JPH04169058A - Alkali storage battery - Google Patents

Alkali storage battery

Info

Publication number
JPH04169058A
JPH04169058A JP2294498A JP29449890A JPH04169058A JP H04169058 A JPH04169058 A JP H04169058A JP 2294498 A JP2294498 A JP 2294498A JP 29449890 A JP29449890 A JP 29449890A JP H04169058 A JPH04169058 A JP H04169058A
Authority
JP
Japan
Prior art keywords
active material
battery
cathode plate
plate
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2294498A
Other languages
Japanese (ja)
Inventor
Naoya Kobayashi
直哉 小林
Takao Ogura
孝夫 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2294498A priority Critical patent/JPH04169058A/en
Publication of JPH04169058A publication Critical patent/JPH04169058A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the oxygen gas absorbing performance of a cathode plate and suppress generation of hydrogen gas by preventing existence of active material at the portion of the cathode plate touching a battery can. CONSTITUTION:Active material 2 is kept out from the portion 3 of a cathode plate touching the battery can. In such a case as the active material layer 2 is kept out from the portion 3 of the cathode plate touching the battery can, the active material at the portion touching the battery can is not charged when the battery is charged, so that charging of the active material existing on the side opposite to an anode plate is expedited to that extent. Accordingly, for instance, in the case of a cadmium cathode plate, the active material of the cathode plate existing on the side opposite to the anode plate becomes cadmium more quickly. Thereby, the oxygen gas absorbing performance of the cathode plate is improved and the generation of hydrogen gas is suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、アルカリ蓄電池に関するものであり、特にペ
ースト式極板を用いるアルカリ蓄電池の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alkaline storage battery, and more particularly to an improvement in an alkaline storage battery using paste-type electrode plates.

[従来の技術] アルカリ蓄電池は、焼結式極板を用いるタイプとペース
ト式極板を用いるタイプとに大別できる。
[Prior Art] Alkaline storage batteries can be roughly divided into types using sintered electrode plates and types using paste electrode plates.

カドミウム電池で用いられる両方式の極板をカドミウム
陰極板について説明すると、焼結式極板はニッケル粉末
を焼結して得た焼結板の細孔中に水酸化カドミウムある
いは金属カドミウムを化学的な方法あるいは電気化学的
な方法で充填させたものである。またペースト式極板は
、第2図に示すように、酸化カドミウムあるいは水酸化
カドミウムを主成分とする粉末を有機バインダーと共に
混練して得たペーストをニッケルめっきを施したパンチ
ング鉄鋼板等からなる活物質保持体1の両面に塗着して
乾燥して活物質層2を形成し、その後活物質層2を活性
化させるためにアルカリ溶液中で化成処理を施したもの
である。電槽化成を行うペースト式極板では、酸化カド
ミウムあるいは水酸化カドミウムと共に放電リザーブと
して金属カドミウムを加えた粉末を有機バインダーと共
に混練して得たペーストを活物質保持体1に塗着し、こ
れを乾燥して作成するものもある。
To explain both types of electrode plates used in cadmium batteries in terms of cadmium cathode plates, the sintered type electrode plate is made by sintering nickel powder and then chemically injects cadmium hydroxide or metallic cadmium into the pores of the sintered plate. It is filled using a conventional method or an electrochemical method. Paste-type electrode plates, as shown in Figure 2, are made of nickel-plated punched steel plates made of a paste obtained by kneading powder mainly composed of cadmium oxide or cadmium hydroxide with an organic binder. The active material layer 2 is formed by coating both sides of the material support 1 and drying, and then chemical conversion treatment is performed in an alkaline solution in order to activate the active material layer 2. In a paste-type electrode plate that performs battery cell formation, a paste obtained by kneading a powder containing cadmium oxide or cadmium hydroxide and metal cadmium as a discharge reserve with an organic binder is applied to the active material holder 1. Some are made by drying.

ペースト式の極板の活物質の充填容量密度は1400〜
1500mAh/cjであり、焼結式極板の活物質の充
填容量密度は900〜1000 mAh/a/である。
The filling capacity density of the active material of the paste-type electrode plate is 1400~
1500 mAh/cj, and the filling capacity density of the active material of the sintered electrode plate is 900 to 1000 mAh/a/.

ペースト式極板のほうが、焼結式極板よりも活物質をよ
り多(保持できるため、最近はペースト式極板が注目さ
れている。
Paste-type plates have been attracting attention recently because they can hold more active material than sintered plates.

一般的なペースト式極板を用いたアルカリ蓄電池では、
第2図に示すような陰極板及び陽極板をセパレータを間
に挟んで作った極板群を陰極板が外側に位置するように
して渦巻状に巻回し、この渦巻状の極板群を電池缶の内
側壁に陰極板の一部が接触すようにして電池缶内に収納
している。そして−船釣には、電池缶が陰極端子を構成
しており、陰極板の活物質保持体の端部が電池缶の底壁
部に抵抗溶接されている。なお電池缶の側壁部に接触す
る陰極板の接触部分も導電に寄与している。
In alkaline storage batteries using general paste-type electrode plates,
An electrode plate group made by sandwiching a separator between a cathode plate and an anode plate as shown in Fig. 2 is wound in a spiral shape with the cathode plate positioned on the outside, and this spiral electrode plate group is assembled into a battery. The battery is housed in the can with a portion of the cathode plate touching the inside wall of the can. For boat fishing, the battery can constitutes a cathode terminal, and the end of the active material holder of the cathode plate is resistance welded to the bottom wall of the battery can. Note that the contact portion of the cathode plate that contacts the side wall portion of the battery can also contributes to electrical conduction.

[発明が解決しようとする課題] 従来は、ペースト式極板の利点は活物質の保持量が多い
ことであるから、活物質が多いことが電池性能に悪影響
を与えるとは考えていなかった。
[Problems to be Solved by the Invention] Conventionally, the advantage of paste-type electrode plates is that they hold a large amount of active material, so it was not thought that having a large amount of active material would adversely affect battery performance.

しかしながら、発明者の研究の結果、特にペースト式の
陰極板に関しては、活物質保持体1に保持させた活物質
のうち電池缶の内側壁に接触する部分の活物質が、電池
性能に下記のような悪影響を与えていることが判った。
However, as a result of the inventor's research, especially regarding paste-type cathode plates, the active material held in the active material holder 1 in the portion that contacts the inner wall of the battery can has the following effects on battery performance. It was found that it had a negative impact.

(1)過充電時の酸素ガス吸収性能を低下させる。(1) Decreases oxygen gas absorption performance during overcharging.

これは電池を充電する際に、直接充放電に関与しない電
池缶に接触する接触部分の活物質も充電される(活物質
がカドミウムになる)からである。
This is because when charging the battery, the active material at the contact portion that contacts the battery can, which is not directly involved in charging and discharging, is also charged (the active material becomes cadmium).

このような不要な充電が行われると、陰極板の電池缶に
接触する部分の裏側(セパレータを介して陽極板と対向
する側)の充電が遅れる。そのために、過充電時に陽極
板より発生する酸素ガスを陰極板において吸収する性能
が劣り、水素ガスが発生しやすくなるのである。特に長
期連続充電を行った場合に水素ガスの発生量が増加して
電池内圧が上昇しやすい。このような酸素ガス吸収性能
の悪さから、従来ペースト式極板を用いたアルカリ蓄電
池では急速充電が困難であると考えられていた。
If such unnecessary charging is performed, charging of the back side of the portion of the negative plate that contacts the battery case (the side facing the positive plate with the separator in between) is delayed. Therefore, the ability of the cathode plate to absorb oxygen gas generated from the anode plate during overcharging is poor, and hydrogen gas is more likely to be generated. Particularly when continuous charging is performed for a long period of time, the amount of hydrogen gas generated increases and the internal pressure of the battery tends to rise. Due to such poor oxygen gas absorption performance, it was thought that rapid charging was difficult with conventional alkaline storage batteries using paste-type electrode plates.

(2)充電受入性が悪くなり、電槽化成に時間がかかり
、しかも高い充電電圧を必要とする。
(2) Charge acceptability deteriorates, it takes time to form a battery case, and high charging voltage is required.

これはカドミウム陰極板を例にとると、活物質は酸化カ
ドミウムあるいは酸化カドミウムが化学的に変化した水
酸化カドミウムを主体としているため、活物質の導電性
が低くなり陰極板の充放電効率が低下することに起因し
ている。電槽化成による方法(未化成の極板群を用いて
電池を組立てた後、電槽内で電池を充電することに極板
群を活性化する方法)でアルカリ蓄電池を製造する場合
、接触部分の活物質の導電性が低くなると、それだけ充
電時間が長くなる上、充電電圧を高くせざるをえない。
Taking a cadmium cathode plate as an example, the active material is mainly cadmium oxide or cadmium hydroxide, which is a chemical change of cadmium oxide, which lowers the conductivity of the active material and reduces the charging and discharging efficiency of the cathode plate. It is caused by doing. When manufacturing an alkaline storage battery using the method of battery cell formation (a method in which the battery is assembled using unformed electrode plates and then the electrode plates are activated by charging the battery in the battery case), the contact parts As the conductivity of the active material decreases, the charging time becomes longer and the charging voltage must be increased.

(3)電池製造とは直接関係しないが、接触部分の活物
質は電池の充放電に関与しないため電池そのもののコス
トが高くなるという問題もある。
(3) Although not directly related to battery manufacturing, there is also the problem that the cost of the battery itself increases because the active material in the contact portion does not participate in charging and discharging the battery.

本発明の目的は、上記問題を解決することができるアル
カリ蓄電池を提供することにある。
An object of the present invention is to provide an alkaline storage battery that can solve the above problems.

[課題を解決するための手段] 本発明は、活物質保持体に活物質が保持されてなるペー
スト式極板を用いて構成された極板群を陰極板の一部が
電池缶の内側壁に接触するように電池缶内に配置してな
るアルカリ蓄電池を対象として、請求項1の発明では、
陰極板の電池缶に接触する部分には活物質を存在させな
いようにした。
[Means for Solving the Problems] The present invention provides an electrode plate group configured using a paste-type electrode plate in which an active material is held in an active material holder, so that a part of the cathode plate is attached to the inner wall of a battery can. The invention of claim 1 is directed to an alkaline storage battery arranged in a battery can so as to be in contact with the
The active material was not present in the part of the cathode plate that comes into contact with the battery can.

請求項2の発明では、活物質保持体が多孔金属板からな
る場合に、陰極板の接触部分の表面をカーボンを含む導
電層によって覆う。
In the second aspect of the invention, when the active material holder is made of a porous metal plate, the surface of the contact portion of the cathode plate is covered with a conductive layer containing carbon.

請求項3の発明では、活物質保持体の接触部分を構成す
る部分を平らな表面を有するものとする。
In the third aspect of the invention, the part constituting the contact part of the active material holder has a flat surface.

請求項4の発明では、陰極板の接触部分を非透水性及び
耐アルカリ性を有する絶縁性樹脂層によって被覆する。
In the fourth aspect of the invention, the contact portion of the cathode plate is coated with an insulating resin layer having water impermeability and alkali resistance.

この絶縁性樹脂層としては絶縁性テープを用いることが
できる。
An insulating tape can be used as this insulating resin layer.

請求項5の発明では、陰極板のその他の表面部分をカー
ボンを含む導電被覆層によって覆う。
In the invention of claim 5, the other surface portions of the cathode plate are covered with a conductive coating layer containing carbon.

[作 用J 請求項1の発明のように、陰極板の電池缶に接触する部
分に活物質を存在させないと、電池を充電する際に、従
来のように電池缶に接触する部分の活物質が充電されな
いため、その分だけ陽極板と対向する側の活物質の充電
が早く進行する。その結果、カドミウム陰極板を例にと
れば、陰極板の陽極板と対向する側の活物質が早(カド
ミウムとなり、陰極板の酸素ガス吸収性能が向上して、
水素ガスが発生しにくくなる。
[Function J] If the active material is not present in the part of the cathode plate that contacts the battery can as in the invention of claim 1, when charging the battery, the active material in the part that contacts the battery can as in the conventional case. Since the active material on the side facing the anode plate is not charged, charging of the active material on the side facing the anode plate proceeds faster. As a result, taking a cadmium cathode plate as an example, the active material on the side of the cathode plate facing the anode plate quickly turns into cadmium, which improves the oxygen gas absorption performance of the cathode plate.
Hydrogen gas is less likely to be generated.

また陰極板の電池缶との接触部分に活物質を存在させな
いで、活物質保持体を直接電池缶に接触させる場合には
、電池缶と陰極板との間の導電率か向上し、その結果充
電受入性がよくなるとともに、低い充電電圧での充電が
可能になる。なお本発明は、陰極板の接触部分を必ず電
池缶に導電可能に接触させる電池だけを包含するもので
はな(、請求項4の発明のように、陰極板の接触部分と
電池缶との間に絶縁層を介在させる場合を包含するもの
である。
In addition, when the active material holder is brought into direct contact with the battery can without the presence of active material in the contact area of the cathode plate with the battery can, the electrical conductivity between the battery can and the cathode plate is improved, and as a result, Not only does charging acceptability improve, but charging at a low charging voltage becomes possible. Note that the present invention does not only include batteries in which the contact portion of the cathode plate is always brought into conductive contact with the battery can (as in the invention of claim 4, there is no contact between the contact portion of the cathode plate and the battery can). This includes the case where an insulating layer is interposed between the two.

請求項2の発明のように、活物質保持体が多孔金属板か
らなる場合に、陰極板の接触部分の表面をカーボンを含
む導電層によって覆うと、電池缶と活物質保持体との間
の導電性を向上させることができる。
As in the invention of claim 2, when the active material holder is made of a porous metal plate, if the surface of the contact portion of the cathode plate is covered with a conductive layer containing carbon, the gap between the battery can and the active material holder is Conductivity can be improved.

請求項3の発明のように、活物質保持体の接触部分を構
成する部分を平らな表面を有するものとすると、陰極板
と電池缶との接触面積が増えるため請求項2の発明のよ
うに、カーボンを含む導電層を設けなくても電池缶との
活物質保持体との間に十分な導電性を得ることができる
If the part constituting the contact part of the active material holder has a flat surface as in the invention of claim 3, the contact area between the cathode plate and the battery can increases. , sufficient conductivity can be obtained between the battery can and the active material holder without providing a conductive layer containing carbon.

請求項4の発明のように、活物質保持体の電池缶と接触
する部分を非透水性、耐アルカリ性及び絶縁性を有する
樹脂層で覆うと、活物質保持体からの水素の発生を防止
できる。通常、活物質保持体は鉄にニッケルめっきを施
したものを用いているがニッケルの水素過電圧は低い。
If the part of the active material holder that contacts the battery can is covered with a water-impermeable, alkali-resistant, and insulating resin layer as in the invention of claim 4, generation of hydrogen from the active material holder can be prevented. . Usually, the active material holder is made of iron plated with nickel, but nickel has a low hydrogen overvoltage.

そのため電池缶と接触する部分に活物質を設けずに活物
質保持体を電解液と直接接触させておくと、充電時には
接触部から水素が発生しやすくなる。例えばニッケルー
カドミウム系の電池において酸素ガスは陰極板で吸収さ
れる。しかしながら、水素ガスは電池内で吸収されたり
分解されたりすることかないため、発生した水素ガスは
電池内に蓄積して内部圧力の上昇及び電解液量の低下と
いう悪影響を与えるのである。
Therefore, if the active material holder is brought into direct contact with the electrolyte without providing the active material in the part that contacts the battery can, hydrogen is likely to be generated from the contact part during charging. For example, in a nickel-cadmium battery, oxygen gas is absorbed by the cathode plate. However, since hydrogen gas is not absorbed or decomposed within the battery, the generated hydrogen gas accumulates within the battery and has the adverse effect of increasing internal pressure and decreasing the amount of electrolyte.

請求項5の発明のように、陰極板の接触部分以外の表面
をカーボンを含む導電被覆層によって覆うと次のような
効果が得られる。例えばカドミウム陰極板を例にとれば
、カーボンの導電率は活物質を構成する酸化カドミウム
あるいは水酸化カドミウムに比べて高いため、電池を充
電した際に充電が陰極板の極板表面から進行する。この
ため極板表面には多量のカドミウムが生成され酸素ガス
吸収性能が向上して、水素ガスが発生しにくくなるので
ある。
If the surface of the cathode plate other than the contact portion is covered with a conductive coating layer containing carbon as in the fifth aspect of the invention, the following effects can be obtained. For example, in the case of a cadmium cathode plate, the conductivity of carbon is higher than that of cadmium oxide or cadmium hydroxide, which constitutes the active material, so when a battery is charged, charging proceeds from the surface of the cathode plate. For this reason, a large amount of cadmium is generated on the surface of the electrode plate, improving oxygen gas absorption performance and making it difficult to generate hydrogen gas.

[実施例] 本発明の実施例を図面を参照して詳細に説明する。本発
明の電池は、陰極板の構成に特徴があり、その他の部分
の構成は従来の電池と同じである。
[Examples] Examples of the present invention will be described in detail with reference to the drawings. The battery of the present invention is characterized by the configuration of the cathode plate, and the configuration of other parts is the same as conventional batteries.

そこで第1図には、本発明をニッケルーカドミウム電池
に適用する場合に用いることができる陰極板の実施例を
概略的に示しである。なお第1図(a)〜(d)は各種
の陰極板を長手方向に沿って切断した断面図を模式的に
表した図である。
Therefore, FIG. 1 schematically shows an embodiment of a cathode plate that can be used when the present invention is applied to a nickel-cadmium battery. Note that FIGS. 1(a) to 1(d) are diagrams schematically showing cross-sectional views of various cathode plates cut along the longitudinal direction.

第1図(a)において、1は幅4Qaun、長さ85+
++mで肉厚0.080mmのKR−AAの鉄鋼板にパ
ンチング穴加工を施した後に4〜6μmのニッケルめっ
きを施した活物質保持体であり、2は活物質層である。
In Figure 1(a), 1 has a width of 4Qaun and a length of 85+
The active material holder is made by punching holes in a KR-AA steel plate with a thickness of 0.080 mm and then plating with nickel to a thickness of 4 to 6 μm, and 2 is an active material layer.

活物質層2は、平均粒径1〜3μmの酸化カドミウム7
0重量部と平均粒径1〜3μmの金属カドミウム18重
量部と平均粒径10〜15μmの金属ニッケル10重量
部とポリビニルアルコール2重量部とからなる粉末をエ
チレングリコールと共に混練して製造したペーストを活
物質保持体1に塗着した後、150℃で1時間乾燥して
、極板の肉厚が所定の厚みになるように加圧して製造し
た。本実施例では、活物質保持体1の電池缶に接触する
接触部分3を除いてペーストを塗着して活物質層2を形
成した。そして接触部分3には、ポリプロピレンからな
る絶縁性テープ4を貼付して、接触部分3を絶縁樹脂層
で被覆した。極板の肉厚は両面にペースト2を塗着した
部分が0156mm、片側に絶縁性テープ4を貼付した
部分が0.30mmである。また接触部分3は活物質保
持体1aの長手方向の端部から40mmの位置までを占
めている。絶縁性テープの外に熱硬化性樹脂を塗布して
絶縁樹脂層を形成してもよい。
The active material layer 2 is made of cadmium oxide 7 with an average particle size of 1 to 3 μm.
A paste produced by kneading powder consisting of 0 parts by weight, 18 parts by weight of metal cadmium with an average particle size of 1 to 3 μm, 10 parts by weight of metal nickel with an average particle size of 10 to 15 μm, and 2 parts by weight of polyvinyl alcohol with ethylene glycol. After being coated on the active material holder 1, it was dried at 150° C. for 1 hour, and pressure was applied so that the thickness of the electrode plate became a predetermined thickness. In this example, the active material layer 2 was formed by applying the paste to the active material holder 1 except for the contact portion 3 that contacts the battery can. Then, an insulating tape 4 made of polypropylene was attached to the contact portion 3 to cover the contact portion 3 with an insulating resin layer. The wall thickness of the electrode plate is 0.156 mm in the part where paste 2 is applied on both sides, and 0.30 mm in the part where insulating tape 4 is pasted on one side. Further, the contact portion 3 occupies a position up to 40 mm from the longitudinal end of the active material holder 1a. The insulating resin layer may be formed by applying a thermosetting resin to the outside of the insulating tape.

なお以下の説明で、この陰極板を陰極板Aと言い、また
該極板Aを用いた電池を電池Aという。
In the following description, this cathode plate will be referred to as cathode plate A, and a battery using this cathode plate A will be referred to as battery A.

第1図(b)は本発明の実施例の電池Bで用いる陰極板
Bの断面図である。第1図(b)において、5はカーボ
ンブラック層であり、6はカーボン層である。この極板
は、第1図(a)に示した極板をベースとして製造され
る。そのため本実施例において、活物質保持体1、活物
質層2、及び絶縁性テープ4の条件は第1図(a)の陰
極板Aと同じである。本実施例においては、カーボンブ
ラック層5とカーボン層6とによりカーボンを含む導電
被覆層が構成されている。この陰極板Bでは、活物質層
2の表面に粒径0.05〜0.1μmのカーボンブラッ
クをエチレングリコールで分散したペーストを塗着し、
150℃で1時間乾燥してカーボンブラック層5を形成
する。次に、カーボンブラック層5の表面にカーボン層
6を形成して作成した。
FIG. 1(b) is a sectional view of a cathode plate B used in a battery B according to an embodiment of the present invention. In FIG. 1(b), 5 is a carbon black layer and 6 is a carbon layer. This electrode plate is manufactured based on the electrode plate shown in FIG. 1(a). Therefore, in this example, the conditions for the active material holder 1, the active material layer 2, and the insulating tape 4 are the same as those for the cathode plate A in FIG. 1(a). In this embodiment, the carbon black layer 5 and the carbon layer 6 constitute a conductive coating layer containing carbon. In this cathode plate B, a paste in which carbon black with a particle size of 0.05 to 0.1 μm is dispersed in ethylene glycol is applied to the surface of the active material layer 2.
The carbon black layer 5 is formed by drying at 150° C. for 1 hour. Next, a carbon layer 6 was formed on the surface of the carbon black layer 5.

第1図(C)は本発明の他の実施例の電池Cに用いる陰
極板Cの断面図である。本実施例の陰極板Cでは、活物
質保持体10の構造と絶縁性テープを貼付しない点に特
徴がある。本実施例で用いる活物質保持体10では、接
触部分30に相当する部分にはパンチング穴加工が施こ
されておらず、接触部分30は平らな面を有している。
FIG. 1(C) is a sectional view of a cathode plate C used in a battery C according to another embodiment of the present invention. The cathode plate C of this example is characterized by the structure of the active material holder 10 and the fact that no insulating tape is attached. In the active material holder 10 used in this example, no punching is performed in a portion corresponding to the contact portion 30, and the contact portion 30 has a flat surface.

そして本実施例では、第1図(a)及び(b)の陰極板
と異なって接触部分30を露出させている。その他の点
は第1図(b)の陰極板Bと同じであり、活物質保持体
10の接触部分30以外に活物質層2を形成し、該活物
質層2の表面にカーボンブラック層5を形成し、カーボ
ンブラック層5の表面にカーボン層6を形成して、両面
に活物質層が形成された部分の厚みが0.56mm、片
側に活物質層が形成された部分の厚みが0.30mmに
なるまで加圧して陰極板Cは製造されている。
In this embodiment, the contact portion 30 is exposed, unlike the cathode plates shown in FIGS. 1(a) and 1(b). The other points are the same as the cathode plate B shown in FIG. A carbon layer 6 is formed on the surface of the carbon black layer 5, and the thickness of the part where the active material layer is formed on both sides is 0.56 mm, and the thickness of the part where the active material layer is formed on one side is 0. Cathode plate C is manufactured by applying pressure to a thickness of .30 mm.

第1図(d)は本発明の更に他の実施例の電池りに用い
る陰極板りの断面図である。陰極板りはでは、活物質保
持体1の電池缶に接触する接触部分3を除いて、第1図
(b)の陰極板Bと同様の方法で活物質層2を形成し、
該活物質層2の表面に、カーボンを含む導電被覆層を構
成するカーボンブラック層5を形成しである。また、接
触部分3の表面にはカーボンを含む導電層を構成するカ
ーボン層16を形成しである。
FIG. 1(d) is a sectional view of a cathode plate used in a battery according to still another embodiment of the present invention. For the cathode plate, the active material layer 2 is formed in the same manner as for the cathode plate B in FIG. 1(b), except for the contact portion 3 of the active material holder 1 that contacts the battery can,
A carbon black layer 5 constituting a conductive coating layer containing carbon is formed on the surface of the active material layer 2. Furthermore, a carbon layer 16 constituting a conductive layer containing carbon is formed on the surface of the contact portion 3.

上記のように作成した各陰極板をポリアミド樹脂製不織
布からなるセパレータを介して肉厚0゜57mmXmm
幅4QmmX長さ67mmのペースト式陽極板と組合わ
せて捲回して接触部分3,30を電池缶に接触するよう
にしてKR−700AA型の電池A−Dを製造した。ま
た第2図の構造を有して、極板の肉厚が0.52mmに
なるまで加圧して製造した従来の陰極板を用いて上記と
同様の電池Eを製造した。次にこれらの電池A−Eを用
いて充放電試験を行った。その測定結果を表1及び第3
図に示す。表1は電池の放電特性を表しており、0.2
0容量即ち公称容量の5分の1の電流で放電した際の放
電容量(mAh)と、各電池の30容量即ち公称容量の
3倍の電流で放電した際の放電容量(mAh)を0.2
C容量(mA、h)で割った容量比の数値を表している
。第3図は各電池の充電特性を表しており、各電池をI
CmAで充電した際の充電時間を横軸に表し、各電池の
電圧を縦軸に表している。なお、図において線A乃至E
は、各電池A乃至Eの特性曲線を表している。
Each cathode plate prepared as above was inserted through a separator made of polyamide resin non-woven fabric to a wall thickness of 0°57mm x mm.
KR-700AA type batteries A-D were manufactured by combining and winding the paste-type anode plate with a width of 4 Q mm and a length of 67 mm so that the contact portions 3 and 30 were in contact with the battery can. Further, a battery E similar to that described above was manufactured using a conventional negative electrode plate having the structure shown in FIG. 2 and manufactured by pressurizing the electrode plate until the thickness of the electrode plate became 0.52 mm. Next, a charge/discharge test was conducted using these batteries A to E. The measurement results are shown in Tables 1 and 3.
As shown in the figure. Table 1 shows the discharge characteristics of the battery, 0.2
The discharge capacity (mAh) when discharging at a current of 0 capacity, that is, 1/5 of the nominal capacity, and the discharge capacity (mAh) when discharging at a current of 30 capacity, that is, 3 times the nominal capacity of each battery, are 0. 2
It represents the value of the capacity ratio divided by the C capacity (mA, h). Figure 3 shows the charging characteristics of each battery.
The horizontal axis represents the charging time when charging at CmA, and the vertical axis represents the voltage of each battery. In addition, in the figure, lines A to E
represents the characteristic curves of each battery A to E.

表1 表1より本発明の電池A−Dのいずれもが容量及び容量
比において従来の電池Eよりも高い値を示していること
が判る。これは従来の電池の特性が悪いのは、電池缶に
接触する部分の活物質が酸化カドミウムあるいは酸化カ
ドミウムが化学的に変化した水酸化カドミウム等の導電
率の低い物質を含んでいるため放電反応が阻害されるか
らである。また未化成極板が充電される際、陰極板自身
の導電性が低いため陰極板の電池缶に接触する部分にも
充電反応が進行する。しかしながら、陰極板の電池缶に
接触する部分は陽極板とは対向していないため放電はさ
れにくい。本発明の電池では陰極板の電池缶に接触する
部分には充電反応が進行しないため放電特性が向上する
ものと思われる。
Table 1 It can be seen from Table 1 that batteries A to D of the present invention all have higher values in capacity and capacity ratio than conventional battery E. This is because the characteristics of conventional batteries are poor because the active material in the part that comes into contact with the battery case contains a substance with low conductivity such as cadmium oxide or cadmium hydroxide, which is a chemically modified form of cadmium oxide, which causes a discharge reaction. This is because it is inhibited. Furthermore, when an unformed electrode plate is charged, since the conductivity of the cathode plate itself is low, the charging reaction also proceeds in the portion of the cathode plate that comes into contact with the battery can. However, since the portion of the cathode plate that contacts the battery case does not face the anode plate, it is difficult for discharge to occur. In the battery of the present invention, the charging reaction does not proceed in the portion of the cathode plate that contacts the battery can, so it is thought that the discharge characteristics are improved.

また、表1より本発明の電池C及びDの容量比が特に高
いことが判る。これは接触部に非導電性テープを貼付し
た本発明の電池A、  Bに比較して陰極板と電池缶と
の間に導電性があるためである。
Furthermore, it can be seen from Table 1 that the capacity ratios of batteries C and D of the present invention are particularly high. This is because there is more conductivity between the cathode plate and the battery can than in Batteries A and B of the present invention in which a non-conductive tape is attached to the contact area.

特に電池りは接触部分を片面に存する部分にパンチング
穴加工が施こされていないため導電性は大幅に向上する
In particular, since the battery cell has no punched holes in the contact area on one side, the conductivity is greatly improved.

また第3図より本発明の電池A−Dのいずれもが低い電
圧で充電することができ、充電特性が向上していること
が判る。特に本発明の電池B−Dのように極板表面をカ
ーボンを含む導電被覆層で覆うと、充電特性を大巾に向
上できることが判る。
Furthermore, from FIG. 3, it can be seen that all of the batteries A to D of the present invention can be charged at a low voltage and have improved charging characteristics. In particular, it can be seen that charging characteristics can be greatly improved when the surface of the electrode plate is covered with a conductive coating layer containing carbon as in batteries BD of the present invention.

更に本発明の電池C,Dのように陰極板と電池缶との間
の導電性が向上すると充電受入性も向上して充電電圧を
低くすることができることが判る。
Furthermore, it can be seen that when the conductivity between the cathode plate and the battery case is improved as in Batteries C and D of the present invention, the charge acceptance is also improved and the charging voltage can be lowered.

そのため本発明の電池では、急速充電性能を向上させる
ことができる。
Therefore, in the battery of the present invention, rapid charging performance can be improved.

尚、本発明の電池A−Dでは、充放電特性の向上以外に
も活物質の量を20%低減することができ、また陰極活
物質かないことによって電池内の空間容積を利用できる
ため陽陰極板の活物質充填容量をそれぞれ5%ずつ向上
させることができる。
In addition, in batteries A-D of the present invention, in addition to improving the charge/discharge characteristics, the amount of active material can be reduced by 20%, and since there is no cathode active material, the space inside the battery can be utilized, so that the anode and cathode The active material filling capacity of the plate can be improved by 5%.

また、本発明の電池A、  Bのように活物質保持体が
露出する部分に絶縁性テープを貼付すると、活物質保持
体の表面のニッケルと電解液との接触を防ぐことができ
るので水素ガスの発生を抑制できる。
Furthermore, if an insulating tape is attached to the exposed part of the active material holder as in Batteries A and B of the present invention, it is possible to prevent contact between the nickel on the surface of the active material holder and the electrolyte, thereby preventing hydrogen gas from coming into contact with the electrolyte. can suppress the occurrence of

[本発明の効果] 請求項1の発明によれば、陰極板の電池缶に接触する部
分に活物質を存在させないため、陽極板と対向する側の
活物質の充電を早く進行させることができ、その結果陰
極板の酸素ガス吸収性能が向上して、水素ガスが発生し
にくくなる利点がある。
[Effects of the present invention] According to the invention of claim 1, since no active material is present in the portion of the cathode plate that contacts the battery can, charging of the active material on the side facing the anode plate can proceed quickly. As a result, the oxygen gas absorption performance of the cathode plate is improved, and hydrogen gas is less likely to be generated.

また陰極板の電池缶との接触部分に活物質を存在させな
いで、活物質保持体を直接電池缶に接触させる場合には
、電池缶と陰極板との間の導電率か向上し、その結果充
電受入性がよくなるとともに、低い充電電圧での充電が
可能になる利点がある。
In addition, when the active material holder is brought into direct contact with the battery can without the presence of active material in the contact area of the cathode plate with the battery can, the electrical conductivity between the battery can and the cathode plate is improved, and as a result, This has the advantage of improving charging acceptability and enabling charging at a low charging voltage.

請求項2の発明によれば、活物質保持体が多孔金属板か
らなる場合に、陰極板の接触部分の表面をカーボンを含
む導電層によって覆っているので、電池缶と活物質保持
体との間の導電性を向上させることができる。
According to the invention of claim 2, when the active material holder is made of a porous metal plate, the surface of the contact portion of the cathode plate is covered with a conductive layer containing carbon, so that the connection between the battery can and the active material holder is It is possible to improve the conductivity between the two.

請求項3の発明によれば、活物質保持体の接触部分を構
成する部分を平らな表面を有するものにしたので、陰極
板と電池缶との接触面積を増やすことができ、カーボン
を含む導電層を設けなくても電池缶との活物質保持体と
の間に十分な導電性を得ることができる利点がある。
According to the third aspect of the invention, since the part constituting the contact part of the active material holder has a flat surface, the contact area between the cathode plate and the battery can can be increased. There is an advantage that sufficient conductivity can be obtained between the battery can and the active material holder without providing a layer.

請求項4の発明によれば、活物質保持体の電池缶と接触
する部分を非透水性、耐アルカリ性及び絶縁性を有する
樹脂層で覆うので、活物質保持体からの水素の発生を防
止できる利点がある。
According to the invention of claim 4, since the portion of the active material holder that comes into contact with the battery can is covered with a resin layer having water impermeability, alkali resistance, and insulation, generation of hydrogen from the active material holder can be prevented. There are advantages.

請求項5の発明によれば、陰極板の接触部分以外の表面
をカーボンを含む導電被覆層によって覆うので、充電が
陰極板の極板表面から進行し、酸素ガス吸収性能が向上
して、水素ガスが発生しにくくなる利点がある。
According to the invention of claim 5, since the surface of the cathode plate other than the contact portion is covered with a conductive coating layer containing carbon, charging proceeds from the surface of the cathode plate, improving oxygen gas absorption performance and hydrogen gas absorption. This has the advantage that gas is less likely to be generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)はそれぞれ本発明の実施例で用い
る陰極板の概略断面図であり、第2図は従来の電池で用
いられている陰極板の概略断面図であり、第3図は各試
験用電池の充電特性を表した図である 1、10・・・活物質保持体、2・・・活物質層、3,
30・・・接触部、4・・・絶縁性テープ、5・・・カ
ーボンブラック層、6・・・カーボン層。 代理人  弁理士  松 本 英 俊・′(外1名)2
− 第1図 (b) (C) 第2図
1(a) to 1(d) are schematic cross-sectional views of cathode plates used in embodiments of the present invention, and FIG. 2 is a schematic cross-sectional view of cathode plates used in conventional batteries. Figure 3 is a diagram showing the charging characteristics of each test battery. 1, 10... Active material holder, 2... Active material layer, 3,
30... Contact portion, 4... Insulating tape, 5... Carbon black layer, 6... Carbon layer. Agent: Patent attorney Hidetoshi Matsumoto (1 other person) 2
- Figure 1 (b) (C) Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)活物質保持体に活物質が保持されてなるペースト
式極板を用いて構成された極板群を陰極板の一部が電池
缶の内側壁に接触するように前記電池缶内に配置してな
るアルカリ蓄電池において、前記陰極板の前記電池缶に
接触する接触部分には活物質が存在しないことを特徴と
するアルカリ蓄電池。
(1) Place an electrode plate group made up of paste-type electrode plates in which active material is held on an active material holder into the battery can so that a part of the cathode plate contacts the inner wall of the battery can. 1. An alkaline storage battery characterized in that an active material is not present in a contact portion of the cathode plate that contacts the battery can.
(2)前記活物質保持体が多孔金属板からなる場合に、
前記陰極板の前記接触部分の表面がカーボンを含む導電
層によって覆われている請求項1に記載のアルカリ蓄電
池。
(2) When the active material holder is made of a porous metal plate,
The alkaline storage battery according to claim 1, wherein the surface of the contact portion of the cathode plate is covered with a conductive layer containing carbon.
(3)前記活物質保持体の前記接触部分を構成する部分
は、平らな表面を有している請求項1に記載のアルカリ
蓄電池。
(3) The alkaline storage battery according to claim 1, wherein a portion of the active material holder that constitutes the contact portion has a flat surface.
(4)前記陰極板の前記接触部分は、非透水性、耐アル
カリ性を有する絶縁性樹脂層によって被覆されている請
求項1に記載のアルカリ蓄電池。
(4) The alkaline storage battery according to claim 1, wherein the contact portion of the cathode plate is coated with an insulating resin layer having water impermeability and alkali resistance.
(5)前記陰極板のその他の表面部分はカーボンを含む
導電被覆層によって覆われている請求項1、2、3また
は4に記載のアルカリ蓄電池。
(5) The alkaline storage battery according to claim 1, wherein the other surface portion of the cathode plate is covered with a conductive coating layer containing carbon.
JP2294498A 1990-10-31 1990-10-31 Alkali storage battery Pending JPH04169058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2294498A JPH04169058A (en) 1990-10-31 1990-10-31 Alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2294498A JPH04169058A (en) 1990-10-31 1990-10-31 Alkali storage battery

Publications (1)

Publication Number Publication Date
JPH04169058A true JPH04169058A (en) 1992-06-17

Family

ID=17808548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2294498A Pending JPH04169058A (en) 1990-10-31 1990-10-31 Alkali storage battery

Country Status (1)

Country Link
JP (1) JPH04169058A (en)

Similar Documents

Publication Publication Date Title
EP2472641A1 (en) Nickel-zinc battery and manufacturing method thereof
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3387158B2 (en) Zinc plate
JP5655808B2 (en) Cylindrical alkaline storage battery
JPH05303978A (en) Sealed nickel-zinc battery
JP3515286B2 (en) Electrodes for secondary batteries
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
US6534215B1 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing thereof
KR100943751B1 (en) Nickel-metal hydride secondary battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP2008186658A (en) Nickel-hydrogen secondary battery
JPH04169058A (en) Alkali storage battery
JP2001196090A (en) Alkaline battery
US5955216A (en) Sealed alkaline storage battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JPH10125351A (en) Nickel-cadmium storage battery and its manufacture
JPH0234434B2 (en)
JP2020061223A (en) Method of manufacturing nickel metal hydride storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPH071733Y2 (en) Zinc electrode for alkaline zinc storage battery
JPH043403Y2 (en)
JPS5931178B2 (en) alkaline storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery