JPH04163973A - Variable color light emitting diode - Google Patents

Variable color light emitting diode

Info

Publication number
JPH04163973A
JPH04163973A JP2290055A JP29005590A JPH04163973A JP H04163973 A JPH04163973 A JP H04163973A JP 2290055 A JP2290055 A JP 2290055A JP 29005590 A JP29005590 A JP 29005590A JP H04163973 A JPH04163973 A JP H04163973A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
layer
carrier concentration
diode chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2290055A
Other languages
Japanese (ja)
Inventor
Katsuhide Manabe
勝英 真部
Masahiro Kotaki
正宏 小滝
Shiro Yamazaki
史郎 山崎
Masaki Mori
正樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Research Development Corp of Japan
Priority to JP2290055A priority Critical patent/JPH04163973A/en
Publication of JPH04163973A publication Critical patent/JPH04163973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To realize a variable color including blue in primary colors by integrating two light emitting diode chips having different light emitting colors, and regulating a voltage to be applied between electrodes of both diode chips. CONSTITUTION:A first light emitting diode chip 10 formed of an i-type layer, a low carrier concentration n-type layer, and a high carrier concentration n<+> type layer formed of gallium nitride compound semiconductor emits blue color having high emitting luminance. A second light emitting diode chip 36 emits color except blue. A lead frame has three lands, and electrodes of the chip 10 are die bonded to first, second lands 43, 33. First electrode of the chip 36 is bump-bonded to the land 33 or 43, and second electrode is connected to a land 351 via a gold wire 37. Voltages to be applied to the lead members 41, 31, 35 of both the chips are regulated. Thus, blue light emitting luminance is improved, it can be mixed with read to control emitting light color in a wide range.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、発光色を可変できる発光ダイオードに関する
The present invention relates to a light emitting diode that can change the color of its emitted light.

【従来技術】[Prior art]

従来、発光ダイオード(以下rLEDJという)は一対
のリードフレームの一方に発光ダイオードチップをボン
ディングし、上部電極ともう一方のリードフレームとを
Auなどのワイヤで接続後、樹脂成形したものが知られ
ている。
Conventionally, light-emitting diodes (hereinafter referred to as rLEDJs) have been known to be made by bonding a light-emitting diode chip to one of a pair of lead frames, connecting the upper electrode to the other lead frame with a wire such as Au, and then molding the chip with resin. There is.

【発明が解決しようとする課!!】[The problem that the invention tries to solve! ! ]

しかし、従来は、高輝度の青色の発光ダイオードが得ら
れないことから、青色を1つの原色として変化させる可
変色発光ダイオードは知られていない。 本発明は、青色を原色に含む可変色発光グイオ−ドを提
供することを目的とする。 本発明は、本発明者らにより、窒化ガリウム系化合物半
導体から成るi層とn層の接合型の発光ダイオードチッ
プにおいて、n層を低キャリア濃度n層と高キャリア濃
度n“層との二重層構造としたことで、(従来は、i層
(半絶縁層)と単層のn層との接合であった。)青色の
発光光度を著しく向上させることができた。この高輝度
化により、その青色を1つの原色として他の発光と混合
させて、高範囲の可変色制御が可能となった。
However, since a high-intensity blue light-emitting diode cannot be obtained conventionally, a variable color light-emitting diode that changes blue as one primary color is not known. An object of the present invention is to provide a variable color light emitting diode containing blue as a primary color. The present invention has been developed by the present inventors to provide an i-layer and n-layer junction type light emitting diode chip made of a gallium nitride-based compound semiconductor, in which the n-layer is a double layer consisting of a low carrier concentration n-layer and a high carrier concentration n'' layer. By adopting this structure, we were able to significantly improve the luminous intensity of blue light (conventionally, it was a junction between an I layer (semi-insulating layer) and a single N layer).With this increase in brightness, By using the blue color as a primary color and mixing it with other emitted light, a wide range of variable color control is now possible.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための発明の構成は、窒化ガリウム
系化合物半導体(AlXGal−、N;X=Oを含む)
からなり、j型のi層と、i層に接合する低キャリア濃
度n層と、低キャリア濃度n層に接合する高キャリア濃
度n“層とを有し、高キャリア濃度n1層及びi層の電
極が同一面上に形成された第1の発光ダイオードチップ
と、第1の発光ダイオードチップと異なる発光色を有す
る第2の発光ダイオードチップと、第1の発光ダイオー
ドチップの両電極が接合される離間して形成された第1
及び第2のランドを有し、その一方のランドは第2の発
光ダイオードチップの1つの電極が接合されており、そ
のランドと離間して形成され、第2の発光ダイオードチ
ップの他の電極がリード接続される第3のランドを有す
るリードフレームとを設けたことである。
The structure of the invention for solving the above problems is a gallium nitride-based compound semiconductor (AlXGal-, N; including X=O)
It has a j-type i layer, a low carrier concentration n layer that is connected to the i layer, and a high carrier concentration n'' layer that is connected to the low carrier concentration n layer, and has a high carrier concentration n1 layer and an i layer. A first light emitting diode chip having electrodes formed on the same surface, a second light emitting diode chip having a different emission color from the first light emitting diode chip, and both electrodes of the first light emitting diode chip are joined. The first spaced apart
and a second land, one of the lands is connected to one electrode of the second light emitting diode chip, is formed apart from the land, and the other electrode of the second light emitting diode chip is connected to the land. A lead frame having a third land to which the lead is connected is provided.

【作用及び発明の効果】[Action and effect of the invention]

窒化ガリウム系化合物半導体で形成されたj層、低キャ
リア濃度n層、高キャリア濃度n4層とから成る第1の
発光ダイオードチップは発光輝度の高い青色を発光する
。 即ち、高キャリア濃度n“層によりn層全体の電気抵抗
を小さくでき、発光ダイオードチップの直列抵抗が下が
り、発光ダイオードチップの発熱を抑えることができる
。又、i層に接合するn層は低キャリア濃度とすること
、つまり GaNを高純度化して発光領域(j層及びそ
の近傍)の青色発光を抑制する欠陥や不純物原子濃度を
抑えることができる。以上の作用により青色の発光強度
が向上した。 又、第2の発光ダイオードチップは、青色以外の色を発
光する。又、リードフレームは3つのランドを有しおり
、第1及び第2のランドに対して第1の発光ダイオード
チップの電極がダイボンディングされる。又、第1又は
第2のランドに第2の発光ダイオードチップの第1の電
極がバンブ接合されてふり、第2の発光ダイオードチッ
プの第2の電極は9J30ランドとリード接続されてい
る。 このような構成により、発光色の異なる2つの発光ダイ
オードチップを集積することができ、両売光ダイオード
チップの電極間の印加電圧を調整することで、発光色を
可変することができる。特に、第1の発光ダイオードチ
ップにおいて、n層を高キャリア濃度n1層と低キャリ
ア濃度n層との二重層構造とすることにより、青色の発
光輝度を向上させることが出来たので、高輝度の可変色
ダイオードを作成することができた。 r実施例】 以下、本発明を具体的な実施例に基づいて説明する。 まず、第1の発光ダイオードチップ1oの構成について
説明する。 第1図において、発光ダイオードチップ1oは、サファ
イア基板1を有しており、そのサファイア基板1に50
0人のAINのバッファ層2が形成されている。そのバ
ッファ層、2の上には、順に、膜厚的2.2μmのGa
Nから成る高キャリア濃度n+層3と膜厚的1.5μm
のGaNから成る低キャリア濃度n層4が形成されてお
り、更に、低キャリア濃度n層4の上に膜厚的0.2μ
mのGaNから成る1層5が形成されている。そして、
1層5に接続するアルミニウムで形成された電極7と高
キャリア濃度n4層3に達するアルミニウムで形成され
た電極8とが形成されている。 次に、この構造の発光ダイオードチップ10の製造方法
について説明する。 上記発光ダイオードチップ10は、有機金属化合物気相
成長法(以下r14QVPB Jと記す)による気相成
長により製造された。 用いられたガスは、NH,とキャリアガスH3とトリメ
チルガリウム(Ga (Cll s) −) (以下r
TMG Jと記す)とトリメチルアルミニウム(AI 
(C1,) s) (以下rTMAJと記す)とシラン
(SiH,)とジエチル亜鉛(以下「口EZ Jと記す
)である。 まず、有機洗浄及び熱処理により洗浄したa面を主面と
する単結晶のサファイア基板1をMOVPE装置の反応
室に載置されたサセプタに装着する。 次に、常圧でH3を流速217分で反応室に流しながら
温度1100℃でサファイア基板1を気相エツチングし
た。 次に、温度を400℃まで低下させて、H3を21/分
、NH,を101/分、TMAをH3でバブリングして
1.8810−5モル/分で供給してAj2Nのバッフ
ァ層2が約500人の厚さに形成された。 次に、サファイア基板lの温度を1150℃に保持し、
H2を2011/分、NH,を101/分、TMGをH
2でバブリングして 1.7X 10−’モル/分、H
2で0.86PPmまで希釈したシラン(Sin、)を
200mj’ /分の割合で30分間供給し、膜厚的2
.2μm1キャリア濃度1、5X 10”/ co!の
GaNから成る高キャリア濃度n1層3を形成した。 続いて、サファイア基板1の温度を1150℃に保持し
、H2を201/分、NH,を101/分、TMG G
H。 でバブリングして1.7X10−’モル/分の割合で2
0分間供給し、膜厚的1.5μm1キャリア濃度lX1
0”/ Cl1lのGaNから成る・低キャリア濃度n
層4を形成した。 次に、サファイア基板1を900℃にして、H3を20
1/分、NH,を101/分、TMGをH2でバブリン
グして1.7X10−’モル/分、DEZをH3でバブ
リングして 1.5 Xl0−’モル/分の割合で2分
間供給して、膜厚0.04μmのGaNから成る1層5
を形成した。 このようにして、第2図に示すような多層構造が得られ
た。 次に、第3図に示すように、1層5の上に、スパッタリ
ングによりSi02層11を2000人の厚さに形成し
た。次に、そのSin2層11上にフォトレジスト12
を塗布して、フォトリソグラフにより、そのフォトレジ
スト12を高キャリア濃度n′″層3に対する電極形成
部位のフォトレジストを除去したパターンに形成した。 次に、第4図に示すように、フォトレジスト12によっ
て覆われていない5102層11をフッ酸系エツチング
液で除去した。 次に、第5図に示すように、フォトレジスト12及び5
層02層11によって覆われていない部位の1層5とそ
の下の低キャリア濃度n層4と高キャリア濃度n+層3
の上面一部を、真空度0.04Torr、高周波電力0
.44W/cd、 CCl2F!ガスを10m1/分の
割合で供給しドライエツチングした後引続き、Arでド
ライエツチングした。 次に、第6図に示すように、1層5上に残っているSi
n、層11をフッ酸で除去した。 次に、第7図に示すように、試料の上全面に、AI層1
3を蒸着により形成した。そして、そのA1層13の上
にフォトレジスト14を塗布して、フォトリソグラフに
より、そのフォトレジスト14が高キャリア濃度n3層
3及び1層5に対する電極部が残るように、所定形状に
パターン形成した。 次に、第7図に示すようにそのフォトレジスト14をマ
スクとして下層のAI層13の露出部を硝酸系エツチン
グ液でエツチングし、フォトレジスト14をアセトンで
除去し、高キャリア濃度n◆層3の電極8.1層5の電
極7を形成した。 このようにして、第1図に示すMIS (Metal−
1ns−ulator Sem1conductor)
構造の窒化ガリウム系発光素子を製造することができる
。 このようにして製造された発光ダイオードチップ100
発光強度を測定したところ、0.2+acdであった。 これは、単純にi層とキャリア濃度5X1017/ c
ffl、厚さ4μmのn層とを接続した従来の発光ダイ
オードに比べて、発光強度が4倍に向上した。 又、発光面を観察した所、発光点の数が増加しているこ
とも観察された。 尚、比較のために、低キャリア濃度n層4のキャリア濃
度を各種変化させた上記試料を製造して、発光強度及び
発光スペクトラムを測定した。その結果を、第8図に示
す。 キャリア濃度が増加するに連れて、発光強度が減少し、
且つ、発光波長が赤色側に変位することが分かる。この
ことは、ドーピング元素のシリコンが1層5に不純物元
素として拡散または混入するためであるき思われる。 次に、可変色発光ダイオード30について説明する。 第10図、第11図において、リードフレーム20は間
隔を隔てて並列に配設された正負一対の第1及び第2の
リード部材41.31、第3のリード部材35により構
成されている。 第1及び第2のリード部材41.31にはそれらの先端
部42.32に第1及び第2のランドを構成する平坦部
43.33が形成されており、その平坦部43.33に
続いて外側に傾斜した反射部44.34が一体的に形成
されている。又、第3のリード部材35の端面351は
第3のランドを構成している。 このようなリード部材41.31の平坦部(第1及び第
2のランド)43.33に、前述した第1の発光ダイオ
ードチップ10が架橋され、そのチップ10の電極7,
8が、それぞれ、平坦部43.33に対して導電性ペー
ストでバンプ接合されている。 又、第2の発光ダイオードチップ36は、第12図に示
すように、P−AIGaAs層361とn−Aji!G
aAs層・362とを有し、p−Ajl!GaAs層3
61とn−AjiGaAs層362の上層上62れぞれ
、金糸の電極363゜364が形成されている。 第2の発光ダイオードチップ36は、一方の面側にある
電極363は第2のリード部材31の平坦部(第2のラ
ンド)33に載置され、導電性銀ペーストによって接合
されている。又、他方の面側にある電極364は第3の
リード部材35の端面(第3のランド)351と金線3
7によりワイヤボンディングされている。 次に、第1の発光ダイオードチップ10と第2の発光ダ
イオードチップ36とが接合されたIJ −ドフレーム
20には、第9図に示すように、エポキシ樹脂等の透明
樹脂がポツティングされる。このポツティングによりレ
ンズ部材39が成形される。 このような配設状態において、第1のリード部材41、
第2のリード部材31、第3のリード部材35の順に、
低くなる電位を印加することで、第1の発光ダイオード
チップ10と第2の発光ダイオードチップ36は共に順
方向のバイアスが印加され、共に発光する。このとき可
変色発光ダイオード30は、全体として、赤紫色で発光
する。 又、第1のリード部材41と第2のリード部材310間
にのみ、正電圧を印加すると、$1の発光ダイオードチ
ップ10のみが発光し、この可変色発光ダイオード30
は青色で発光する。又、第2のリード部材31と第3の
リード部材35間にのみ、正電圧を印加すると、WJ2
の発光ダイオードチップ36のみが発光し、この可変色
発光ダイオード30は赤色で発光する。 又、各リード部材に印加する電圧の大きさを変化させる
ことで青、赤の間の混合色の発光が可能となる。 以上述べたように、n層を二重層構造とすることで、青
色発光の輝度を向上させることができたので、初めて、
赤色との混合が可能となり、高範囲の発光色の制御が可
能となった。 以上の実施例では、第2の発光ダイオードチップの発光
色は赤色とした・が、GaP等の緑色発光の発光ダイオ
ードチップを用いても良い。 又、上記の構造とすることで、2つの発光ダイオードチ
ップ10.36の表面から出た光に加えて、それら2つ
のチップの端面から出た光も第1のリード部材41.第
2のリード部材31に設けられた反射部44.34によ
り前方に反射されるので、発光効率を向上させることが
できる。
The first light emitting diode chip, which includes a J layer made of a gallium nitride compound semiconductor, a low carrier concentration n layer, and a high carrier concentration n4 layer, emits blue light with high luminance. In other words, the electrical resistance of the entire n-layer can be reduced by the high carrier concentration n'' layer, which reduces the series resistance of the light-emitting diode chip and suppresses the heat generation of the light-emitting diode chip. By increasing the carrier concentration, that is, by highly purifying GaN, it is possible to suppress the concentration of defects and impurity atoms that suppress blue light emission in the light emitting region (J layer and its vicinity).The above effects improve the blue light emission intensity. Further, the second light emitting diode chip emits light in a color other than blue.The lead frame has three lands, and the electrodes of the first light emitting diode chip are connected to the first and second lands. The first electrode of the second light emitting diode chip is bump-bonded to the first or second land, and the second electrode of the second light emitting diode chip is connected to the 9J30 land by a lead. With this configuration, two light emitting diode chips that emit light of different colors can be integrated, and the color of the emitted light can be varied by adjusting the voltage applied between the electrodes of both light emitting diode chips. In particular, in the first light emitting diode chip, by making the n-layer a double layer structure consisting of a high carrier concentration n1 layer and a low carrier concentration n layer, we were able to improve the blue luminance. A variable brightness color diode was able to be produced. r Examples The present invention will be described below based on specific examples. First, the configuration of the first light emitting diode chip 1o will be described. In the figure, a light emitting diode chip 1o has a sapphire substrate 1, and the sapphire substrate 1 has a
A buffer layer 2 of 0 AINs is formed. On the buffer layer 2, a Ga film having a thickness of 2.2 μm is sequentially formed.
High carrier concentration n+ layer 3 made of N and a film thickness of 1.5 μm
A low carrier concentration n layer 4 made of GaN is formed, and a film thickness of 0.2 μm is further formed on the low carrier concentration n layer 4.
One layer 5 made of m GaN is formed. and,
An electrode 7 made of aluminum that connects to the first layer 5 and an electrode 8 made of aluminum that reaches the high carrier concentration n4 layer 3 are formed. Next, a method for manufacturing the light emitting diode chip 10 having this structure will be described. The light emitting diode chip 10 was manufactured by vapor phase growth using an organometallic compound vapor phase growth method (hereinafter referred to as r14QVPB J). The gases used were NH, carrier gas H3, and trimethyl gallium (Ga (Cll s) -) (hereinafter r
TMG J) and trimethylaluminum (AI
(C1,) s) (hereinafter referred to as rTMAJ), silane (SiH, ), and diethylzinc (hereinafter referred to as ``EZJ''). The crystalline sapphire substrate 1 was mounted on a susceptor placed in the reaction chamber of the MOVPE apparatus.Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100° C. while flowing H3 into the reaction chamber at a flow rate of 217 minutes at normal pressure. Next, the temperature was lowered to 400°C, and H3 was bubbled at 21/min, NH, at 101/min, and TMA was bubbled with H3 and supplied at a rate of 1.8810-5 mol/min to form the Aj2N buffer layer 2. was formed to a thickness of approximately 500 mm.Next, the temperature of the sapphire substrate l was maintained at 1150 °C,
H2 at 2011/min, NH at 101/min, TMG at H
Bubble with 2 1.7X 10-'mol/min, H
Silane (Sin, ) diluted to 0.86 PPm with
.. A high carrier concentration n1 layer 3 made of GaN with a carrier concentration of 2 μm1 and 5×10”/co! was formed. Subsequently, the temperature of the sapphire substrate 1 was maintained at 1150° C., H2 was heated at 201/min, and NH was heated at 101/min. /min, TMG G
H. 2 at a rate of 1.7 x 10-' mol/min.
Supply for 0 minutes, film thickness 1.5 μm 1 carrier concentration 1
Made of GaN with 0”/Cl1l/Low carrier concentration n
Layer 4 was formed. Next, the sapphire substrate 1 is heated to 900°C, and H3 is heated to 20°C.
1/min, NH, was supplied at a rate of 101/min, TMG was bubbled with H2 at a rate of 1.7X10-' mol/min, DEZ was bubbled with H3 and supplied at a rate of 1.5 Xl0-' mol/min for 2 minutes. One layer 5 made of GaN with a thickness of 0.04 μm
was formed. In this way, a multilayer structure as shown in FIG. 2 was obtained. Next, as shown in FIG. 3, a Si02 layer 11 was formed on the layer 5 by sputtering to a thickness of 2000 nm. Next, a photoresist 12 is placed on the Sin2 layer 11.
was applied, and the photoresist 12 was formed by photolithography into a pattern in which the photoresist at the electrode formation site for the high carrier concentration n'' layer 3 was removed.Next, as shown in FIG. The 5102 layer 11 not covered by the photoresists 12 and 12 was removed using a hydrofluoric acid etching solution.Next, as shown in FIG.
Layer 02 1 layer 5 in the area not covered by layer 11, the lower carrier concentration n layer 4 and the high carrier concentration n+ layer 3
A part of the upper surface of the
.. 44W/cd, CCl2F! After dry etching by supplying gas at a rate of 10 ml/min, dry etching was performed with Ar. Next, as shown in FIG.
n, layer 11 was removed with hydrofluoric acid. Next, as shown in FIG. 7, an AI layer 1 is placed on the entire upper surface of the sample.
3 was formed by vapor deposition. Then, a photoresist 14 was coated on the A1 layer 13, and the photoresist 14 was patterned into a predetermined shape by photolithography so that electrode portions for the high carrier concentration n3 layer 3 and 1 layer 5 remained. . Next, as shown in FIG. 7, using the photoresist 14 as a mask, the exposed portion of the lower AI layer 13 is etched with a nitric acid-based etching solution, and the photoresist 14 is removed with acetone. Electrode 8.1 Electrode 7 of layer 5 was formed. In this way, MIS (Metal-
1ns-ulator Sem1conductor)
A gallium nitride-based light emitting device having this structure can be manufactured. Light emitting diode chip 100 manufactured in this way
When the luminescence intensity was measured, it was 0.2+acd. This is simply the i layer and carrier concentration 5X1017/c
Compared to a conventional light-emitting diode in which ffl and an n-layer with a thickness of 4 μm are connected, the light emission intensity has been improved four times. Furthermore, when the light emitting surface was observed, it was also observed that the number of light emitting points was increasing. For comparison, the above samples were manufactured in which the carrier concentration of the low carrier concentration n-layer 4 was varied, and the emission intensity and emission spectrum were measured. The results are shown in FIG. As the carrier concentration increases, the emission intensity decreases,
Moreover, it can be seen that the emission wavelength shifts to the red side. This seems to be because silicon, which is a doping element, diffuses or mixes into the first layer 5 as an impurity element. Next, the variable color light emitting diode 30 will be explained. In FIGS. 10 and 11, the lead frame 20 is composed of a pair of positive and negative lead members 41, 31 and a third lead member 35, which are arranged in parallel at intervals. The first and second lead members 41.31 have flat portions 43.33 forming first and second lands formed at their tip portions 42.32, and following the flat portions 43.33, A reflecting portion 44.34 is integrally formed and is inclined outwardly. Further, the end surface 351 of the third lead member 35 constitutes a third land. The above-described first light emitting diode chip 10 is bridged on the flat portions (first and second lands) 43.33 of the lead member 41.31, and the electrodes 7,
8 are respectively bump-bonded to the flat portions 43 and 33 with conductive paste. Further, as shown in FIG. 12, the second light emitting diode chip 36 has a P-AIGaAs layer 361 and an n-Aji! G
aAs layer 362, and p-Ajl! GaAs layer 3
Gold thread electrodes 363 and 364 are formed on the upper layer 61 and the n-AjiGaAs layer 362, respectively. In the second light emitting diode chip 36, the electrode 363 on one side is placed on the flat part (second land) 33 of the second lead member 31 and bonded with conductive silver paste. Further, the electrode 364 on the other side is connected to the end surface (third land) 351 of the third lead member 35 and the gold wire 3.
7 for wire bonding. Next, as shown in FIG. 9, a transparent resin such as epoxy resin is potted onto the IJ-board frame 20 to which the first light emitting diode chip 10 and the second light emitting diode chip 36 are bonded. The lens member 39 is molded by this potting. In such an arrangement state, the first lead member 41,
In the order of the second lead member 31 and the third lead member 35,
By applying a lower potential, both the first light emitting diode chip 10 and the second light emitting diode chip 36 are forward biased and emit light. At this time, the variable color light emitting diode 30 emits reddish-purple light as a whole. Further, when a positive voltage is applied only between the first lead member 41 and the second lead member 310, only the $1 light emitting diode chip 10 emits light, and this variable color light emitting diode 30
emits blue light. Furthermore, when a positive voltage is applied only between the second lead member 31 and the third lead member 35, WJ2
Only the light emitting diode chip 36 emits light, and this variable color light emitting diode 30 emits red light. Furthermore, by changing the magnitude of the voltage applied to each lead member, it is possible to emit light in a mixed color between blue and red. As mentioned above, by making the n-layer a double layer structure, we were able to improve the brightness of blue light emission, and for the first time,
It is now possible to mix with red, making it possible to control a wide range of emitted light colors. In the above embodiment, the second light emitting diode chip emits red light, but a green light emitting diode chip such as GaP may also be used. Furthermore, with the above structure, in addition to the light emitted from the surfaces of the two light emitting diode chips 10.36, the light emitted from the end faces of those two chips is also transmitted to the first lead member 41. Since the light is reflected forward by the reflecting portion 44.34 provided on the second lead member 31, the light emitting efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な一実施例に係る可変色発光ダ
イオードの1つの構成要素の第1の発光ダイオードチッ
プの構成を示した構成図、第2図乃至第7図はその発光
ダイオードチップの製造工程を示した断面図、第8図は
低キャリア濃度n層のキャリア濃度と発光強度及び発光
波長との関係を示した測定図、第9図は同実施例の可変
色発光ダイオードの全体の構成を示した縦断面図、第1
0図は同可変色発光ダイオードのリードフレームを示し
た縦断面図。第11図は第10図におけるリードフレー
ムを発光ダイオードチップ側から見た平面図。第12図
は第2の発光ダイオードチップの構成を示した構成図で
ある。 10 第1の発光ダイオードチップ 1 ゛サファイア基板 2 バッファ層 3 高キャリ
ア濃度n4層 4−低キャリア濃度n層51層 7,8
・・電極 41”−第一1のリード部材 31°第2のリード部材
 35゛第3のリード部材 43.33.351−平坦
部(第1.第2.第3のランド)44゜34 反射部 36 第2の発光ダイオードチップ 39 レンズ部材 20 リードフレーム 第1 図 第8図 キャリア濃度(c、、i”3) 第9図 第11図 二
FIG. 1 is a block diagram showing the configuration of a first light emitting diode chip, which is one component of a variable color light emitting diode according to a specific embodiment of the present invention, and FIGS. 2 to 7 are diagrams showing the structure of the light emitting diode. FIG. 8 is a cross-sectional view showing the manufacturing process of the chip. FIG. 8 is a measurement diagram showing the relationship between the carrier concentration of the low carrier concentration n-layer, the emission intensity, and the emission wavelength. FIG. Longitudinal cross-sectional view showing the overall configuration, 1st
Figure 0 is a vertical sectional view showing the lead frame of the variable color light emitting diode. FIG. 11 is a plan view of the lead frame in FIG. 10, viewed from the light emitting diode chip side. FIG. 12 is a configuration diagram showing the configuration of the second light emitting diode chip. 10 First light emitting diode chip 1 Sapphire substrate 2 Buffer layer 3 High carrier concentration n4 layer 4-Low carrier concentration n layer 51 layer 7,8
...Electrode 41'' - First lead member 31° Second lead member 35° Third lead member 43.33.351 - Flat part (first, second, third land) 44° 34 Reflection Part 36 Second light emitting diode chip 39 Lens member 20 Lead frame 1 Figure 8 Carrier concentration (c,,i''3) Figure 9 Figure 11 Figure 2

Claims (1)

【特許請求の範囲】 i型の窒化ガリウム系化合物半導体(Al_XGa_1
_−_XN;X=0を含む)からなるi層と、前記i層
に接合する低キャリア濃度n型の窒化ガリウム系化合物
半導体(Al_XGa_1_−_XN;X=0を含む)
からなる低キャリア濃度n層と、前記低キャリア濃度n
層に接合する高キャリア濃度n^+型の窒化ガリウム系
化合物半導体(Al_XGa_1_−_XN;X=0を
含む)からなる高キャリア濃度n^+層とを有し、前記
高キャリア濃度n^+層及び前記i層の電極が同一面上
に形成された第1の発光ダイオードチップと、 前記第1の発光ダイオードチップと異なる発光色を有す
る第2の発光ダイオードチップと、前記第1の発光ダイ
オードチップの両電極が接合される離間して形成された
第1及び第2のランドを有し、その一方のランドは前記
第2の発光ダイオードチップの1つの電極が接合されて
おり、そのランドと離間して形成され、前記第2の発光
ダイオードチップの他の電極がリード接続される第3の
ランドを有するリードフレームとを有する可変色発光ダ
イオード。
[Claims] I-type gallium nitride compound semiconductor (Al_XGa_1
_-_XN; including X=0); and a low carrier concentration n-type gallium nitride compound semiconductor (Al_XGa_1_-_XN; including X=0) bonded to the i-layer.
a low carrier concentration n layer consisting of the low carrier concentration n layer;
a high carrier concentration n^+ layer made of a high carrier concentration n^+ type gallium nitride-based compound semiconductor (Al_XGa_1_-_XN; including X=0) which is bonded to the high carrier concentration n^+ layer; and a first light emitting diode chip in which the electrodes of the i-layer are formed on the same surface; a second light emitting diode chip having a different emission color from the first light emitting diode chip; and the first light emitting diode chip. has first and second lands formed spaced apart to which both electrodes of the second light emitting diode chip are bonded; one land is bonded to one electrode of the second light emitting diode chip; and a lead frame having a third land to which the other electrode of the second light emitting diode chip is lead-connected.
JP2290055A 1990-10-27 1990-10-27 Variable color light emitting diode Pending JPH04163973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290055A JPH04163973A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290055A JPH04163973A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Publications (1)

Publication Number Publication Date
JPH04163973A true JPH04163973A (en) 1992-06-09

Family

ID=17751205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290055A Pending JPH04163973A (en) 1990-10-27 1990-10-27 Variable color light emitting diode

Country Status (1)

Country Link
JP (1) JPH04163973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
US6357889B1 (en) 1999-12-01 2002-03-19 General Electric Company Color tunable light source
JP2006339060A (en) * 2005-06-03 2006-12-14 Akita Denshi Systems:Kk Lighting system
EP2267798A1 (en) * 1997-07-29 2010-12-29 OSRAM Opto Semiconductors GmbH Optoelectronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267798A1 (en) * 1997-07-29 2010-12-29 OSRAM Opto Semiconductors GmbH Optoelectronic device
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
US6357889B1 (en) 1999-12-01 2002-03-19 General Electric Company Color tunable light source
JP2006339060A (en) * 2005-06-03 2006-12-14 Akita Denshi Systems:Kk Lighting system

Similar Documents

Publication Publication Date Title
US5744828A (en) Semiconductor light emitting device with blocking layer
KR100723233B1 (en) White light emitting device
US7180088B2 (en) Nitride based semiconductor light-emitting device
JP4309106B2 (en) InGaN-based compound semiconductor light emitting device manufacturing method
US20100258826A1 (en) Light emitting diode and method for manufacturing the same
JP3423328B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001053336A (en) Iii nitride compound semiconductor light emitting element
US8714778B2 (en) Light-emitting diode (LED) module with light sensor configurations for optical feedback
JPH03252175A (en) Manufacture of gallium nitride compound semiconductor
JP3675044B2 (en) Group 3 nitride semiconductor light emitting device
US20080197373A1 (en) Light Emitting Diode
JPH11340505A (en) Gallium nitride-based compound semiconductor light emitting element
JP3978858B2 (en) Gallium nitride compound semiconductor light emitting device
JPH0553511A (en) Color display device
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH04163973A (en) Variable color light emitting diode
KR101081055B1 (en) Light emitting device package and method for fabricating the same
KR20080013364A (en) Monolithic white light emitting device
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH04163972A (en) Variable color light emitting diode
JP3511923B2 (en) Light emitting element
JPH07307489A (en) Semiconductor light-emitting element and its manufacture
JPH1032348A (en) Device and manufacture of group iii nitride semiconductor light emitting element
JPH0410666A (en) Light-emitting element of gallium nitride-based compound semiconductor
TWI784384B (en) A flip-chip light-emitting diode structure and manufacturing method capable of emitting three primary color spectra