JPH04164378A - Manufacture of laminated ceramic electrostrictive element - Google Patents

Manufacture of laminated ceramic electrostrictive element

Info

Publication number
JPH04164378A
JPH04164378A JP2291571A JP29157190A JPH04164378A JP H04164378 A JPH04164378 A JP H04164378A JP 2291571 A JP2291571 A JP 2291571A JP 29157190 A JP29157190 A JP 29157190A JP H04164378 A JPH04164378 A JP H04164378A
Authority
JP
Japan
Prior art keywords
sintered body
glass powder
electrode
laminated ceramic
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2291571A
Other languages
Japanese (ja)
Inventor
Tadashi Okazaki
正 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2291571A priority Critical patent/JPH04164378A/en
Publication of JPH04164378A publication Critical patent/JPH04164378A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform electrophoresis to a laminated ceramic sintered body without forming any tentative electrode so that an electrolyte can be prevented front the contamination by the glass powder of the tentative electrode by using a jig for electrophoresis having electrode surfaces composed of numberless elastic recessing and projecting sections. CONSTITUTION:After a laminated ceramic sintered body 3 is set on a jig for electrophoresis having electrode surfaces composed of countless spring-like recessing and projecting sections, zinc passivation glass powder is electrodeposited on the sintered body 3 by dipping the sintered body 3 in an electrolyte 7 prepared by suspending the glass power in ethanol and connecting the sintered body 3 so that a positive voltage can be applied across the internal electrode side on which the glass powder is not electrodeposited. Then a glass insulating layer 14 is formed by baking the electrodeposited glass powder. After the insulating layer 14 is formed, an external electrode 15 is formed by printing conductive paste perpendicularly to the layer 14 and baking the past. Finally, laminated ceramic electrostrictive elements 16 are manufactured by slicing the laminated ceramic sintered body in the direction perpendicular to the insulating layer 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層セラミック電歪素子の製造方法に関し、特
にガラス絶縁層の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a multilayer ceramic electrostrictive element, and particularly to a method for forming a glass insulating layer.

〔従来の技術〕[Conventional technology]

従来の積層セラミック電歪素子は、シート状の圧電セラ
ミック部材と内部電極導体とを交互に重ね合わせて高温
下で加圧して作られた積層体を焼成して積層セラミック
焼結体とし、その内部電極が一層おきに露出している端
面に銀ペーストを塗布し、焼付けて第8図に示すように
仮電極20を形成する。この積層セラミック19を第9
図に示す2点で接触する電極面を持つ電泳用治具にセッ
トした後、第4図に示すガラス粉末を分散させたヨウ素
のアルコール溶液中に浸漬し、電気泳動により積層セラ
ミック焼結体の内部電極が全層露出している端面におい
て内部電極に一層おきにガラス粉末を電着し、焼付けて
絶縁層を形成し、内部電極導体の端面が一層おきに露出
する一対の側面にそれぞれ電極を形成して内部電極導体
を一層おきに電気的に接続して二つのくし歯形電極を構
成することにより製造していた。
Conventional laminated ceramic electrostrictive elements are made by laminating sheet-like piezoelectric ceramic members and internal electrode conductors alternately and pressurizing them at high temperatures, then firing the laminated body to create a laminated ceramic sintered body. Silver paste is applied to the exposed end face of every other electrode layer and baked to form a temporary electrode 20 as shown in FIG. This laminated ceramic 19 is
After setting it in an electrophoresis jig with electrode surfaces that make contact at two points as shown in the figure, the laminated ceramic sintered body is immersed in an alcoholic solution of iodine in which the glass powder shown in Figure 4 is dispersed. Glass powder is electrodeposited on the internal electrode every other layer on the end face where the internal electrode is exposed in its entirety, and baked to form an insulating layer, and electrodes are placed on each of the pair of side faces where the end face of the internal electrode conductor is exposed every other layer. It was manufactured by forming two comb-shaped electrodes by electrically connecting internal electrode conductors every other layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の積層セラミック電歪素子の製造方法では
、仮電極を形成した積層セラミック焼結体をガラス粉末
の電解液中に浸漬してガラス絶縁層を形成する工程にお
いて、仮電極がガラス粉末の電解液中に溶は出して汚染
するためガラスの電着状態及びガラスの絶縁性が悪くな
り、積層セラミック電歪素子のガラス層部での放電不良
が発生しやすくなるという欠点がある。
In the above-described conventional method for manufacturing a multilayer ceramic electrostrictive element, in the step of immersing a multilayer ceramic sintered body on which a temporary electrode has been formed into an electrolytic solution of glass powder to form a glass insulating layer, the temporary electrode is formed of glass powder. Since the solution leaks out into the electrolytic solution and contaminates it, the electrodeposition state of the glass and the insulation properties of the glass deteriorate, and there is a drawback that discharge failures are likely to occur in the glass layer portion of the multilayer ceramic electrostrictive element.

本発明の目的は、内部電極導体の端面に一層おきに絶縁
層の形成において、仮電極が電解液に溶出することによ
る電解液の汚染がなく、ガラス粉末の電着状態が改善さ
れ絶縁層の絶縁性が向上し、かつ仮電極の形成をなくし
工程を簡略化でき製品のコストダウンができる積層セラ
ミック電歪素子の製造方法を提供することにある。
An object of the present invention is to prevent contamination of the electrolyte due to elution of temporary electrodes into the electrolyte when forming an insulating layer every other layer on the end face of an internal electrode conductor, improve the state of electrodeposition of glass powder, and improve the electrodeposition of the insulating layer. It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electrostrictive element that has improved insulation properties, eliminates the formation of temporary electrodes, simplifies the process, and reduces the cost of the product.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の積層セラミック電歪素子の製造方法は、シート
状の圧電セラミック部材と内部電極導体とが交互に積み
重ねられた積層セラミック焼結体を形成する工程と、前
記形成された焼結体の対向する一対の側面にそれぞれ露
出する内部電極導体の一方の端面に交互にガラス粉末を
電着する工程と、前記電着されたガラス粉末を焼付けて
一つの端面において一層おきに内部電極端面を絶縁する
絶縁層を形成する工程と、前記一対の側面に露出する内
部電極導体の端面をそれぞれ電気的に接続して二つσく
し歯形電極を形成する工程とを有する積層セラミック電
歪素子の製造方法において、前記ガラス粉末の電着が無
数の弾力性の凹凸面を持った電極面を有する電泳用治具
に積層セラミック焼結体をセットして行うことを特徴と
して構成される。
The method for manufacturing a laminated ceramic electrostrictive element of the present invention includes a step of forming a laminated ceramic sintered body in which sheet-shaped piezoelectric ceramic members and internal electrode conductors are alternately stacked, and a step of forming a laminated ceramic sintered body in which sheet-shaped piezoelectric ceramic members and internal electrode conductors are alternately stacked; a step of electrodepositing glass powder alternately on one end surface of the internal electrode conductor exposed on a pair of side surfaces, and baking the electrodeposited glass powder to insulate the end surface of the internal electrode every other layer on one end surface; A method for manufacturing a multilayer ceramic electrostrictive element, comprising: forming an insulating layer; and electrically connecting end surfaces of internal electrode conductors exposed on the pair of side surfaces to form two σ comb-shaped electrodes. , the electrodeposition of the glass powder is carried out by setting the laminated ceramic sintered body in an electrophoresis jig having an electrode surface with innumerable elastic uneven surfaces.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述したように従来の積層セラミック電歪素子の製造方
法で積層セラミック焼結体に電泳用の仮電極を形成した
後に、2点で接触する電極面を持つ電泳用治具にセット
してガラス粉末を電着していたのに対して、本発明は電
極面に無数の弾力性の凹凸面を持った電泳用治具を使用
することによって、積層セラミック焼結体に仮電極を形
成する必要がなくなり、ガラス粉末を電着させるに際し
て電解液の汚染が防止でき、ガラスの電着状態及びガラ
スの絶縁性が改善するという相違点を有する。
As described above, after forming a temporary electrode for electrophoresis on a multilayer ceramic sintered body using the conventional manufacturing method for a multilayer ceramic electrostrictive element, it is set in an electrophoresis jig having an electrode surface that contacts at two points, and a glass powder is placed on the multilayer ceramic sintered body. In contrast, in the present invention, it is necessary to form temporary electrodes on the laminated ceramic sintered body by using an electrophoresis jig with countless elastic uneven surfaces on the electrode surface. The difference is that contamination of the electrolytic solution can be prevented when the glass powder is electrodeposited, and the electrodeposition state of the glass and the insulation properties of the glass are improved.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第2図は本発明の一実施例を説明するための積層体の積
層構造を示す分解斜視図である。
FIG. 2 is an exploded perspective view showing the laminated structure of a laminated body for explaining one embodiment of the present invention.

第2図に示すように、厚さ135μmの圧電体シート1
の片側の表面に一部帯状の部分を残し導電性ペーストを
印刷することによって内部電極導体2を形成した圧電体
シー)1aを作成し、内部電極を形成していない圧電体
シート1を9枚配置した上に内部電極付圧電体シー)1
aを配置し、さらにその上に内部電極を形成していない
帯状の部分が反対側の端面に位置するように内部電極付
圧電体シー)1aを配置して、合計64枚の内部電極付
圧電体シー)1aを積層する。さらにその上に圧電体シ
ート1を10枚積層する。この積層体を圧力290kg
/cd、温度110℃9時間70分の条件で熱圧着した
後、最高保持温度1120℃、保持時間2時間の条件で
焼結して第3図の如く積層セラミック焼結体3を作製す
る。この積層セラミック焼結体3を第1図に示νたよう
な表面に無数のバネ状の凹凸のある電極面を有した電泳
用治具にセットした後、第4図に示した亜鉛系パシベー
ションガラス粉末をエタノールに懸濁したガラス粉末の
電解液7に浸漬しガラス粉末を電着させない内部電極側
に正電圧を印加するように接続して直流電源8を40v
、直流電源9を20V印加して70秒間電着する。
As shown in FIG. 2, a piezoelectric sheet 1 with a thickness of 135 μm
A piezoelectric sheet (1a) with internal electrode conductors 2 formed thereon was created by printing a conductive paste on one side of the surface, leaving a part of the band-shaped part, and nine piezoelectric sheets 1 on which no internal electrodes were formed. Piezoelectric sheet with internal electrodes placed on top) 1
a, and further arrange piezoelectric sheets with internal electrodes 1a so that the strip-shaped part on which no internal electrodes are formed is located on the opposite end surface, resulting in a total of 64 piezoelectric sheets with internal electrodes. 1a is laminated. Furthermore, ten piezoelectric sheets 1 are laminated thereon. The pressure of this laminate is 290 kg.
/cd for 9 hours and 70 minutes at a temperature of 110° C., and then sintered at a maximum holding temperature of 1120° C. and a holding time of 2 hours to produce a multilayer ceramic sintered body 3 as shown in FIG. After setting this laminated ceramic sintered body 3 in an electrophoresis jig having an electrode surface with numerous spring-like irregularities on the surface as shown in FIG. Glass powder is immersed in an electrolytic solution 7 of glass powder suspended in ethanol, and a DC power source 8 of 40 V is connected to apply a positive voltage to the internal electrode side that does not electrodeposit the glass powder.
, DC power source 9 is applied for 20V and electrodeposition is performed for 70 seconds.

電着したガラス粉末を最高保持温度620℃。The maximum holding temperature for electrodeposited glass powder is 620℃.

保持時間30分の条件で焼付けて5図の如くガラス絶縁
層14を形成する。
The glass insulating layer 14 is formed by baking for a holding time of 30 minutes as shown in FIG.

次にガラス絶縁層14に直交して導電ペーストを印刷し
て最高保持温度590℃、保持時間10分の条件で焼成
し、外部電極15を形成して積層セラミック焼結体13
を作製する。
Next, a conductive paste is printed orthogonally to the glass insulating layer 14 and fired at a maximum holding temperature of 590°C and a holding time of 10 minutes to form external electrodes 15 and to form the multilayer ceramic sintered body 13.
Create.

続いて第6図に示す如くこの積層セラミック焼結体13
を素子幅に合せてガラス絶縁層14に垂直な方向(XI
  X2方向)に切断して積層セラミック電歪素子16
を製造する。
Subsequently, as shown in FIG. 6, this laminated ceramic sintered body 13
in the direction perpendicular to the glass insulating layer 14 (XI
The multilayer ceramic electrostrictive element 16 is cut in the X2 direction).
Manufacture.

本実施例で製造した積層セラミック電歪素子16の特性
を従来の積層セラミック電歪素子の特性と比較するため
に形状2X3X10mm、内部電極数64層の積層セラ
ミック電歪素子100個を作製し、歪量の測定及びDC
250V、30分間印加するスクリーニング試験を行っ
た。
In order to compare the characteristics of the multilayer ceramic electrostrictive element 16 manufactured in this example with the characteristics of a conventional multilayer ceramic electrostrictive element, 100 multilayer ceramic electrostrictive elements having a shape of 2 x 3 x 10 mm and 64 internal electrode layers were fabricated. Quantity measurement and DC
A screening test was conducted in which 250V was applied for 30 minutes.

表1に従来例と対比して本実施例の特性を示した。Table 1 shows the characteristics of this example in comparison with the conventional example.

表1に示したように150v印加した際の歪量は、8.
5μmであり、従来例と同等の性能を有している。また
、スクリーニング試験においてガラス絶縁層部での放電
不良発生率は0%であり、従来例に比べてガラス絶縁層
の質が改善されている。
As shown in Table 1, the amount of distortion when 150V was applied was 8.
5 μm, and has the same performance as the conventional example. Furthermore, in the screening test, the discharge defect occurrence rate in the glass insulating layer portion was 0%, and the quality of the glass insulating layer was improved compared to the conventional example.

表   1 次に実施例2について説明する。本実施例において実施
例1と異なる点は、無数の針状の電極面を持つ電泳用治
具18(第7図)を用いることであり、この点について
のみ記す。実施例1と同様に積層セラミック焼結体3 
(第2図)を作製する。
Table 1 Next, Example 2 will be explained. This example differs from Example 1 in that an electrophoresis jig 18 (FIG. 7) having numerous needle-like electrode surfaces is used, and only this point will be described. As in Example 1, the laminated ceramic sintered body 3
(Fig. 2) is prepared.

この積層セラミック焼結体3を無数の針状の電極面を有
した電泳用治具18(第7図)にセットした後、第4図
に示した亜鉛系パシベーションガラス粉末をエタノール
に懸濁したガラス粉末の電解液7に浸漬し、ガラス粉末
を電着させない内部電極側に正電圧を印加するように接
続して直流電源8を40v、直流電源9を20V印加し
て70秒間電着する。
After setting this laminated ceramic sintered body 3 in an electrophoresis jig 18 (Fig. 7) having numerous needle-shaped electrode surfaces, the zinc-based passivation glass powder shown in Fig. 4 was suspended in ethanol. The glass powder is immersed in an electrolytic solution 7, connected to apply a positive voltage to the internal electrode side on which the glass powder is not electrodeposited, and electrodeposited for 70 seconds by applying 40 V to the DC power source 8 and 20 V to the DC power source 9.

電着したガラス粉末を最高保持温度620℃。The maximum holding temperature for electrodeposited glass powder is 620℃.

保持時間30分の条件で焼付けて第5図の如くガラス絶
縁層14を形成して積層セラミック電歪素子を製造する
The glass insulating layer 14 is formed as shown in FIG. 5 by baking under conditions of a holding time of 30 minutes to produce a multilayer ceramic electrostrictive element.

本実施例で製造した積層セラミック電歪素子の特性を従
来の積層セラミック電歪素子の特性と比較するために形
状2X3X10mm、内部電極数64層の積層セラミッ
ク電歪素子100個を作製し、歪量の測定及びDC25
0V、30分間印加するスクリーニング試験を行った。
In order to compare the characteristics of the multilayer ceramic electrostrictive element manufactured in this example with the characteristics of a conventional multilayer ceramic electrostrictive element, 100 multilayer ceramic electrostrictive elements with a shape of 2 x 3 x 10 mm and 64 internal electrode layers were fabricated, and the amount of strain was measurement and DC25
A screening test was conducted in which 0V was applied for 30 minutes.

その結果は、表2に示したように150v印加した際の
歪量は8.5μmであり、従来例と同等の性能を有して
いる。また、スクリーニング試験においてガラス絶縁層
部での放電不良発生率は0%であり、従来例に比べてガ
ラス絶縁層の質が改善されている。
As a result, as shown in Table 2, the amount of distortion when 150V was applied was 8.5 μm, and the performance was equivalent to that of the conventional example. Furthermore, in the screening test, the discharge defect occurrence rate in the glass insulating layer portion was 0%, and the quality of the glass insulating layer was improved compared to the conventional example.

表   2 〔発明の効果〕 以上説明したように本発明は、無数の弾力性の凹凸面を
持った電極面を有する電泳用治具を使用することによっ
て、積層セラミック焼結体に仮電極を形成しないで、電
泳ができるため、仮電極によるカラス粉末の電解液の汚
染がなくなり、ガラス絶縁層の絶縁性が向上する効果が
ある。また同様の理由で仮電極を塗布し、焼付ける工程
がなくなるためコストダウンの効果がある。
Table 2 [Effects of the Invention] As explained above, the present invention is capable of forming temporary electrodes on a laminated ceramic sintered body by using an electrophoresis jig having an electrode surface with countless elastic uneven surfaces. Since electrophoresis can be carried out without the need for electrophoresis, there is no contamination of the electrolytic solution of the glass powder by the temporary electrodes, which has the effect of improving the insulation properties of the glass insulating layer. Furthermore, for the same reason, there is no need for the process of applying and baking temporary electrodes, which has the effect of reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に使用した電泳用治具の斜視
図、第2図は本発明による積層セラミック電歪素子の製
造方法の一実施例の内部電極導体と積層構造を示す分解
斜視図、第3図は第2図の圧電体シート1及び内部電極
導体付圧電体シート1aを積層した積層セラミック焼結
体の斜視図、第4図は積層セラミック焼結体のガラス粉
末電着工程の模式図、第5図は第2図の積層セラミック
焼結体にガラス絶縁層及び外部電極が形成された状態を
示す斜視図、第6図は本発明により製造した積層セラミ
ック電歪素子の斜視図、第7図は本発明の実施例2に使
用した電泳用治具の斜視図、第8図は従来の積層セラミ
ック電歪素子の製造汚染において仮電極を形成した積層
セラミック焼結体の斜視図、第9図は従来の製造方法に
使用した電泳用治具の斜視図である。 ■・・・・・・圧電体シート、Ia・・・・・・内部電
極導体付圧電体シート、2・・・・・・内部電極導体、
3,13゜19・・・・・・積層セラミック焼結体、4
,18.21・・・・・・電泳用治具、5,17.22
・・・・・・電極面、6・・・・・・リード線、7・・
・・・・ガラス粉末の電解液、8,9・・・・・・直流
電源、10・・・・・・対向電極、11・・・・・・か
くはん子、12・・・・・・マグネティックスターラー
、14・・・・・・ガラス絶縁層、15・・・・・・外
部電極、16・・・・・・積層セラミック圧電素子、2
0・・・・・・仮電極。 代理人 弁理士  内 原   晋 第7 図 第5図 第7図
FIG. 1 is a perspective view of an electrophoresis jig used in Example 1 of the present invention, and FIG. 2 is an exploded view showing the internal electrode conductor and laminated structure of an example of the method for manufacturing a multilayer ceramic electrostrictive element according to the present invention. 3 is a perspective view of a laminated ceramic sintered body in which the piezoelectric sheet 1 of FIG. 2 and the piezoelectric sheet 1a with internal electrode conductors are laminated, and FIG. 4 is a perspective view of the glass powder electrodeposition of the laminated ceramic sintered body. A schematic diagram of the process, FIG. 5 is a perspective view showing a state in which a glass insulating layer and an external electrode are formed on the multilayer ceramic sintered body of FIG. 2, and FIG. 6 is a diagram of a multilayer ceramic electrostrictive element manufactured according to the present invention. FIG. 7 is a perspective view of an electrophoresis jig used in Example 2 of the present invention, and FIG. 8 is a perspective view of a laminated ceramic sintered body on which temporary electrodes were formed in the contamination of manufacturing of a conventional laminated ceramic electrostrictive element. FIG. 9 is a perspective view of an electrophoresis jig used in the conventional manufacturing method. ■...Piezoelectric sheet, Ia...Piezoelectric sheet with internal electrode conductor, 2...Internal electrode conductor,
3,13゜19... Multilayer ceramic sintered body, 4
, 18.21... Electrophoresis jig, 5, 17.22
... Electrode surface, 6 ... Lead wire, 7 ...
...Glass powder electrolyte, 8,9...DC power supply, 10...Counter electrode, 11...Stirrer, 12...Magnetic Stirrer, 14... Glass insulating layer, 15... External electrode, 16... Multilayer ceramic piezoelectric element, 2
0...Temporary electrode. Agent Patent Attorney Susumu Uchihara Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims]  シート状の圧電セラミック部材と内部電極導体とが交
互に積み重ねられた積層セラミック焼結体を形成する工
程と、前記形成された焼結体の対向する一対の側面にそ
れぞれ露出する内部電極導体の一方の端面に交互にガラ
ス粉末を電着する工程と、前記電着されたガラス粉末を
焼付けて一つの端面において一層おきに内部電極端面を
絶縁する絶縁層を形成する工程と、前記一対の側面に露
出する内部電極導体の端面をそれぞれ電気的に接続して
二つのくし歯形電極を形成する工程とを有する積層セラ
ミック電歪素子の製造方法において、前記ガラス粉末の
電着が無数の弾力性の凹凸面を持った電極面を有する電
泳用治具に積層セラミック焼結体をセットして行うこと
を特徴とする積層セラミック電歪素子の製造方法。
A step of forming a multilayer ceramic sintered body in which sheet-like piezoelectric ceramic members and internal electrode conductors are stacked alternately, and one of the internal electrode conductors exposed on a pair of opposing sides of the formed sintered body, respectively. a step of electrodepositing glass powder alternately on the end faces of the electrode; a step of baking the electrodeposited glass powder to form an insulating layer that insulates the end faces of the internal electrodes every other layer on one end face; In the method for manufacturing a multilayer ceramic electrostrictive element, the method includes the step of electrically connecting the exposed end surfaces of the internal electrode conductors to form two comb-shaped electrodes, wherein the electrodeposition of the glass powder is applied to a surface of a countless elastic unevenness. 1. A method for manufacturing a multilayer ceramic electrostrictive element, the method comprising setting a multilayer ceramic sintered body in an electrophoresis jig having a flat electrode surface.
JP2291571A 1990-10-29 1990-10-29 Manufacture of laminated ceramic electrostrictive element Pending JPH04164378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291571A JPH04164378A (en) 1990-10-29 1990-10-29 Manufacture of laminated ceramic electrostrictive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291571A JPH04164378A (en) 1990-10-29 1990-10-29 Manufacture of laminated ceramic electrostrictive element

Publications (1)

Publication Number Publication Date
JPH04164378A true JPH04164378A (en) 1992-06-10

Family

ID=17770649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291571A Pending JPH04164378A (en) 1990-10-29 1990-10-29 Manufacture of laminated ceramic electrostrictive element

Country Status (1)

Country Link
JP (1) JPH04164378A (en)

Similar Documents

Publication Publication Date Title
JP2006351602A (en) Multilayer piezoelectric actuator device
JPS59175176A (en) Manufacture of electrostrictive effect element
JPS63153870A (en) Electrostrictive effect element
JPH04164378A (en) Manufacture of laminated ceramic electrostrictive element
JPH10290031A (en) Laminated-type piezo-electric actuator and manufacture thereof
JPS6132835B2 (en)
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
JP3104311B2 (en) Manufacturing method of laminated piezoelectric actuator
JP2748830B2 (en) Multilayer electrostrictive effect element
JPH0387077A (en) Manufacture of laminated ceramic electrostrictive element
JPH0256829B2 (en)
JPS60178678A (en) Manufacture of electronic component of ceramic lamination
JPH04369277A (en) Multilayer piezoelectric actuator
JPH03194980A (en) Manufacture of laminated ceramic electrostrictive element
JPH09148638A (en) Multilayered piezoelectric actuator and its manufacture
JPH01300577A (en) Manufacture of piezoelectric element
JPH0923030A (en) Manufacture of laminated piezoelectric element
JP4106243B2 (en) Manufacturing method of gas sensor
JP2536101B2 (en) Electrostrictive effect element
JPH04206786A (en) Piezoelectric actuator
JPH02164085A (en) Electrostriction effect element
JPH06112546A (en) Multilayer piezoelectric element and its manufacture
JPS6318352B2 (en)
JPH02164082A (en) Electrostriction effect element
JPH0599890A (en) Limiting-current type oxygen sensor