JP2007268559A - Method and apparatus for controlling solidification completion position of continuously cast slab and method for producing continuously cast slab - Google Patents

Method and apparatus for controlling solidification completion position of continuously cast slab and method for producing continuously cast slab Download PDF

Info

Publication number
JP2007268559A
JP2007268559A JP2006096681A JP2006096681A JP2007268559A JP 2007268559 A JP2007268559 A JP 2007268559A JP 2006096681 A JP2006096681 A JP 2006096681A JP 2006096681 A JP2006096681 A JP 2006096681A JP 2007268559 A JP2007268559 A JP 2007268559A
Authority
JP
Japan
Prior art keywords
completion position
solidification completion
slab
response
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096681A
Other languages
Japanese (ja)
Other versions
JP4893068B2 (en
Inventor
Hiroshi Mizuno
浩 水野
Keiji Iijima
慶次 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006096681A priority Critical patent/JP4893068B2/en
Publication of JP2007268559A publication Critical patent/JP2007268559A/en
Application granted granted Critical
Publication of JP4893068B2 publication Critical patent/JP4893068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the solidification completion position of a continuously cast slab, which materialize accurate control of the solidification completion position even in unsteady time at which the deceleration and reacceleration of a casting velocity are performed at pan exchange or the like in continuous-continuous casting, and to provide a method for producing a continuously cast slab. <P>SOLUTION: The method for controlling the solidification completion position of the continuously cast slab is provided in which the solidification completion position of the continuously cast slab is controlled by manipulating a casting velocity and/or a cooling water quantity, and the method is characterized in that response models expressing the relation of the moving response of the solidification completion position of the slab to the change of the casting velocity and/or cooling water quantity are created as a plurality of models in accordance with casting conditions, and are retained in a data base, the response model in accordance with a need is read out from the data base, and using the read-out response model, a filtering processing of a slab moving speed change command signal for allowing the same to coincide with the response of a desired slab solidification completion position is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造機で鋳造されている連続鋳造鋳片の凝固完了位置をオンラインで制御する連続鋳造鋳片の凝固完了位置制御方法及び装置並びに連続鋳造鋳片の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a solidification completion position control method and apparatus for a continuous cast slab that controls the solidification completion position of a continuous cast slab cast by a continuous casting machine online, and a method for manufacturing a continuous cast slab.

鋼の連続鋳造においては、連続鋳造鋳片の凝固完了位置(「クレータエンド位置」ともいう)が鋳片のどの位置にあるかを判定し、適正な位置に保つことが、極めて重要であり、鋳片の生産性や品質の向上に大きく影響をあたえる。   In continuous casting of steel, it is extremely important to determine where the solidification completion position of the continuous cast slab (also referred to as “crater end position”) is in the slab, and to keep it at an appropriate position. Significantly affects slab productivity and quality improvement.

例えば、生産性を向上させるために鋳造速度を上昇させると、凝固完了位置は鋳片の鋳造方向下流側に移動する。凝固完了位置が鋳片支持ロールの範囲を超えてしまうと、鋳片が静鉄圧の作用によって膨らみ(以下、この現象を「バルジング」と記す)、内質の悪化や巨大バルジングの場合には鋳造停止といった問題が発生する。従って、凝固完了位置を適正な範囲に保つことが極めて重要となる。   For example, when the casting speed is increased in order to improve productivity, the solidification completion position moves to the downstream side in the casting direction of the slab. When the solidification completion position exceeds the range of the slab support roll, the slab swells due to the action of static iron pressure (hereinafter this phenomenon is referred to as “bulging”). Problems such as casting stop occur. Therefore, it is extremely important to keep the solidification completion position within an appropriate range.

また、鋳片の中心偏析を低減して高品質化を図るための軽圧下操業では、凝固完了位置を軽圧下帯に位置させるように鋳造速度や二次冷却水強度を制御する必要がある。更に、スラブ鋳片においては、その断面が扁平形状であるため、凝固完了位置は鋳片の幅方向で均一ではなく、且つ、時間によってその形状が変動することが知られている。この幅方向で異なる凝固完了位置の形状も、鋳片の品質や生産性を決める大きな要因となっている。   Further, in the light reduction operation for improving the quality by reducing the center segregation of the slab, it is necessary to control the casting speed and the strength of the secondary cooling water so that the solidification completion position is located in the light reduction zone. Furthermore, since the cross section of the slab slab is flat, it is known that the solidification completion position is not uniform in the width direction of the slab and the shape varies with time. The shape of the solidification completion position that varies in the width direction is also a major factor that determines the quality and productivity of the slab.

これらの要求に応えるために、まず鋳片の凝固状態を把握する必要があり、鋳片の凝固状態の推定と凝固点位置の制御方法がいままでに提案されている。   In order to meet these requirements, it is necessary to first grasp the solidification state of the slab, and methods for estimating the solidification state of the slab and controlling the position of the solidification point have been proposed.

たとえば、特許文献1では、電磁超音波計を用いて凝固厚みを計測し、計測した凝固厚とメニスカスより電磁超音波計までの経過時間を用いて、鋳片の凝固速度を算出し、メニスカスからの経過時間を用いて、該鋳片部位が電磁超音波計の位置に到達した時点で凝固が終了するように鋳造速度を制御する方法が開示されている。   For example, in Patent Document 1, the solidification thickness is measured using an electromagnetic ultrasonic meter, and the solidification speed of the slab is calculated using the measured solidification thickness and the elapsed time from the meniscus to the electromagnetic ultrasonic meter. Is used to control the casting speed so that solidification is completed when the slab part reaches the position of the electromagnetic ultrasonic meter.

また、特許文献2では、横波超音波センサと縦波超音波センサの両方を用い、縦波超音波の伝播時間から凝固位置を求める計算式を横波超音波センサの値で校正し、縦波超音波の伝播時間から凝固位置を推定する方法と、その推定位置に基づく鋳造速度、スプレーの制御することが開示されている。
特開平2−55652号公報 特開2005−177860号公報
Further, in Patent Document 2, the calculation formula for obtaining the coagulation position from the propagation time of the longitudinal wave ultrasonic wave is calibrated with the value of the transverse wave ultrasonic sensor using both the transverse wave ultrasonic sensor and the longitudinal wave ultrasonic sensor, and the longitudinal wave ultrasonic sensor is calibrated. It is disclosed that a solidification position is estimated from the propagation time of a sound wave, a casting speed based on the estimated position, and spray control.
JP-A-2-55652 JP 2005-177860 A

しかしながら、上述した開示技術では、以下に示すような問題がある。   However, the above disclosed technique has the following problems.

先ず、特許文献1に開示された技術では凝固速度の計算値を利用するが、連々鋳時の鍋交換時のように鋳造速度の減速、再加速を行うような非定常時には正確な凝固速度推定ができず、凝固位置が機端から外に出るような現象の発生するおそれがある。実際、鋳造速度を急激に変える場合、速度に応じた2次冷却の変更も同時になされるため、モールド直下の鋳片と機端に近い鋳片の冷却履歴は大きく異なることになる。このため、速度変更後の凝固位置がどのように変化するかは、応答モデルなどのモデルを用いないと正確な操作を決定することはできないという課題がある。   First, the technique disclosed in Patent Document 1 uses the calculated value of the solidification rate, but accurate solidification rate estimation during non-steady times such as when the casting rate is reduced and re-accelerated as when the pan is changed during continuous casting. This may cause a phenomenon that the coagulation position goes out of the machine edge. In fact, when the casting speed is changed suddenly, the secondary cooling is also changed at the same time, so the cooling history of the slab immediately below the mold and the slab near the machine end is greatly different. For this reason, there is a problem that how to change the solidification position after the speed change cannot be determined accurately unless a model such as a response model is used.

また、特許文献2に開示された技術では2種類の超音波センサによって正確に推定された凝固位置を使って鋳造速度または2次冷却スプレーを制御すると説明されているが、具体的な制御方法には言及されていない。   In addition, in the technique disclosed in Patent Document 2, it is explained that the casting speed or the secondary cooling spray is controlled using the solidification position accurately estimated by two types of ultrasonic sensors. Is not mentioned.

本発明は、上記事情に鑑みてなされたものであり、連々鋳時の鍋交換時のように鋳造速度の減速、再加速を行うような非定常時にも正確に凝固完了位置を制御できる連続鋳造鋳片の凝固完了位置制御方法及び装置並びに連続鋳造鋳片の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is capable of accurately controlling the solidification completion position even in an unsteady state where the casting speed is reduced and re-accelerated, such as when changing the pan during continuous casting. It aims at providing the solidification completion position control method and apparatus of a slab, and the manufacturing method of a continuous cast slab.

本発明の請求項1に係る発明は、連続鋳造鋳片の凝固完了位置を、鋳造速度および/または冷却水量を操作して、凝固完了位置制御する連続鋳造鋳片の凝固完了位置制御方法において、鋳造速度および/または冷却水量の変更に対する鋳片凝固完了位置の移動応答の関係を表す応答モデルを、鋳造条件に応じた複数の応答モデルとして作成してデータベースに保存し、必要に応じた応答モデルを前記データベースから読み出し、読み出した応答モデルを用いて、所望の鋳片凝固完了位置の応答に一致させるための、鋳片移動速度変更指令信号のフィルタ処理を行うことを特徴とする連続鋳造鋳片の凝固完了位置制御方法である。   The invention according to claim 1 of the present invention is a solidification completion position control method for a continuous cast slab in which the solidification completion position of the continuous cast slab is controlled by operating the casting speed and / or the amount of cooling water. A response model representing the relationship of the movement response of the slab solidification completion position to changes in the casting speed and / or cooling water volume is created as multiple response models according to the casting conditions, stored in the database, and the response model as required Is cast from the database, and a slab moving speed change command signal is filtered to match the response of the desired slab solidification completion position using the read response model. This is a solidification completion position control method.

また本発明の請求項2に係る発明は、請求項1に記載の連続鋳造鋳片の凝固完了位置制御方法において、前記鋳片凝固完了位置の移動応答の関係を表す応答モデルを、無駄時間と線形動特性モデルで表すことを特徴とする連続鋳造鋳片の凝固完了位置制御方法である。   The invention according to claim 2 of the present invention is the solidification completion position control method of the continuous cast slab according to claim 1, wherein the response model representing the relationship of the movement response of the slab solidification completion position is a dead time. This is a solidification completion position control method for a continuous cast slab characterized by being represented by a linear dynamic characteristic model.

また本発明の請求項3に係る発明は、請求項1または請求項2に記載の連続鋳造鋳片の凝固完了位置制御方法において、連続鋳造鋳片の凝固完了位置を推定または検知することによって、鋳造速度および/または冷却水量を操作して得られる、凝固完了位置変化を求め、求めた凝固完了位置変化に基づいて、前記データベースに保存した応答モデルを補正することを特徴とする連続鋳造鋳片の凝固完了位置制御方法である。   The invention according to claim 3 of the present invention is the solidification completion position control method of the continuous cast slab according to claim 1 or claim 2, wherein the solidification completion position of the continuous cast slab is estimated or detected. A continuous cast slab characterized by obtaining a solidification completion position change obtained by operating a casting speed and / or a cooling water amount, and correcting a response model stored in the database based on the obtained solidification completion position change. This is a solidification completion position control method.

また本発明の請求項4に係る発明は、請求項1ないし請求項3のいずれか1項に記載の連続鋳造鋳片の凝固完了位置制御方法を用いて連続鋳造鋳片を製造することを特徴とする連続鋳造鋳片の製造方法である。   The invention according to claim 4 of the present invention is characterized in that a continuous cast slab is manufactured using the solidification completion position control method for a continuous cast slab according to any one of claims 1 to 3. It is a manufacturing method of the continuous casting slab which becomes.

さらに本発明の請求項5に係る発明は、鋳造速度および/または冷却水量の変更に対する鋳片凝固完了位置の移動応答の関係を表す応答モデルを、鋳造条件に応じた複数の応答モデルとして保存するデータベースと、必要に応じた応答モデルを前記データベースから読み出し、読み出した応答モデルを用いて、所望の鋳片凝固完了位置の応答に一致させるための、鋳片移動速度変更指令信号のフィルタ処理を行う補償器とを備えることを特徴とする連続鋳造鋳片の凝固完了位置制御装置である。   Furthermore, the invention according to claim 5 of the present invention stores a response model representing the relationship of the movement response of the slab solidification completion position to the change in the casting speed and / or the cooling water amount as a plurality of response models corresponding to the casting conditions. A database and a response model as needed are read from the database, and the slab moving speed change command signal is filtered to match the response of the desired slab solidification completion position using the read response model. It is a solidification completion position control apparatus of the continuous cast slab characterized by including a compensator.

本発明は、鋳造速度などの鋳造条件が変化した場合の凝固点位置変化の応答モデルをデータベースでパラメータ管理したうえで、非定常モデルの考慮をきめ細かく実現するようにしたので、連々鋳時の鍋交換時のように鋳造速度の減速、再加速を行うような非定常時においても、凝固位置が機端から外に出るような現象を発生させることなく、例えば最短時間で凝固点位置を所定の位置に戻すことなどが可能となり、高い生産性を維持した操業を継続することが可能となる。また、鋳片の品質を最良とする凝固点位置管理が可能となる。   In the present invention, the solidified point position change response model when the casting conditions such as casting speed are changed is managed with parameters in the database, and the non-stationary model is considered in detail. Even in unsteady situations such as when the casting speed is reduced and re-accelerated as in the case of time, the solidification point position can be set to a predetermined position in the shortest time without causing a phenomenon that the solidification position goes out of the machine end. It becomes possible to return the operation, and it is possible to continue the operation while maintaining high productivity. In addition, it is possible to manage the freezing point position with the best quality of the slab.

以下に本発明を実施するための最良の形態について、図面および数式を参照して以下に説明を行う。図1は、本発明に係る基本の制御系全体を示す図である。図中、1は溶鋼、2はタンディッシュ、3は浸漬ノズル、4はモールド、5はシェル、6はスライディングノズル、7はピンチロール、8は凝固位置検出装置、9は鋳造条件データベース、10はフィルタ処理装置、および11はピンチロール速度制御装置をそれぞれ表す。   The best mode for carrying out the present invention will be described below with reference to the drawings and mathematical expressions. FIG. 1 is a diagram showing the entire basic control system according to the present invention. In the figure, 1 is molten steel, 2 is a tundish, 3 is an immersion nozzle, 4 is a mold, 5 is a shell, 6 is a sliding nozzle, 7 is a pinch roll, 8 is a solidification position detector, 9 is a casting condition database, 10 is Filter processing devices 11 and 11 respectively represent pinch roll speed control devices.

モールド4の上部にタンディッシュ2が配置され、そして、そのタンディッシュ底部にはスライディングノズル6が配置され、更に、スライディングノズル6の下面側には浸漬ノズル3が配置されている。タンディッシュ2内に満たされた溶鋼1は、スライディングノズル6、浸漬ノズル3を経てモールド4内へ注入される。   The tundish 2 is disposed on the upper part of the mold 4, the sliding nozzle 6 is disposed on the bottom of the tundish, and the immersion nozzle 3 is disposed on the lower surface side of the sliding nozzle 6. The molten steel 1 filled in the tundish 2 is injected into the mold 4 through the sliding nozzle 6 and the immersion nozzle 3.

モールド4内へ注入された溶鋼1は、モールド側面より冷却されて、表面から凝固してシェル5を形成しつつ、ピンチロール7によって下方に引き抜かれ鋳片となる。この時、引抜速度すなわち鋳造速度は、ピンチロール(P/R)速度制御装置11により制御される。また、モールド4内に注入される溶鋼量は、スライディングノズル6の開度により決まる。   The molten steel 1 injected into the mold 4 is cooled from the side surface of the mold and solidifies from the surface to form a shell 5, and is drawn downward by a pinch roll 7 to become a cast piece. At this time, the drawing speed, that is, the casting speed is controlled by the pinch roll (P / R) speed control device 11. In addition, the amount of molten steel injected into the mold 4 is determined by the opening degree of the sliding nozzle 6.

本発明では、2次冷却の制御方法を与える。このとき、スプレー水量は鋳造速度レベルに応じて自動的に変更される制御系(図示せず)が別途あるものとする。   The present invention provides a secondary cooling control method. At this time, it is assumed that there is a separate control system (not shown) in which the spray water amount is automatically changed according to the casting speed level.

鋳造速度を鍋交換時のように変更する場合には、P/R速度制御装置11に速度変更指令を与えれば、鋳造速度変更が実現される。このとき、鋳造速度変更にあわせ、増速時にはスプレー水量が自動的に適切な量に増量され、減速時には同様に適切な水量に減量される。これにより、凝固完了位置は動的に変化する。   When the casting speed is changed as when the pan is changed, the casting speed can be changed by giving a speed change command to the P / R speed controller 11. At this time, the amount of spray water is automatically increased to an appropriate amount when the speed is increased, and similarly reduced to an appropriate amount of water when the speed is reduced. Thereby, the solidification completion position dynamically changes.

本発明では、この凝固完了位置の動的変化を動特性モデルとして記述し、鋳造条件データベース9に格納する。次に、動特性モデルが理想的な応答になるような補償器10を設計して設置する。この補償器10は、操業条件にあった動特性モデルを用いたP/R速度変更指令のフィルタ処理を行うが、凝固完了位置の凝固位置検出装置8が無くても実現できるように、P/R速度変更指令をフィルタ処理した上で新しいP/R速度指令としてP/R速度制御装置11に与えることで、理想の応答がえられるようにもしている。   In the present invention, the dynamic change of the solidification completion position is described as a dynamic characteristic model and stored in the casting condition database 9. Next, the compensator 10 is designed and installed so that the dynamic characteristic model has an ideal response. The compensator 10 performs P / R speed change command filtering using a dynamic characteristic model that meets the operating conditions. However, the compensator 10 can be realized without the solidification position detection device 8 at the solidification completion position. By filtering the R speed change command and giving it to the P / R speed control device 11 as a new P / R speed command, an ideal response can be obtained.

補償器10でのフィルタ処理について、以下に説明を行う。まず、図2は、鋳造速度増速変更時の凝固完了位置の変化の様子を表す図である。   The filter processing in the compensator 10 will be described below. First, FIG. 2 is a diagram showing how the solidification completion position changes when the casting speed increase is changed.

一般に、鋳造速度を図2の上図のように変更させた場合、凝固完了点の位置は、図2の下図のようにスプレー水量の条件変更にともなう無駄時間を経過した後に変化しはじめる。その変化はときとして、図2に示すような凝固完了位置が一旦オーバーシュートするかのような振る舞いをする。このため、オーバーシュートしない速度変更が求められる。   In general, when the casting speed is changed as shown in the upper diagram of FIG. 2, the position of the solidification completion point starts to change after the dead time associated with the change in the condition of the spray water amount elapses as shown in the lower diagram of FIG. The change sometimes behaves as if the solidification completion position shown in FIG. 2 once overshoots. For this reason, a speed change that does not overshoot is required.

これを実現する為には、図2に示す鋳造速度変化を操作量、凝固完了位置変化を出力とみた動特性モデルを作成する。そして、この動特性モデルによる応答に何がしかの補償を行った結果の応答が、例えば、図3に示すようなオーバーシュートのない応答になるようにすればよいことになる。制御的には、モデルリファレンス制御と呼ばれる。   In order to realize this, a dynamic characteristic model is created in which the change in casting speed shown in FIG. Then, the response as a result of performing some compensation for the response by this dynamic characteristic model may be a response without overshoot as shown in FIG. 3, for example. In terms of control, this is called model reference control.

図4は、モデルリファレンス制御系の構成例を示す図である。この例では、2次冷却プロセスに与える速度変更指令を、「P/R速度変更パターンフィルタ」に入れて補正し、補正された新しい速度変更指令を与える構成になっている。なお、この「P/R速度変更パターンフィルタ」のかわりに、凝固位置を観測して動特性を変更する動的補償器を入れても構わない。これらの処理で図3で示したように凝固完了位置の応答特性を改善することができる。   FIG. 4 is a diagram illustrating a configuration example of the model reference control system. In this example, the speed change command given to the secondary cooling process is corrected by putting it in the “P / R speed change pattern filter”, and a corrected new speed change command is given. Instead of the “P / R speed change pattern filter”, a dynamic compensator that changes the dynamic characteristics by observing the solidification position may be inserted. With these processes, the response characteristics of the solidification completion position can be improved as shown in FIG.

凝固完了位置の応答特性は、一般に非線形の伝熱動特性をベースに作られるが、非常に複雑である。このため、鋼種による凝固特性による分類、鋳造速度領域による分類をおこない、条件に応じてモデルの特徴を保存することで、より簡単で汎用的なモデルとすることができる。従って図4には、これらを鋳造条件D/B(データベース)から抽出して、フィルタに与える形としている。また、その特性は、経年変化や鋳造条件変化などがあることが想定されるため、鋳造速度変更実績、スプレー水量変更実績と凝固完了位置情報をみて、鋳造条件D/Bのモデルパラメータ更新をする機構を追加して対応している。   The response characteristic of the solidification completion position is generally made based on a nonlinear heat transfer dynamic characteristic, but is very complicated. For this reason, it is possible to obtain a simpler and more general-purpose model by performing classification based on solidification characteristics depending on the steel type and classification based on the casting speed region, and storing model characteristics according to conditions. Therefore, in FIG. 4, these are extracted from the casting condition D / B (database) and given to the filter. Also, since the characteristics are expected to change over time and casting conditions, update the model parameters for casting conditions D / B by checking the casting speed change record, spray water volume change record and solidification completion position information. It corresponds by adding a mechanism.

具体的な実施例を以下に示す。まず、鋳造速度変更に対する凝固完了位置の応答を、下記の(1)式に示す伝達関数表示した「無駄時間+2次の線形応答モデル」G(s)で近似する。   Specific examples are shown below. First, the response of the solidification completion position to the casting speed change is approximated by “dead time + second-order linear response model” G (s) represented by the transfer function shown in the following equation (1).

Figure 2007268559
Figure 2007268559

このとき、凝固完了位置がオーバーシュートしない理想モデルの応答をGm(s)として
下記(2)式のように与える。
At this time, the response of the ideal model in which the solidification completion position does not overshoot is given as Gm (s) as shown in the following equation (2).

Figure 2007268559
Figure 2007268559

そして、図4に示した「P/R速度変更パターンフィルタ」F(s)を、以下の(3)式のように与える。   Then, the “P / R speed change pattern filter” F (s) shown in FIG. 4 is given by the following equation (3).

Figure 2007268559
Figure 2007268559

このように構成すると、F(s)を通してG(s)に与えられた速度変更による凝固完了位置の応答は見かけ上Gm(s)の応答のように実現できる。これは、以下の(4)式のようにF(s)を設計したためである。   With this configuration, the response of the solidification completion position due to the speed change given to G (s) through F (s) can be realized like the response of Gm (s). This is because F (s) is designed as shown in the following equation (4).

Figure 2007268559
Figure 2007268559

以上説明したモデル補償の考え方をまとめたのが、図5である。   FIG. 5 summarizes the concept of model compensation described above.

図6は、フィルタ前後での鋳造速度変更指令の変化の一例を示す図である。P/R速度変更パターンフィルタをとおすことで、上段のフィルタをとおす前の鋳造速度指令は、下段に示すような新鋳造速度指令に、変化する。このように、フィルタをとおして鋳造速度を変化させることで、図3で示したオーバーシュートの無い凝固完了位置の応答を得ることができる。   FIG. 6 is a diagram illustrating an example of a change in the casting speed change command before and after the filter. By passing through the P / R speed change pattern filter, the casting speed command before passing through the upper filter changes to the new casting speed command as shown in the lower stage. In this way, by changing the casting speed through the filter, it is possible to obtain the response of the solidification completion position without the overshoot shown in FIG.

ここでは、オーバーシュートの無い凝固完了位置の応答を得ることを例として説明したが、上述の手法を用いれば、鋳造速度変更に対する凝固完了位置の応答を任意の応答に変更することが可能である。   Here, an example of obtaining a response at a solidification completion position without overshoot has been described as an example. However, by using the above-described method, it is possible to change the response at the solidification completion position with respect to a change in casting speed to an arbitrary response. .

本発明に係る基本の制御系全体を示す図である。It is a figure showing the whole basic control system concerning the present invention. 鋳造速度増速変更時の凝固完了位置の変化の様子を表す図である。It is a figure showing the mode of a change of the solidification completion position at the time of a casting speed increase change. 鋳造速度変更と凝固完了点位置の理想的応答波形の一例を示す図である。It is a figure which shows an example of the ideal response waveform of a casting speed change and a solidification completion point position. モデルリファレンス制御系の構成例を示す図である。It is a figure which shows the structural example of a model reference control system. モデル補償の考え方を示す図である。It is a figure which shows the idea of model compensation. フィルタ前後での鋳造速度変更指令の変化の一例を示す図である。It is a figure which shows an example of the change of the casting speed change command before and behind a filter.

符号の説明Explanation of symbols

1 溶鋼
2 タンディッシュ
3 浸漬ノズル
4 モールド
5 シェル
6 スライディングノズル
7 ピンチロール
8 凝固位置検出装置
9 鋳造条件データベース
10 補償器
11 ピンチロール速度制御装置
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Tundish 3 Immersion nozzle 4 Mold 5 Shell 6 Sliding nozzle 7 Pinch roll 8 Solidification position detection device 9 Casting condition database 10 Compensator 11 Pinch roll speed control device

Claims (5)

連続鋳造鋳片の凝固完了位置を、鋳造速度および/または冷却水量を操作して、凝固完了位置制御する連続鋳造鋳片の凝固完了位置制御方法において、
鋳造速度および/または冷却水量の変更に対する鋳片凝固完了位置の移動応答の関係を表す応答モデルを、鋳造条件に応じた複数の応答モデルとして作成してデータベースに保存し、必要に応じた応答モデルを前記データベースから読み出し、読み出した応答モデルを用いて、所望の鋳片凝固完了位置の応答に一致させるための、鋳片移動速度変更指令信号のフィルタ処理を行うことを特徴とする連続鋳造鋳片の凝固完了位置制御方法。
In the solidification completion position control method of the continuous casting slab, the solidification completion position of the continuous casting slab is controlled by operating the casting speed and / or the cooling water amount to control the solidification completion position.
A response model representing the relationship of the movement response of the slab solidification completion position to changes in the casting speed and / or cooling water amount is created as a plurality of response models according to the casting conditions, stored in the database, and the response model as required Is cast from the database, and a slab moving speed change command signal is filtered to match the response of the desired slab solidification completion position using the read response model. Solidification completion position control method.
請求項1に記載の連続鋳造鋳片の凝固完了位置制御方法において、
前記鋳片凝固完了位置の移動応答の関係を表す応答モデルを、無駄時間と線形動特性モデルで表すことを特徴とする連続鋳造鋳片の凝固完了位置制御方法。
In the solidification completion position control method of the continuous cast slab according to claim 1,
A solidification completion position control method for a continuous cast slab, wherein a response model representing a relationship between movement responses of the slab solidification completion position is represented by dead time and a linear dynamic characteristic model.
請求項1または請求項2に記載の連続鋳造鋳片の凝固完了位置制御方法において、
連続鋳造鋳片の凝固完了位置を推定または検知することによって、鋳造速度および/または冷却水量を操作して得られる、凝固完了位置変化を求め、求めた凝固完了位置変化に基づいて、前記データベースに保存した応答モデルを補正することを特徴とする連続鋳造鋳片の凝固完了位置制御方法。
In the solidification completion position control method of the continuous cast slab according to claim 1 or 2,
By estimating or detecting the solidification completion position of the continuous cast slab, the solidification completion position change obtained by manipulating the casting speed and / or the cooling water amount is obtained, and the database is based on the obtained solidification completion position change. A solidification completion position control method for a continuous cast slab, wherein the stored response model is corrected.
請求項1ないし請求項3のいずれか1項に記載の連続鋳造鋳片の凝固完了位置制御方法を用いて連続鋳造鋳片を製造することを特徴とする連続鋳造鋳片の製造方法。 A method for producing a continuous cast slab, comprising producing the continuous cast slab by using the solidification completion position control method for the continuous cast slab according to any one of claims 1 to 3. 鋳造速度および/または冷却水量の変更に対する鋳片凝固完了位置の移動応答の関係を表す応答モデルを、鋳造条件に応じた複数の応答モデルとして保存するデータベースと、
必要に応じた応答モデルを前記データベースから読み出し、読み出した応答モデルを用いて、所望の鋳片凝固完了位置の応答に一致させるための、鋳片移動速度変更指令信号のフィルタ処理を行う補償器とを備えることを特徴とする連続鋳造鋳片の凝固完了位置制御装置。
A database that stores a response model representing a relationship of a moving response of a slab solidification completion position to a change in casting speed and / or cooling water amount as a plurality of response models according to casting conditions;
A compensator that performs a filtering process of a slab moving speed change command signal to read out a response model as needed from the database and match the response of a desired slab solidification completion position using the read response model; A solidification completion position control device for a continuous cast slab, comprising:
JP2006096681A 2006-03-31 2006-03-31 Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab Active JP4893068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096681A JP4893068B2 (en) 2006-03-31 2006-03-31 Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096681A JP4893068B2 (en) 2006-03-31 2006-03-31 Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2007268559A true JP2007268559A (en) 2007-10-18
JP4893068B2 JP4893068B2 (en) 2012-03-07

Family

ID=38671898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096681A Active JP4893068B2 (en) 2006-03-31 2006-03-31 Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP4893068B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246195B1 (en) * 2011-01-28 2013-03-21 현대제철 주식회사 Method for producing hardened steel slab in heat treatment
JP2013103244A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Device for controlling continuous casting machine
JP2015150616A (en) * 2014-02-19 2015-08-24 Jfeスチール株式会社 Control device and control method for continuous casting machine
CN108313661A (en) * 2018-02-02 2018-07-24 中国石油集团川庆钻探工程有限公司钻采工程技术研究院 It is a kind of can online self-tuning moving material carrying method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872339A (en) * 2020-08-05 2020-11-03 山东莱钢永锋钢铁有限公司 Method for continuous casting low power mass analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514134A (en) * 1978-07-14 1980-01-31 Toshiba Corp Producing apparatus of steel bar product
JPH03291152A (en) * 1990-04-05 1991-12-20 Nippon Steel Corp Mold level controller
JPH06198408A (en) * 1993-01-11 1994-07-19 Sumitomo Metal Ind Ltd Method for controlling molten metal surface level in continuous caster
JP2005118804A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Method for detecting fully solidified position of continuously-cast bloom
JP2005177860A (en) * 2003-11-27 2005-07-07 Jfe Steel Kk Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
WO2005068109A1 (en) * 2004-01-20 2005-07-28 Sms Demag Ag Method and device for determining the position of the solidification point in a casting billet during continuous casting of liquid metals, in particular liquid steel work materials
JP2005211926A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Method and device for detecting fully solidified position of continuously cast slab

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514134A (en) * 1978-07-14 1980-01-31 Toshiba Corp Producing apparatus of steel bar product
JPH03291152A (en) * 1990-04-05 1991-12-20 Nippon Steel Corp Mold level controller
JPH06198408A (en) * 1993-01-11 1994-07-19 Sumitomo Metal Ind Ltd Method for controlling molten metal surface level in continuous caster
JP2005118804A (en) * 2003-10-15 2005-05-12 Jfe Steel Kk Method for detecting fully solidified position of continuously-cast bloom
JP2005177860A (en) * 2003-11-27 2005-07-07 Jfe Steel Kk Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
WO2005068109A1 (en) * 2004-01-20 2005-07-28 Sms Demag Ag Method and device for determining the position of the solidification point in a casting billet during continuous casting of liquid metals, in particular liquid steel work materials
JP2005211926A (en) * 2004-01-29 2005-08-11 Jfe Steel Kk Method and device for detecting fully solidified position of continuously cast slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246195B1 (en) * 2011-01-28 2013-03-21 현대제철 주식회사 Method for producing hardened steel slab in heat treatment
JP2013103244A (en) * 2011-11-11 2013-05-30 Jfe Steel Corp Device for controlling continuous casting machine
JP2015150616A (en) * 2014-02-19 2015-08-24 Jfeスチール株式会社 Control device and control method for continuous casting machine
CN108313661A (en) * 2018-02-02 2018-07-24 中国石油集团川庆钻探工程有限公司钻采工程技术研究院 It is a kind of can online self-tuning moving material carrying method

Also Published As

Publication number Publication date
JP4893068B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP2007518572A (en) Method and apparatus for determining the location of a sump point in a casting strand during continuous casting of molten metal, in particular molten steel material
JP4893068B2 (en) Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab
KR20110020854A (en) Method for the continuous casting of metal strand
JP3318742B2 (en) Mold level control device for continuous casting equipment
JPH06264B2 (en) Level control method in continuous casting
JP2005509530A (en) Continuous casting method
KR100817173B1 (en) Method for producing steel slabs
JP2634106B2 (en) Metal surface level control method in continuous casting
JP5206569B2 (en) Mold level control apparatus and control method for continuous casting machine
JPH10146658A (en) Method for controlling molten metal surface level in continuous casting
JP2007253170A (en) Method and device for controlling molten metal surface level in mold for continuous casting machine
JP2010214417A (en) Method for predicting shape in widthwise direction of finally solidified part in continuously cast slab and continuous casting method
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JP5751144B2 (en) Control device and control method for continuous casting machine
Furtmueller et al. Control issues in continuous casting of steel
JP2771946B2 (en) Metal surface level control method in continuous casting of multi-layer steel sheet
JP2011125924A (en) Method for controlling molten metal surface level of molten steel in mold
JP2007268536A (en) Method and apparatus for controlling solidification completion position in continuous-continuous casting and method for producing continuously cast slab
JP6528756B2 (en) Hot water level control device and hot water level control method
JP6981551B2 (en) Continuous casting machine control method, continuous casting machine control device, and slab manufacturing method
JP4407353B2 (en) Metal sheet manufacturing apparatus and manufacturing method
JPH03174961A (en) Method and apparatus for controlling molten metal surface in continuous casting
JP4501597B2 (en) Prevention of bulging level fluctuation in continuous casting mold.
RU2775264C1 (en) Method for controlling continuous casting machine, control device for continuous casting machine and casting manufacturing method
JP5742601B2 (en) Solidification completion position calculation method and solidification completion position calculation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250