金落下検知方法が採用した手段は、請求項1乃至3の何れか一つの項に記載の注入管の地金落下検知方法において、前記溶鋼温度の検出を、前記注入管からタンディシュ内溶鋼湯面に注入される溶鋼流の落下点からの直線距離が1500mm以内の位置で行なうとともに、予め設定された前記設定値を1.0℃/minとしたことを特徴とするものである。   According to claim 4 of the present invention, the means adopted by the method for detecting the fall of a molten metal in an injection pipe is the method for detecting the fall of a molten metal in an injection pipe according to any one of claims 1 to 3, wherein The detection is performed at a position where the linear distance from the dropping point of the molten steel flow injected from the injection pipe to the molten steel surface in the tundish is within 1500 mm, and the preset set value is 1.0 ° C./min. It is characterized by this.

本発明の請求項1に係る注入管の地金落下検知方法によれば、取鍋から注入管によりタンディシュに溶鋼を注入し、この溶鋼を連続的に鋳造する際の前記注入管の地金落下検知方法であって、前記タンディシュ内の溶鋼温度を連続的に検出し、前記タンディシュ内溶鋼重量変化が±0.5トンの範囲内の安定状態の下に、検出された前記溶鋼温度の降下速度が予め設定された設定値以上であった場合に、その温度降下開始時刻にて注入管に付着していた地金が落下したと判定するので、オンライン状態で前記地金の落下を連続的に監視し、かつ落下時点を検知できる。   According to the method for detecting the fall of a metal in an injection pipe according to claim 1 of the present invention, the molten metal is poured into the tundish from the ladle by the injection pipe, and the metal falls in the injection pipe when the molten steel is continuously cast. A detection method for continuously detecting a temperature of molten steel in the tundish, and a decrease rate of the detected molten steel temperature under a stable state in which a change in weight of the molten steel in the tundish is within a range of ± 0.5 tons. Is equal to or higher than a preset value, it is determined that the bullion attached to the injection pipe has dropped at the temperature drop start time. Monitor and detect when it falls.

また、本発明の請求項2に係る注入管の地金落下検知方法によれば、前記溶鋼温度の検出を、タンデッシュ内に設置された温度検出手段によって行なうので、簡便な検知方法によって前記地金の落下を連続的に監視し検知できる。   Moreover, according to the metal drop detection method of the injection pipe which concerns on Claim 2 of this invention, since the detection of the said molten steel is performed by the temperature detection means installed in the tundish, the said metal bar is carried out by a simple detection method. Can be continuously monitored and detected.

更に、本発明の請求項3に係る注入管の地金落下検知方法によれば、前記タンディシュ内に収納する溶鋼重量を30トン(30000kg)以下とするとともに、予め設定された前記設定値を0.8℃/minとしたので、オンライン状態で前記地金の落下を高い確率で検知することが可能となった。   Further, according to the method for detecting the fall of the ingot of the injection pipe according to claim 3 of the present invention, the weight of the molten steel stored in the tundish is set to 30 tons (30000 kg) or less, and the preset set value is set to 0. Since it was set to 8 ° C./min, it was possible to detect the fall of the metal with high probability in an online state.

更にまた、本発明の請求項4に係る注入管の地金落下検知方法によれば、前記溶鋼温度の検出を、前記注入管からタンディシュ内溶鋼湯面に注入される溶鋼流の落下点からの直線距離が1500mm以内の位置で行なうとともに、予め設定された前記設定値を1.0℃/minとしたので、オンライン状態で前記地金の落下を更に高確率で検知することができる。   Furthermore, according to the method for detecting the fall of the molten metal in the injection pipe according to claim 4 of the present invention, the detection of the molten steel temperature is performed from the drop point of the molten steel flow injected from the injection pipe to the molten steel surface in the tundish. Since it is performed at a position where the linear distance is within 1500 mm and the preset set value is 1.0 ° C./min, it is possible to detect the fall of the bullion with higher probability in an online state.

次に、本発明の実施の形態に係る注入管の地金落下検知方法について、以下図1〜5を用いて説明する。
図1は本発明の実施の形態に係る注入管の地金落下検知方法を説明するためのタンディシュの平断面を示した平断面図、図2は図1のX−X矢視を示す断面図、図3は図1のタンディシュの蓋(図示せず)や後述する鉄心、注入管を削除して示した平面図、図4は図3のY−Y矢視を示す断面図、図5は本発明に係る温度検出手段の設置状態を説明するための縦断面である。
Next, a method for detecting the fall of the ingot of the injection pipe according to the embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a cross-sectional view showing a flat cross section of a tundish for explaining a method for detecting the fall of a metal in an injection pipe according to an embodiment of the present invention, and FIG. 3 is a plan view in which the lid (not shown) of the tundish of FIG. 1, an iron core and an injection tube to be described later are deleted, FIG. 4 is a cross-sectional view taken along the line YY of FIG. 3, and FIG. It is a longitudinal cross-section for demonstrating the installation state of the temperature detection means based on this invention.

先ず、本発明に係るタンディシュと注入管の構成について、図1および図2を参照しながら説明する。このタンディシュ2は、鉄皮3で構成された外殻内面に施工された耐火物4aによって内部に溶鋼5を収納し、コイル7を巻き付けられた鉄心6がその内部を貫通する構造を有している。コイル7に交番電流が通電されると、誘導電流により溶鋼5や鉄心6が加熱され、この発熱量によって溶鋼5の温度が保持される。   First, the configuration of the tundish and the injection tube according to the present invention will be described with reference to FIGS. 1 and 2. This tundish 2 has a structure in which molten steel 5 is housed inside by a refractory 4a constructed on the inner surface of the outer shell composed of an iron shell 3, and an iron core 6 around which a coil 7 is wound penetrates the inside thereof. Yes. When an alternating current is passed through the coil 7, the molten steel 5 and the iron core 6 are heated by the induction current, and the temperature of the molten steel 5 is maintained by the amount of generated heat.

前記タンデッシュ2内部は、耐火物4bによって3つの室に分割されている。即ち、このタンデッシュ2の上方にある図示しない取鍋から注入管1を介して溶鋼を注入される注入室8と、タンディシュ2から鋳型へ溶鋼を流し込むための浸漬ノズル10a,10bを夫々配置された2つのストランド室9a,9bの3室である。そして、前記耐火物4bには、これら3室間で溶鋼の対流を生じさせ、温度均一化を促進させるための加熱スリーブ11が設けられている。取鍋から注入管1を介して注入される溶鋼は、タンディシュ2内の湯面S上の点Pを落下点とする。   The inside of the tundish 2 is divided into three chambers by a refractory 4b. That is, an injection chamber 8 into which molten steel is injected from a ladle (not shown) above the tundish 2 through the injection tube 1 and immersion nozzles 10a and 10b for pouring the molten steel from the tundish 2 into the mold are arranged. Three strand chambers 9a and 9b. The refractory 4b is provided with a heating sleeve 11 for causing convection of molten steel between these three chambers and promoting temperature uniformity. The molten steel injected from the ladle through the injection pipe 1 has a point P on the molten metal surface S in the tundish 2 as a drop point.

そして、本発明に係る注入管の地金落下検知方法は、先ず、このタンディシュ2内の溶鋼5の温度を連続的に検出するのである。この溶鋼温度の検出は、前記タンディシュ2内に設置された温度検出手段によって行ない、この温度検出手段により溶鋼の連続的な温度変化をオンライン測定できるよう構成される。   And the metal drop detection method of the injection pipe which concerns on this invention first detects the temperature of the molten steel 5 in this tundish 2 continuously. The detection of the molten steel temperature is performed by temperature detection means installed in the tundish 2, and the temperature detection means is configured to be able to measure a continuous temperature change of the molten steel online.

このような温度検出手段は熱電対を用いるのが好ましいが、測温抵抗体や赤外線温度計を使用することもできる。本発明の実施の形態においては、この温度検出手段として熱電対を用いた注入管の地金落下検知方法について、以下図3〜5を用いて説明する。この熱電対は、例えば、図3および図4に示されたストランド室9a内のA点または9b内のB点等に設置し、タンディシュ2内の溶鋼5温度を検出することによって、注入管の地金落下を検知することができる。この熱電対の設置位置A点やB点は注入管に近いある範囲に限定されるが、これについては後で述べる。   Such a temperature detection means preferably uses a thermocouple, but a resistance temperature detector or an infrared thermometer can also be used. In the embodiment of the present invention, a method for detecting the fall of a bare metal in an injection pipe using a thermocouple as the temperature detecting means will be described below with reference to FIGS. This thermocouple is installed at, for example, the point A in the strand chamber 9a or the point B in 9b shown in FIGS. 3 and 4, and the temperature of the molten steel 5 in the tundish 2 is detected. A falling metal can be detected. The thermocouple installation positions A and B are limited to a certain range close to the injection tube, which will be described later.

このような熱電対20は、図5に示す通り、タンディシュ2側壁の鉄皮3および耐火物6に設けられた開孔部に貫通して設置される。即ち、この熱電対20は、周囲を保護管21でカバーされ、更に、溶鋼5による溶損防止のため前記保護管21の先端を鉄キャップ22によりプロテクトされた上、全体をホルダーレンガ23によって耐火物6に支持された構造をなしている。   As shown in FIG. 5, such a thermocouple 20 is installed so as to penetrate through a hole provided in the iron skin 3 and the refractory 6 on the side wall of the tundish 2. In other words, the thermocouple 20 is covered with a protective tube 21, and the tip of the protective tube 21 is protected by an iron cap 22 to prevent the molten steel 5 from being damaged. The structure is supported by the object 6.

そして、この熱電対20によって検出された温度信号24は、制御器25にオンライン送信され、この制御器25に内蔵された記憶回路に、リアルタイムに対応した前記検出温度が連続記録されるとともに、前記制御器25に内蔵された演算回路によって、送信された溶鋼温度の時間当たりの変化、即ち、上昇速度または降下速度が演算されるよう構成されている。   The temperature signal 24 detected by the thermocouple 20 is transmitted online to the controller 25, and the detected temperature corresponding to real time is continuously recorded in the storage circuit built in the controller 25, and the The calculation circuit built in the controller 25 is configured to calculate a change per hour of the transmitted molten steel temperature, that is, an ascending speed or a descending speed.

本発明に係る注入管の地金落下検知方法は、前記熱電対20によりタンデイシュ2内の溶鋼5の連続的な温度変化を検出するとともに、鋳造速度を一定値に設定した状態において、前記タンディシュ2内溶鋼5の重量変化も連続測定している。このような溶鋼重量の経時的な変化も、図示しない溶鋼重量信号として制御器25へ送信されている。   In the method for detecting a drop of a metal in an injection pipe according to the present invention, the thermocouple 20 detects a continuous temperature change of the molten steel 5 in the tundish 2 and the casting speed is set to a constant value. The weight change of the inner molten steel 5 is also continuously measured. Such a change over time in the molten steel weight is also transmitted to the controller 25 as a molten steel weight signal (not shown).

そして、前記溶鋼5の重量変化が±0.5トンの範囲内の安定状態の下に、前記制御器25内の演算回路によって演算された溶鋼温度の降下速度が、予めこの演算回路内に設定された設定値PV以上であった場合に、その温度降下開始時刻にて注入管内に付着していた地金が落下したと判定するのである。   Then, under a stable state where the weight change of the molten steel 5 is within a range of ± 0.5 tons, the molten steel temperature decreasing speed calculated by the arithmetic circuit in the controller 25 is set in advance in the arithmetic circuit. If it is equal to or higher than the set value PV, it is determined that the metal attached to the injection tube has dropped at the temperature drop start time.

ここで、前記熱電対20を設置する位置は、図1〜図4に示す如く、注入管1からタンディシュ2内の溶鋼5湯面に注入される溶鋼流の落下点Pから前記熱電対20の設置点AやBまでの直線距離Lを、最大で2000mm、好ましくは1800mm以下の範囲内に設置するのが良い。以上のような検知方法とすることによって、オンライン状態で注入管の地金落下を連続的に監視し、かつ落下時点を検知可能となった。   Here, as shown in FIGS. 1 to 4, the thermocouple 20 is installed at the position of the thermocouple 20 from the drop point P of the molten steel flow injected from the injection pipe 1 to the molten steel 5 surface in the tundish 2. The linear distance L to the installation points A and B is preferably set within a range of 2000 mm at the maximum, preferably 1800 mm or less. By using the detection method as described above, it is possible to continuously monitor the drop of the injection pipe in the online state and detect the time of the fall.

このようにして地金落下が検出された場合は、制御器25から外部信号26が発信され、この外部信号26がこれらの連続鋳造設備を管理する生産管理用コンピュータへ送信されて、介在物が混入した鋳造部位を特定するように構成するのが好ましい。更に、必要に応じて、この外部信号26によりブザーを鳴動させたりランプを点灯させたりして、作業者に警報を発報することもできる。   When the fall of the bullion is detected in this way, an external signal 26 is transmitted from the controller 25, and this external signal 26 is transmitted to the production management computer that manages these continuous casting facilities, and the inclusions are detected. It is preferable to configure so as to specify the mixed casting site. Further, if necessary, an alarm can be issued to the worker by sounding a buzzer or turning on a lamp by the external signal 26.

上記において、鋳造速度を一定値に設定した状態とは、連続鋳造機の速度設定値を設備上一定値にセットすることを言い、結果として多少の速度変動があることは許容される。また、このように鋳造速度を一定値としたり、溶鋼5の重量変化を±0.5トンの範囲内とする理由は、前記鋳造速度や溶鋼重量の変化が大きいと、注入管の地金落下とは無関係に溶鋼の温度上昇や降下が発生するからである。   In the above, the state in which the casting speed is set to a constant value means that the speed setting value of the continuous casting machine is set to a constant value on the equipment, and as a result, some speed fluctuation is allowed. In addition, the reason why the casting speed is set to a constant value or the change in the weight of the molten steel 5 is within a range of ± 0.5 tons is that when the change in the casting speed or the molten steel weight is large, the ingot falls in the injection pipe. This is because the temperature of the molten steel rises and falls regardless of the temperature.

次に、このような本発明の実施の形態に係る注入管の地金付着検知方法について、図6を参照しながら以下説明する。図6は、本発明の実施の形態に係る注入管の地金付着検知方法による実証試験結果の一例を示す図である。   Next, such a method for detecting the adhesion of a bare metal in an injection pipe according to an embodiment of the present invention will be described below with reference to FIG. FIG. 6 is a diagram illustrating an example of a verification test result obtained by the method for detecting the adhesion of a bare metal in an injection pipe according to the embodiment of the present invention.

先ず、連続鋳造機を構成するタンデイシュにおいて、図3および図4に示したA点に熱電対を設置し、前記熱電対により溶鋼温度を連続測定可能なよう制御器にオンライン接続した。溶鋼流落下点Pから前記A点までの直線距離Lを算出したところ、1400mmであった。そして、前記タンディシュ内の溶鋼重量を12.2トンに維持しつつ、鋳造速度を一定に保持して連続鋳造を行った。   First, in the tundish constituting the continuous casting machine, a thermocouple was installed at the point A shown in FIGS. 3 and 4 and connected to the controller online so that the molten steel temperature could be continuously measured by the thermocouple. The straight line distance L from the molten steel flow drop point P to the point A was calculated to be 1400 mm. Then, continuous casting was performed while maintaining the casting speed constant while maintaining the molten steel weight in the tundish at 12.2 tons.

連続鋳造開始後36.3分経過した時点で、溶鋼温度が1517℃から経過時間42.0分には1511℃まで低下し、再度温度上昇に転じた。従って、この時の溶鋼温度の降下速度は、6.0/5.7=1.05℃/minであった。溶鋼の前記温度降下が認められた時点で、溶鋼の注入を継続しつつ、直ちにタンディシュと注入管を引き上げて溶鋼湯面を目視確認したところ、地金の落下が認められた。   When 36.3 minutes passed after the start of continuous casting, the molten steel temperature decreased from 1517 ° C. to 1511 ° C. at an elapsed time of 42.0 minutes, and the temperature started to rise again. Accordingly, the rate of decrease in molten steel temperature at this time was 6.0 / 5.7 = 1.05 ° C./min. When the temperature drop of the molten steel was recognized, the tundish and the injection pipe were immediately pulled up while continuing the injection of the molten steel, and when the molten steel surface was visually confirmed, the fall of the metal was observed.

以上のような実証試験結果から、注入管に付着した地金の落下により、タンディシュ内溶鋼に一時的な温度降下が生じることが実証されるとともに、このような温度降下の降下速度がある設定値PV以上となった場合、その降下開始時刻にて前記地金が落下したと判定し得ることを確認した。   From the above proof test results, it has been demonstrated that a drop in the base metal attached to the injection pipe causes a temporary temperature drop in the molten steel in the tundish, and there is a set value with such a rate of temperature drop. When it became PV or more, it confirmed that it could be determined that the bullion had dropped at the descent start time.

即ち、本発明に係る注入管の地金落下検知方法においては、前記タンディシュ2の容量は特に制限はないが、収納する溶鋼5の重量として30トン以下として連続鋳造するのが好ましい。このタンディシュの溶鋼収納量が30トンを越えると、落下した地金の熱容量に対して前記タンディシュ内溶鋼の熱容量が大きすぎ、地金落下による温度降下が緩慢になって、これを検知することが不可能となるためである。   That is, in the method for detecting the fall of the metal in the injection pipe according to the present invention, the capacity of the tundish 2 is not particularly limited, but it is preferable to continuously cast the molten steel 5 to have a weight of 30 tons or less. If the amount of molten steel stored in the tundish exceeds 30 tons, the heat capacity of the molten steel in the tundish is too large relative to the heat capacity of the dropped metal, and the temperature drop due to falling metal becomes slow, and this can be detected. This is because it becomes impossible.

また、上記実証試験の結果から、溶鋼温度の降下速度に対応して予め設定された前記設定値PVを0.8℃/minとし、この設定値PV以上の温度降下があった場合、その開始時刻にて地金落下したと判定するのが好ましい。   In addition, from the result of the demonstration test, the preset value PV set in advance corresponding to the rate of decrease in the molten steel temperature is set to 0.8 ° C./min. It is preferable to determine that the bullion has dropped at the time.

更に、前記溶鋼落下点Pから熱電対の設置点までの直線距離Lを1500mmの範囲内に設置するとともに、予め設定された前記設定値PVを1.0℃/minとするのがより好ましい。熱電対の設置点を前記落下点Pからの直線距離Lを1500mm以下とすることにより、注入管の付着地金の落下による溶鋼温度への影響をより高精度に検知可能となるからである。また、上記の如く、注入管の地金落下を検知した時は、その温度降下開始した時点からタンディシュ内に残存する溶鋼全量に相当する鋳造部位を選別して、正規の鋳造製品とは別管理するのが製品品質上好ましい。   Furthermore, it is more preferable that the linear distance L from the molten steel dropping point P to the thermocouple installation point is set within a range of 1500 mm, and the preset set value PV is 1.0 ° C./min. This is because, by setting the thermocouple installation point to a straight line distance L of 1500 mm or less from the drop point P, it is possible to detect the influence on the molten steel temperature due to the drop of the adhering metal on the injection pipe with higher accuracy. In addition, as described above, when a drop in the metal in the injection pipe is detected, the casting part corresponding to the total amount of molten steel remaining in the tundish is selected from the start of the temperature drop and managed separately from the regular casting product. It is preferable in terms of product quality.

<実施例>
次に、本発明に係る注入管の地金付着防止方法に関し、連続鋳造時の鋳造速度、タンディシュ内溶鋼重量および注入点から熱電対までの直線距離Lを、表1に示すように種々変更して鋳造実験した実施例について、図面を併用しながら以下説明する。
<Example>
Next, regarding the method for preventing the adhesion of the metal from the injection pipe according to the present invention, the casting speed during continuous casting, the molten steel weight in the tundish, and the linear distance L from the injection point to the thermocouple are variously changed as shown in Table 1. Examples of casting experiments will be described below with reference to the drawings.

Figure 2007307608
Figure 2007307608

先ず、表1に示した介在物個数は、熱電対によって検出された溶鋼温度が降下した部位を鋳造後の鋳片から特定し、この鋳片から圧延されたφ8mmの線材から50gサンプリングして、これを酸溶解して検出された介在物の個数を、寸法30μm未満のものと寸法30μm以上のものに区分してカウントしたものである。また、併せて最大介在物の寸法を測定して示した。   First, the number of inclusions shown in Table 1 is determined from the cast slab where the molten steel temperature detected by the thermocouple is lowered, and 50 g is sampled from a φ8 mm wire rolled from this slab, The number of inclusions detected by acid dissolution is divided into those having a size of less than 30 μm and those having a size of 30 μm or more and counted. In addition, the dimension of the maximum inclusion was measured and shown.

ここで、介在物有害性判定(丸付数字3欄)については、この介在物寸法が30μm以上の大きさのものが検出された場合は有害、30μm未満の大きさのものが検出された場合は無害と判定した。この根拠を図7を用いて以下説明する。図7は疲労破壊した破面において検出された最大介在物寸法と疲労寿命との関係を示す図である。   Here, regarding the hazard determination of inclusions (circled numeral 3), it is harmful if the inclusion size is 30 μm or more, and if it is less than 30 μm Was judged harmless. The basis for this will be described below with reference to FIG. FIG. 7 is a graph showing the relationship between the maximum inclusion size detected at the fracture surface subjected to fatigue failure and the fatigue life.

一般に、線材の疲労耐久強度は、中村式回転曲げ疲労試験機において疲労寿命が5千万回以上の耐久性であるのが望ましいとされている。そこで、前記介在物を含有する線材を、この中村式回転曲げ疲労試験機によって疲労寿命を測定し、この線材の疲労破壊した破面において検出された最大介在物寸法に対して、プロットしたのが図7である。   In general, the fatigue endurance strength of the wire is desirably a fatigue life of 50 million times or more in a Nakamura rotary bending fatigue tester. Therefore, the fatigue life of the wire containing the inclusions was measured with this Nakamura rotary bending fatigue tester, and plotted against the maximum inclusion size detected on the fractured surface of the wire. FIG.

図7によれば、前記最大介在物寸法が30μm以上になると、疲労寿命が1千万回未満に急激に低下することが判明した。表1に示した介在物有害性判定は、このような知見に基づき、最大介在物寸法が30μm以上の大きさのものが検出された場合その実験条件は有害、30μm未満の大きさのものが検出された場合無害と判定した。   According to FIG. 7, it was found that when the maximum inclusion size is 30 μm or more, the fatigue life rapidly decreases to less than 10 million times. Based on this knowledge, the inclusion hazard determination shown in Table 1 is harmful when the maximum inclusion size is detected to be 30 μm or larger, and the experimental conditions are harmful. If detected, it was determined to be harmless.

次に、最大介在物寸法の温度降下速度への依存性を、以下図8〜図10を用いて説明する。図8は、落下点Pから熱電対までの直線距離Lが1600〜1800mmの場合に相当する表1のデータについて、温度降下速度と最大介在物寸法との関係を示した図、図9は、前記直線距離Lが800〜1500mmの場合に相当する表1のデータについて、温度降下速度と最大介在物寸法との関係を示した図である。図8および図9中の実線は、夫々のデータの平均値を示す近似曲線である。   Next, the dependence of the maximum inclusion size on the temperature drop rate will be described below with reference to FIGS. FIG. 8 is a diagram showing the relationship between the temperature drop rate and the maximum inclusion size for the data in Table 1 corresponding to the case where the linear distance L from the drop point P to the thermocouple is 1600 to 1800 mm, and FIG. It is the figure which showed the relationship between the temperature fall rate and the maximum inclusion dimension about the data of Table 1 corresponding to the case where the said linear distance L is 800-1500 mm. The solid lines in FIGS. 8 and 9 are approximate curves indicating the average values of the respective data.

即ち、最大介在物寸法が30μm以上の大きさのものが検出された場合、その実験条件は有害と判定する上記知見によれば、図8から、落下点Pから熱電対までの直線距離Lが1600〜1800mmの場合には、温度降下速度が0.8℃/min以上において有害となり、図9から、落下点Pから熱電対までの距離Lが800〜1500mmの場合には、温度降下速度が1.0℃/min以上において有害となる。   That is, when a maximum inclusion size of 30 μm or more is detected, according to the above finding that the experimental condition is harmful, the linear distance L from the drop point P to the thermocouple is shown in FIG. In the case of 1600 to 1800 mm, the temperature drop rate becomes harmful at 0.8 ° C./min or more. From FIG. 9, when the distance L from the drop point P to the thermocouple is 800 to 1500 mm, the temperature drop rate is Harmful at 1.0 ° C./min or higher.

従って、表1において、温度降下による地金落下判定については、丸付数字1のケースとして、温度降下速度が0.8℃/min以上となった場合は落下有、0.8℃/min未満となった場合は落下なし、丸付数字2のケースとして、温度降下速度が1.0℃/min以上となった場合は落下有、1.0℃/min未満となった場合は落下なし、と判定して示した。   Therefore, in Table 1, regarding the fall of the metal due to the temperature drop, in the case of the circled number 1, if the temperature drop rate is 0.8 ° C / min or more, there is a drop, less than 0.8 ° C / min If the temperature drop rate becomes 1.0 ° C / min or more, it falls. If it becomes less than 1.0 ° C / min, there is no drop. It was judged and shown.

そして、上記温度降下による地金落下判定(丸付数字1または2欄)と、前述した介在物有害性判定(丸付数字3欄)の夫々の整合性が取れた場合○印、整合性が取れない場合は×印を、表1の整合性欄に記入した。図10は、このような結果から、落下点Pから熱電対までの直線距離Lおよび溶鋼温度の降下速度設定値PVの条件による有害介在物の検知率を示した図である。   And if the consistency of the metal drop determination (circled number 1 or 2 column) due to the temperature drop and the above-mentioned inclusion hazard determination (circled number 3 column) are consistent, ○ mark, When it was not possible, x was entered in the consistency column of Table 1. FIG. 10 is a graph showing the detection rate of harmful inclusions under the conditions of the linear distance L from the drop point P to the thermocouple and the drop rate setting value PV of the molten steel temperature based on such results.

図10においては、落下点Pから熱電対までの直線距離Lを、1500mm以下の場合と1500mmを超える場合に区分し、かつ、溶鋼温度の降下速度設定値PVの条件を、0.8℃/min以上とした場合と1.0℃/min以上とした場合の各々の有害介在物、即ち、地金落下の検知率を示したものである。   In FIG. 10, the linear distance L from the drop point P to the thermocouple is divided into a case where it is 1500 mm or less and a case where it exceeds 1500 mm, and the condition of the temperature drop rate set value PV is 0.8 ° C. / Each of the harmful inclusions, that is, the detection rate of the fall of the bullion when it is set to min or more and 1.0 ° C./min or more is shown.

図10によれば、落下点Pから熱電対までの直線距離Lを限定せずに、設定値PVを0.8℃/minとした検知率は82%であるが、前記距離Lが1500mmを越え、前記設定値PVが0.8℃/minとした場合の検知率は86%となり、更に、前記距離Lを1500mm以下とし、かつ前記設定値PVを1.0℃/minとすれば、検知率は94%に向上することが分かる。   According to FIG. 10, without limiting the linear distance L from the drop point P to the thermocouple, the detection rate when the set value PV is 0.8 ° C./min is 82%, but the distance L is 1500 mm. If the set value PV is 0.8 ° C./min, the detection rate is 86%, and further, if the distance L is 1500 mm or less and the set value PV is 1.0 ° C./min, It can be seen that the detection rate is improved to 94%.

従って、本発明に係る注入管の地金落下検知方法は、落下点Pから熱電対までの直線距離Lを1600〜1800mmとなるよう前記熱電対を設置して、温度降下速度が予め設定された設定値PVが0.8℃/min以上であった場合は、その温度降下開始時刻にて注入管内に付着していた地金が落下したと判定するのが好ましく、また、前記直線距離Lが800〜1500mmとなるよう熱電対を設置して、温度降下速度が1.0℃/min以上であった場合は、その温度降下開始時刻にて注入管に付着していた地金が落下したと判定するのが更に好ましいのである。   Therefore, in the method for detecting the drop of the metal in the injection pipe according to the present invention, the temperature drop rate is set in advance by installing the thermocouple so that the linear distance L from the drop point P to the thermocouple is 1600 to 1800 mm. When the set value PV is 0.8 ° C./min or more, it is preferable to determine that the metal attached to the injection pipe has dropped at the temperature drop start time, and the linear distance L is When a thermocouple is installed to be 800 to 1500 mm and the temperature drop rate is 1.0 ° C./min or more, the metal that has adhered to the injection pipe has dropped at the temperature drop start time. It is more preferable to judge.

次に、タンディシュ内溶鋼重量を変化させた場合、あるいはタンディシュ内溶鋼重量に大きなばらつきがある場合の上記関係の整合性について、夫々表2および表3を用いて説明する。即ち、表2によれば、タンディシュ内溶鋼重量を30トンを上回る35±0.2トンとした比較例−35においては、温度降下速度が0.4℃/minとなって規定した設定値PVを下回り、地金落下なしと判定されるにも拘わらず、介在物有害性判定については有害と判定され、前記判定の整合性が取れなくなる。   Next, the consistency of the above relationship when the molten steel weight in the tundish is changed or when there is a large variation in the molten steel weight in the tundish will be described using Table 2 and Table 3, respectively. That is, according to Table 2, in Comparative Example-35 in which the weight of the molten steel in the tundish exceeds 35 tons and 35 ± 0.2 tons, the set value PV defined as the temperature drop rate is 0.4 ° C./min. Although it is determined that there is no fall of the bullion, the inclusion hazard determination is determined to be harmful and the determination cannot be consistent.

また、表3によれば、比較例−36〜40の全てにおいて、タンディシュ内溶鋼重量の変化が±0.5トンを超えている。そして、温度降下速度が1.0℃/minを越え、地金落下ありと判定されるにも拘わらず、規定された最大介在物寸法が30μm未満であるため無害と判定され、前記判定の整合性が取れなくなっている。   Moreover, according to Table 3, in all of Comparative Examples -36 to 40, the change in the molten steel weight in the tundish exceeds ± 0.5 tons. Although the temperature drop rate exceeds 1.0 ° C./min and it is determined that there is a metal drop, it is determined that the specified maximum inclusion size is less than 30 μm, so that it is harmless. Sex has become impossible.

従って、本発明に係る注入管の地金落下検知方法は、タンディシュ内に収納する溶鋼重量は30トン以下とするのが好ましく、また、前記タンディシュ内溶鋼重量の変化は±0.5トンの範囲内の安定状態の下に、前記溶鋼温度を検出するのが好ましいのである。

Figure 2007307608
Therefore, in the method for detecting the fall of the ingot in the injection pipe according to the present invention, the molten steel weight stored in the tundish is preferably 30 tons or less, and the change in the molten steel weight in the tundish is in the range of ± 0.5 tons. It is preferable to detect the molten steel temperature under the stable state.
Figure 2007307608

Figure 2007307608
Figure 2007307608

以上のように、本発明に係る注入管の地金落下検知方法は、タンディシュ内の溶鋼温度を連続的に検出し、前記タンディシュ内溶鋼重量変化が±0.5トンの範囲内の安定状態の下に、検出された前記溶鋼温度の降下速度が予め設定された設定値以上であった場合に、その温度降下開始時刻にて注入管に付着していた地金が落下したと判定するので、オンライン状態で前記地金の落下を連続的に監視し、かつ落下時点を検知できる。   As described above, the method for detecting the fall of the ingot in the injection pipe according to the present invention continuously detects the molten steel temperature in the tundish, and the change in the molten steel weight in the tundish is in a stable state within a range of ± 0.5 tons. Below, when the detected drop rate of the molten steel temperature is equal to or higher than a preset value, it is determined that the metal attached to the injection pipe has dropped at the temperature drop start time, It is possible to continuously monitor the fall of the bullion in an online state and detect the time of the fall.

また、本発明に係る注入管の地金落下検知方法は、前記溶鋼温度の検出をタンデッシュ内に設置された温度検出手段によって行なうので、簡便な検知方法によって前記地金の落下を連続的に監視し検知できるのである。   Further, in the method for detecting the fall of the ingot of the injection pipe according to the present invention, since the temperature of the molten steel is detected by the temperature detecting means installed in the tundish, the fall of the ingot is continuously monitored by a simple detection method. It can be detected.

本発明の実施の形態に係る注入管の地金落下検知方法を説明するためのタンディシュの平断面を示した平断面図である。It is the plane sectional view which showed the plane cross section of the tundish for demonstrating the metal fall detection method of the injection pipe which concerns on embodiment of this invention. 図1のX−X矢視を示す断面図である。It is sectional drawing which shows the XX arrow of FIG. 図1のタンディシュの蓋や鉄心、注入管を削除して示した平面図である。It is the top view which deleted and showed the lid | cover, iron core, and injection tube of the tundish of FIG. 図3のY−Y矢視を示す断面図である。It is sectional drawing which shows the YY arrow of FIG. 本発明に係る温度検出手段の設置状態を説明するための縦断面である。It is a longitudinal cross-section for demonstrating the installation state of the temperature detection means which concerns on this invention. 本発明の実施の形態に係る注入管の地金付着検知方法による実証試験結果の一例を示す図である。It is a figure which shows an example of the verification test result by the ingot detection method of the injection pipe which concerns on embodiment of this invention. 疲労破壊した破面において検出された最大介在物寸法と疲労寿命との関係を示す図である。It is a figure which shows the relationship between the maximum inclusion dimension detected in the fracture surface which carried out fatigue fracture, and the fatigue life. 落下点Pから熱電対までの直線距離Lが1600〜1800mmの場合における温度降下速度と最大介在物寸法との関係を示す図である。It is a figure which shows the relationship between the temperature fall rate and the largest inclusion dimension in case the linear distance L from the dropping point P to a thermocouple is 1600-1800 mm. 落下点Pから熱電対までの直線距離Lが800〜1500mmの場合における温度降下速度と最大介在物寸法との関係を示す図である。It is a figure which shows the relationship between the temperature fall rate and the largest inclusion dimension in case the linear distance L from the dropping point P to a thermocouple is 800-1500 mm. 落下点Pから熱電対までの直線距離Lおよび溶鋼温度の降下速度設定値PVの条件による有害介在物の検知率を示した図である。It is the figure which showed the detection rate of the harmful inclusion by the conditions of the linear distance L from the dropping point P to the thermocouple, and the fall rate setting value PV of molten steel temperature. 従来例に係るタンディシュ注入管の構造を示す説明図である。そして、同図(a)はこの従来例に係る注入管を組み込んだ全体説明図であり、同図(b)は注入管の周壁部の構造を示す拡大説明図である。It is explanatory drawing which shows the structure of the tundish injection pipe which concerns on a prior art example. FIG. 7A is an overall explanatory view incorporating the injection tube according to this conventional example, and FIG. 5B is an enlarged explanatory view showing the structure of the peripheral wall portion of the injection tube. 従来例に係る連続鋳造用タンディシュ内の溶鋼温度測定方法を適用した装置の概要図である。It is the schematic of the apparatus to which the molten steel temperature measuring method in the tundish for continuous casting concerning a prior art example is applied. 他の従来例に係るタンディシュ内溶鋼の連続測温位置を示す取鍋、タンディシュ、鋳型近傍の断面図である。It is sectional drawing of the ladle, tundish, and mold vicinity which show the continuous temperature measurement position of the molten steel in a tundish which concerns on another prior art example. 前記従来例に係る実施例による溶鋼連続測温状況を示す断面図である。It is sectional drawing which shows the molten steel continuous temperature measurement condition by the Example which concerns on the said prior art example.

符号の説明Explanation of symbols

P:溶鋼落下点, S:溶鋼湯面,
1:注入管, 2:タンディシュ, 3:鉄皮,
4a,4b:耐火物,
5:溶鋼, 6:鉄心, 7:コイル, 8:注入室,
9a,9b:ストランド室,
10a,10b:浸漬ノズル
11:加熱スリーブ,
20:熱電対, 21:保護管, 22:鉄キャップ,
23:ホルダーレンガ, 24:温度信号, 25:制御器,
26:外部信号
P: Molten steel dropping point, S: Molten steel surface,
1: Injection tube, 2: Tundish, 3: Iron skin,
4a, 4b: refractory,
5: Molten steel, 6: Iron core, 7: Coil, 8: Injection chamber,
9a, 9b: Strand room,
10a, 10b: immersion nozzle 11: heating sleeve,
20: Thermocouple, 21: Protection tube, 22: Iron cap,
23: Holder brick, 24: Temperature signal, 25: Controller,
26: External signal

Claims (4)

取鍋から注入管によりタンディシュに溶鋼を注入し、この溶鋼を連続的に鋳造する際の前記注入管の地金落下検知方法であって、前記タンディシュ内の溶鋼温度を連続的に検出し、前記タンディシュ内溶鋼重量変化が±0.5トンの範囲内の安定状態の下に、検出された前記溶鋼温度の降下速度が予め設定された設定値以上であった場合に、その温度降下開始時刻にて注入管に付着していた地金が落下したと判定することを特徴とする注入管の地金落下検知方法。   Injecting molten steel from a ladle into a tundish by means of an injection pipe, and a method for detecting the fall of the molten metal in the injection pipe when continuously casting the molten steel, continuously detecting the molten steel temperature in the tundish, Under a stable condition where the molten steel weight change within the range of ± 0.5 tons is within the range of ± 0.5 tons, when the detected temperature drop rate of the molten steel is greater than or equal to a preset value, the temperature drop start time is set. A method for detecting the fall of a bullion in an injection pipe, wherein the bullion attached to the injection pipe is determined to have fallen. 前記溶鋼温度の検出を、タンデッシュ内に設置された温度検出手段によって行なうことを特徴とする請求項1に記載の注入管の地金落下検知方法。   2. The method for detecting the fall of a molten metal in an injection pipe according to claim 1, wherein the temperature of the molten steel is detected by a temperature detecting means installed in the tundish. 前記タンディシュ内に収納する溶鋼重量を30トン以下とするとともに、予め設定された前記設定値を0.8℃/minとしたことを特徴とする請求項1または2に記載の注入管の地金落下検知方法。   The molten metal weight stored in the tundish is set to 30 tons or less, and the preset value is set to 0.8 ° C / min. Fall detection method. 前記溶鋼温度の検出を、前記注入管からタンディシュ内溶鋼湯面に注入される溶鋼流の落下点からの直線距離が1500mm以内の位置で行なうとともに、予め設定された前記設定値を1.0℃/minとしたことを特徴とする請求項1乃至3の何れか一つの項に記載の注入管の地金落下検知方法。   The detection of the molten steel temperature is performed at a position where the linear distance from the dropping point of the molten steel flow injected from the injection pipe to the molten steel surface in the tundish is within 1500 mm, and the preset set value is 1.0 ° C. 4. The method for detecting a fall of a bare metal in an injection tube according to any one of claims 1 to 3, wherein / min is set.
JP2006141955A 2006-05-22 2006-05-22 Detection method of falling metal in injection pipe Expired - Fee Related JP4871023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141955A JP4871023B2 (en) 2006-05-22 2006-05-22 Detection method of falling metal in injection pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141955A JP4871023B2 (en) 2006-05-22 2006-05-22 Detection method of falling metal in injection pipe

Publications (2)

Publication Number Publication Date
JP2007307608A true JP2007307608A (en) 2007-11-29
JP4871023B2 JP4871023B2 (en) 2012-02-08

Family

ID=38840921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141955A Expired - Fee Related JP4871023B2 (en) 2006-05-22 2006-05-22 Detection method of falling metal in injection pipe

Country Status (1)

Country Link
JP (1) JP4871023B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172159A (en) * 1990-11-05 1992-06-19 Sumitomo Metal Ind Ltd Method for detecting abnormality in immersion nozzle in continuous casting
JPH0531558A (en) * 1991-07-31 1993-02-09 Kobe Steel Ltd Method for measuring molten steel quantity in tundish for continuous casting
JPH05293614A (en) * 1992-04-16 1993-11-09 Sumitomo Metal Ind Ltd Pouring tube in tundish

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04172159A (en) * 1990-11-05 1992-06-19 Sumitomo Metal Ind Ltd Method for detecting abnormality in immersion nozzle in continuous casting
JPH0531558A (en) * 1991-07-31 1993-02-09 Kobe Steel Ltd Method for measuring molten steel quantity in tundish for continuous casting
JPH05293614A (en) * 1992-04-16 1993-11-09 Sumitomo Metal Ind Ltd Pouring tube in tundish

Also Published As

Publication number Publication date
JP4871023B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP2006053128A (en) Container for molten metal, use of container, and method of determining interface layer
JP2008043981A (en) Method for continuously casting steel
US6309442B1 (en) Refractory material sensor for determining level of molten metal and slag and method of using
KR20120032860A (en) Measuring apparatus for slag and measuring method thereof
JP5487730B2 (en) Refractory life prediction method and refractory residual thickness estimation method
JP4871023B2 (en) Detection method of falling metal in injection pipe
JP2011240407A (en) Method and device for continuously detecting slag level in electroslag remelting apparatus with short slidable mold
KR101257254B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
JP4618555B2 (en) Method and apparatus for controlling molten metal level in continuous casting
JP5299259B2 (en) Method for measuring and controlling molten steel temperature during secondary refining
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP4745929B2 (en) Method for suppressing solidification delay in continuous casting.
JP2009106959A (en) Method and apparatus for controlling molten metal surface in continuous casting
KR101258767B1 (en) Monitoring apparatus for refractories abrasion of electric furnace
JP5593801B2 (en) Breakout prediction method for continuous casting
JP5472716B2 (en) Method and apparatus for controlling molten metal level in continuous casting
JPH11108736A (en) Method for measuring weight of hot solution in container
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
JP2011174726A (en) Continuous temperature measurement method for continuously measuring molten steel temperature within tundish
JP5073269B2 (en) Method of cooling the iron shell of RH equipment
JP2010172917A (en) Method for evaluating mold powder for suppressing formation of slag bear
WO2003027334A1 (en) Refractory material sensor
JP4325451B2 (en) Method for detecting surface defect of continuous cast slab and removing method thereof
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
TW202415466A (en) Measuring lance for the measurement of a position and a thickness of a slag layer on top of a molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees