JPH04163353A - Nonwoven fabric of olefin-based ultra-fine fiber - Google Patents

Nonwoven fabric of olefin-based ultra-fine fiber

Info

Publication number
JPH04163353A
JPH04163353A JP2283028A JP28302890A JPH04163353A JP H04163353 A JPH04163353 A JP H04163353A JP 2283028 A JP2283028 A JP 2283028A JP 28302890 A JP28302890 A JP 28302890A JP H04163353 A JPH04163353 A JP H04163353A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
olefin
fiber diameter
fiber
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283028A
Other languages
Japanese (ja)
Inventor
Takashi Arimoto
有本 尚
Shigeki Tanaka
茂樹 田中
Hideo Isoda
英夫 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2283028A priority Critical patent/JPH04163353A/en
Publication of JPH04163353A publication Critical patent/JPH04163353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide the subject nonwoven fabric composed of an olefin-based ultra-fine fiber having respectively specified fiber diameter, coefficient of variation thereof, etc., excellent in distribution of fiber diameter and weight and free from pill-like parts, excellent in filter characteristics and useful as a filter, a buttery separator, etc. CONSTITUTION:An objective nonwoven fabric composed of an olefin-based fiber having <=0.1-5.0mum, preferably 0.5-3.5mum average fiber diameter, <=30% coefficient of variation (CV) thereof and <=5%, preferably <=3% coefficient of variation (CV) of weight in the crosswise direction, preferably having a random arrangement of the fiber and having 0.15-0.80g/cm<3> bulk density.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフィルター性能に優れたオレフィン系極細繊維
不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an olefin-based microfiber nonwoven fabric with excellent filter performance.

(従来の技術) メルトブロー法によって製造される不織布〔以後メルト
ブロー不織布とする)は特公昭43−20248号公報
、特公昭43−30016号公報、特公昭44−128
48号公報、特公昭44−13210号公報、特公昭4
4−22525号公報、特公昭44−25870号公報
、特公昭44−25872号公報等に開示されている。
(Prior art) Non-woven fabrics produced by the melt-blowing method (hereinafter referred to as melt-blown non-woven fabrics) are disclosed in Japanese Patent Publication No. 43-20248, Japanese Patent Publication No. 30016-1972, and Japanese Patent Publication No. 44-128.
48 Publication, Special Publication No. 44-13210, Special Publication No. 4
It is disclosed in Japanese Patent Publication No. 4-22525, Japanese Patent Publication No. 44-25870, Japanese Patent Publication No. 44-25872, etc.

オレフィン系m維のメルトブロー不織布に関しては、特
開昭50−46972号公報、特開昭54−13417
7号公報等があるかいずれも繊維径分布か著しく大きく
、フィルター用途として使用できない。
Regarding olefin-based m-fiber melt-blown nonwoven fabrics, JP-A-50-46972, JP-A-54-13417
No. 7, etc., all have extremely large fiber diameter distributions and cannot be used as filters.

これらに対して特開平1−156561号公報では繊維
径分布の良好な不織布か得られているが、高性能エアー
フィルター用途に用いた場合に濾過性能が不十分である
In contrast, JP-A-1-156561 provides a nonwoven fabric with a good fiber diameter distribution, but the filtration performance is insufficient when used in high-performance air filter applications.

また、特開昭63−6107号公報ては目イ\]け分布
の優れたメルトブロー不織布が得られているが、高性能
エアーフィルター用途に用いた場合に濾過性能が不十分
である。
Furthermore, in Japanese Patent Application Laid-Open No. 63-6107, a melt-blown nonwoven fabric with excellent eye distribution has been obtained, but its filtration performance is insufficient when used in high-performance air filter applications.

(発明が解決しようとする課題) 本発明は、上記従来技術の問題点を解決し、フイルター
用途として用いた場合に優れた濾過性能を示すオレフィ
ン系極細繊維不織布を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems of the prior art and provide an olefin-based ultrafine fiber nonwoven fabric that exhibits excellent filtration performance when used as a filter.

(課題を解決するための手段) 即ち本発明は、平均繊維径が0.1〜5.0μm1繊維
径の変動率(CV)が30%以下、目付は変動率(CV
)が5%以下のオレフィン系繊維からなる極細繊維不織
布である。
(Means for Solving the Problem) That is, the present invention has an average fiber diameter of 0.1 to 5.0 μm, a fiber diameter variation rate (CV) of 30% or less, and a basis weight variation rate (CV) of 0.1 to 5.0 μm.
) is an ultrafine fiber nonwoven fabric consisting of 5% or less of olefin fibers.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の不織布を構成するオレフィン系極細繊維の平均
繊維径は0.1〜5.0μmであり、好ましくは0.5
〜3.5μmである。0.1μm未満の場合、フィルタ
ー用途として用いたときに捕集効率は優れたものになる
が、圧力損失が著しく高くなり好ましくない。また、繊
維強力も低くなりその結果不織布強力も低くなり使用上
問題となる。5.0μmをこえると、かさ密度を著しく
高くしても微粒子の捕集が困難になり、フィルター性能
が劣る。
The average fiber diameter of the olefin ultrafine fibers constituting the nonwoven fabric of the present invention is 0.1 to 5.0 μm, preferably 0.5 μm.
~3.5 μm. If it is less than 0.1 μm, the collection efficiency will be excellent when used as a filter, but the pressure loss will be significantly high, which is not preferable. Furthermore, the fiber tenacity also decreases, and as a result, the nonwoven fabric tenacity also decreases, which poses a problem in use. If it exceeds 5.0 μm, it becomes difficult to collect fine particles even if the bulk density is significantly increased, resulting in poor filter performance.

本発明の不織布を構成するオレフィン系極細繊維の、繊
維径の変動率(CV)は3o%以下である。繊維径の変
動率(CV)が30%を越えると、フィルター性能が著
しく劣る。
The variation rate (CV) of the fiber diameter of the olefin ultrafine fibers constituting the nonwoven fabric of the present invention is 3o% or less. If the coefficient of variation (CV) of fiber diameter exceeds 30%, the filter performance will be significantly inferior.

本発明の不織布は、幅方向の目付は分布が目付は変動率
(CV’)で5%以下、好ましくは3%以下である。5
%を越えるとフィルターとして使用した場合、偏流れし
て性能が劣る場合が有り好ましくない。
In the nonwoven fabric of the present invention, the distribution of the basis weight in the width direction is 5% or less, preferably 3% or less in terms of variation rate (CV'). 5
If it exceeds %, when used as a filter, the flow may be uneven and the performance may be deteriorated, which is not preferable.

本発明の不織布は、構成するオレフィン系極細繊維の、
平均繊維径、繊維径の変動率(CV)、幅方向の目付は
変動率(CV)の全てを同時に満足することが必要であ
る。いずれが−条件でも満たさないとフィルター性能が
低下する。
The nonwoven fabric of the present invention consists of olefin-based microfibers,
It is necessary for the average fiber diameter, the variation rate (CV) of the fiber diameter, and the variation rate (CV) in the width direction to all be satisfied at the same time. If either of the negative conditions is not met, the filter performance will deteriorate.

本発明の不織布を構成するオレフィン系繊維は、ポリプ
ロピレン(PP)、ポリエチレン(PE)、ポリブテン
−1およびそれらの共重合体またはブレンド物である。
The olefin fibers constituting the nonwoven fabric of the present invention are polypropylene (PP), polyethylene (PE), polybutene-1, and copolymers or blends thereof.

特に繊維形成性から、ポリプロピレン、ポリブテン−1
が好ましい。これらのポリマーは耐薬品性からも好まし
く用いられる。
In particular, polypropylene, polybutene-1
is preferred. These polymers are preferably used because of their chemical resistance.

本発明の不織布は、構成するオレフィン系極細繊維の配
列がランダム配列である。極細繊維か単繊維状にランダ
ムに配列していることにより捕集効率を著しく高めるの
で好ましい。
In the nonwoven fabric of the present invention, the constituent olefin microfibers are arranged in a random arrangement. It is preferable that the fibers are randomly arranged in the form of ultrafine fibers or single fibers, as this significantly increases the collection efficiency.

本発明の不織布のかさ密度は特に限定されないが、濾過
精度の保持と形態保持性から、0.05g / am以
上が好ましく、より好ましくは、0.15 g / c
a以J: 0 、80 g l cnt以下である。
The bulk density of the nonwoven fabric of the present invention is not particularly limited, but from the viewpoint of maintaining filtration accuracy and shape retention, it is preferably 0.05 g/am or more, more preferably 0.15 g/c.
a to J: 0, 80 g l cnt or less.

本発明の極細不織布を得るためには、とくにメルトブロ
ー法を用いるのが好ましい。
In order to obtain the ultrafine nonwoven fabric of the present invention, it is particularly preferable to use a melt blowing method.

以下本発明のメルトブロー法の一例を説明する。An example of the melt blowing method of the present invention will be explained below.

メルトブロー法は公知の方法を基本とするが、繊維系分
布、及び目付は分布のシャープな不織布を得る必要から
、ポリマーの吐山斑、粘度斑、温度斑、及び牽引流体の
流量斑、温度斑をできる限り少なくしなければならない
。これらの条件を満たすため、使用する押山機、ヘッド
、及びノズルはデッドスペースの無い構造とする。また
ポリマーの熱分解を抑制するために、ノズルオリフィス
までの滞留時間は10分以内が好ましく、より好ましく
は5分以内である。さらに紡糸温度はできるだけ低いほ
うがポリマーの熱分解を抑制するためには好ましい。例
えば、ポリプロピレンでは250°C以上290 ’C
である。また、ヘッド及びノズルの加熱は温度斑のない
ように充分な保温とヒーターの構造及びコントロール方
法を工夫し均一加熱するようにする。またノズルオリフ
ィスの径はできるだけ細くして吐出線速度を高くシ、牽
引流体によるドラフト比を少なくするのが好ましい。
The melt blowing method is based on a known method, but because it is necessary to obtain a nonwoven fabric with a sharp fiber distribution and basis weight distribution, it is necessary to eliminate unevenness in the polymer's discharge, viscosity, and temperature, as well as flow rate and temperature unevenness in the traction fluid. must be minimized as much as possible. In order to meet these conditions, the heaping machine, head, and nozzle used are designed to have no dead space. Further, in order to suppress thermal decomposition of the polymer, the residence time up to the nozzle orifice is preferably within 10 minutes, more preferably within 5 minutes. Furthermore, it is preferable that the spinning temperature be as low as possible in order to suppress thermal decomposition of the polymer. For example, for polypropylene, 250°C or more and 290'C
It is. In addition, the head and nozzle are heated uniformly by ensuring sufficient heat retention and by devising the structure and control method of the heater so that there are no temperature variations. Further, it is preferable to make the diameter of the nozzle orifice as small as possible to increase the discharge linear velocity and to reduce the draft ratio due to the traction fluid.

次に、このようにしててきるだけ均一な溶融粘度のポリ
マーをノズルオリフィスより均一に吐出させ、それと同
時に、加熱された高速の牽引流体を吐出された溶融ポリ
マーの流れに吹き付け、溶融ポリマーを極細繊維の形状
に伸長細化させ、冷却固化された後にネット上に捕集積
層してランダムな配列の不織布を形成させる。牽引流体
としては、スチーム、空気、窒素などが好適である。牽
引流体の流量斑は牽引斑を起こすため、牽引流体の均一
分配が必要であり、例えば供給部のヘッダーを大きくす
る、供給口は多分割化するなどのエーロ= 夫か必要である。牽引流体の流量差は50 m / s
ec以下、好ましくは20 m/ sec以下である。
Next, in this way, the polymer with as uniform a melt viscosity as possible is uniformly discharged from the nozzle orifice, and at the same time, a heated high-velocity traction fluid is sprayed onto the stream of the discharged molten polymer to form the molten polymer into ultra-fine particles. The fibers are elongated and thinned into fibers, cooled and solidified, and then collected and laminated on a net to form a randomly arranged nonwoven fabric. Suitable traction fluids include steam, air, nitrogen, and the like. Unevenness in the flow rate of the traction fluid causes traction unevenness, so it is necessary to uniformly distribute the traction fluid. For example, it is necessary to take aerodynamic measures such as enlarging the header of the supply section and dividing the supply port into multiple sections. The flow rate difference of traction fluid is 50 m/s
ec or less, preferably 20 m/sec or less.

牽引流体の’?!01度斑は、流量斑とポリマーの溶融
粘度斑の両方を引き起こすため好ましくない。好ましい
牽引流体の温度差は10°C以内、より好ましくは5°
C以内である。牽引流体の温度は、250°C以上40
0°C以下、好ましくは300 ’C以上380°C以
下、牽引流体の圧力は、0.5 k(H/ ca以上、
好ましくは0.8に、/cm以14 kg / cJ以
下である。
Towing fluid'? ! 01 degree unevenness is undesirable because it causes both flow rate unevenness and melt viscosity unevenness of the polymer. Preferred traction fluid temperature difference is within 10°C, more preferably 5°
It is within C. The temperature of the traction fluid should be 250°C or above 40°C.
Below 0°C, preferably above 300'C and below 380°C, the pressure of the traction fluid is above 0.5 k (H/ca,
Preferably it is between 0.8 and 14 kg/cJ.

牽引流体はリップ面から噴出すると、周囲からの同伴流
を吸引し、これによって乱れを生じ、目側は分布及び繊
維径分布を生じる。同伴流による乱れを減少させるため
、幅方向側面は、同伴流の流入を規制することが好まし
い。またネット上に積層された繊維が流体によって移動
させられると目付は分布斑を生じるので、それを防ぐた
めに適度のサクションが必要である。ノズル面からネッ
トまでの距離は短すぎると融着を起こし、長すぎると繊
維同士の絡まり合により紐状物を生じやすくなるため4
0 cm〜60cmが適当である。また繊維の配列をラ
ンダムにするためには、フラットなネット面で引き取る
ことか好ましい。本発明の不織布は適度な強力を有して
いるため、そのままでフィルター用途として使用するこ
とかできるが、プレスしてかさ密度、強力を高めること
もてきる。
When the traction fluid is ejected from the lip surface, it attracts entraining flow from the surroundings, thereby creating turbulence, resulting in a distribution and fiber diameter distribution on the eye side. In order to reduce turbulence caused by the entrained flow, it is preferable that the widthwise side surfaces restrict the inflow of the entrained flow. Furthermore, when the fibers laminated on the net are moved by the fluid, the basis weight distribution becomes uneven, so an appropriate amount of suction is required to prevent this. If the distance from the nozzle surface to the net is too short, it will cause fusion, and if it is too long, the fibers will become entangled with each other, making it easy to form strings.
0 cm to 60 cm is suitable. Also, in order to make the fiber arrangement random, it is preferable to take it out on a flat net surface. Since the nonwoven fabric of the present invention has appropriate strength, it can be used as it is as a filter, but it can also be pressed to increase its bulk density and strength.

本発明不織布は、フィルターとしてかさ密度が低いと濾
過精度か低下するのて、好ましい条件としてかさ密度が
0.15g/cm、辺土、特に好ましくは0.30〜0
 、70 g / cutである。かさ密度が高いと濾
過精度が良くなるか、0.80g/cntをこえると圧
損か著しく大きくなる。また必要に応じ、エンボス加工
、超音波加工などを行うことかできる。またコロナ放電
によりエレクトレット化してフィルター性能を高めるこ
ともてきる。
The nonwoven fabric of the present invention is preferably used as a filter when the bulk density is 0.15 g/cm, especially preferably 0.30 to 0.
, 70 g/cut. If the bulk density is high, the filtration accuracy will be improved, or if it exceeds 0.80 g/cnt, the pressure drop will be significantly increased. Further, embossing, ultrasonic processing, etc. can be performed as necessary. It can also be converted into an electret by corona discharge to improve filter performance.

(実施例) 以下実施例にて本発明をさらに説明するが、本発明がこ
れら実施例により制限されるものではない。
(Examples) The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples.

以下の説明中に用いられる物性値の測定法を次に示す。The method for measuring physical property values used in the following explanation is shown below.

■ 平均繊維径(μm)、変動率(%)不織布を走査型
電子顕微鏡により倍率2000倍にて写E4[、撮影す
る。写真の中から、f&賄100本をランダムに選択し
てその直径を測定し、平均値(X)及び標準偏差(σ□
−1)を計算する。変動率(CV)は以下の式により求
めた。
■ Average fiber diameter (μm), variation rate (%) The nonwoven fabric was photographed using a scanning electron microscope at a magnification of 2000 times E4. We randomly selected 100 f&bricks from the photos, measured their diameters, and measured the average value (X) and standard deviation (σ□
-1) is calculated. The rate of variation (CV) was determined using the following formula.

変動率(CV)= (σn、、1/×)×100  (
%)■ 不織布強力(g / cm ) ゛ 不織布の縦方向、幅方向それぞれ長さ24 cm 
X幅2cIIIのサンプルを5木とり、把持長2 cm
としてテンンロンにより伸長切断し、そのときの最大強
力を測定し、5点の平均値を1 cm換算してもとめる
Variation rate (CV) = (σn,,1/×)×100 (
%) ■ Non-woven fabric strength (g/cm) ゛ Length of non-woven fabric in vertical and width directions 24 cm each
Take 5 samples of x width 2cIII, grip length 2cm
The specimen was stretched and cut using a tennron, the maximum strength at that time was measured, and the average value of the five points was converted to 1 cm.

■ 目付は変動率(%) 不織布を幅方向に、幅2 am X長さ10cmのサン
プルを取り、それぞれの重量を測定し、平均値と標準偏
差を求め、〔(標準偏差)/(平均値)〕X100 (
%)を変動率とする。
■ Fabric weight is the rate of variation (%) Take a sample of the nonwoven fabric in the width direction with a width of 2 am x length of 10 cm, measure the weight of each, calculate the average value and standard deviation, and calculate [(standard deviation) / (average value )]X100 (
%) is the fluctuation rate.

■ かさ密度(g/c還) 50 g / c+if荷重下で測定した厚みと目側は
量か=9− ら計算した。
■ Bulk density (g/c return) The thickness measured under a load of 50 g/c+if and the grain side were calculated from the amount = 9-.

■ 17D集効率、圧力損失 JIS Z−8901試験用タストを用いて捕集効率及
び圧力損失を測定した。
(2) 17D collection efficiency and pressure loss Collection efficiency and pressure loss were measured using JIS Z-8901 test test.

実施例1 温度230°C1荷重2.160gにおけるメルトイン
デックス(以下M丁きする)300のポリプロピレンを
押山機により加熱溶融し、以下の条件でメルトブローを
行った。
Example 1 Polypropylene having a melt index (hereinafter referred to as M) of 300 at a temperature of 230° C. and a load of 2.160 g was heated and melted using a presser and melt-blown under the following conditions.

オリフィス径0.15+n+n、オリフィス間ピッチQ
、7mm1のノズルを用い、単孔吐出量0.2 g/分
、紡糸温度280°Cにて吐出し、糸引流体として35
0°C1供給圧力3 、0 kg / cmの空気を用
い、溶融ポリマーを牽引純化させ、ノズル面より60c
o+の位置でサクションされたネット」二に繊維を捕集
し巻き取った。ノズル側面からの同伴流の流入は規制板
によりカットした。得られた不織布の平均繊維径は1.
2 tt m 1繊維径分布(CV)は15%であった
。目付は平均値は30g/ca、目側は変動率は3%、
かさ密度は0 、15 g / cJ、−10= 不織布強力は、縦方向!540g/Cm、幅方向480
 g / amであった。またこの不織布は、千秋物を
まったく含まない柔軟で良質のものであった。この不織
布の捕集効率は99.5%、圧力損失は10ギH20で
あった。
Orifice diameter 0.15+n+n, pitch between orifices Q
, using a 7mm1 nozzle, a single hole discharge rate of 0.2 g/min, and a spinning temperature of 280°C.
Using air at 0°C1 supply pressure 3 and 0 kg/cm, the molten polymer was purified by pulling, and the temperature was 60 cm from the nozzle surface.
The fibers were collected and wound up by the suction net at the o+ position. The inflow of entrained flow from the side of the nozzle was cut by a regulating plate. The average fiber diameter of the obtained nonwoven fabric was 1.
The 2 tt m 1 fiber diameter distribution (CV) was 15%. The average weight is 30g/ca, and the variation rate is 3% on the eye side.
Bulk density is 0, 15 g/cJ, -10=Nonwoven fabric strength is vertical! 540g/cm, width direction 480
g/am. Moreover, this non-woven fabric was flexible and of good quality, containing no foreign material at all. The collection efficiency of this nonwoven fabric was 99.5%, and the pressure loss was 10 GiH20.

実施例2〜3、比較例1〜3 MIの異なる種々のポリプロピレンを用い、吐出量、紡
糸温度、牽引流体温度、圧力を種々変えて、他は実施例
1と同様にしてメルトブローを行い第1表に示す不織布
をそれぞれ得た。
Examples 2 to 3, Comparative Examples 1 to 3 Melt blowing was performed in the same manner as in Example 1, using various polypropylenes with different MI and varying the discharge amount, spinning temperature, traction fluid temperature, and pressure. The nonwoven fabrics shown in the table were obtained.

第1表から明らかなように、本発明の範囲の不織布はフ
ィルター性能、強度共に優れていることが分かる。
As is clear from Table 1, the nonwoven fabrics within the scope of the present invention are excellent in both filter performance and strength.

また、本発明外のものは、フィルター用途として好まし
くないことが分かる。
Moreover, it can be seen that materials other than those according to the present invention are not preferable for filter applications.

(発明の効果) 本発明のオレフィン系極細繊維不織布は、平均繊維径か
0.1〜5.0μmと極細であり、繊維径分布、目付は
分布共に優れており、しかも玉状物を含まないためフィ
ルター性能に著しく優れた機能を示す。
(Effects of the invention) The olefin-based ultrafine fiber nonwoven fabric of the present invention is extremely fine with an average fiber diameter of 0.1 to 5.0 μm, has excellent fiber diameter distribution and basis weight distribution, and does not contain beads. Therefore, it shows extremely excellent filter performance.

本発明の不織布は、特に高性能フィルターとして好適で
あるが、他の用途、例えば、バッテリーセパレーター、
メディカル用品、衛生材料、クリーンルーム用品なとの
ディスポーザブル用途、保7m kA等にも適したもの
である。
The nonwoven fabric of the present invention is particularly suitable as a high-performance filter, but has other applications such as battery separators,
It is also suitable for disposable applications such as medical supplies, sanitary materials, and clean room supplies, as well as for 7m kA storage.

特許出願人  東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 1.平均繊維径が0.1〜5.0μm以下、繊維径の変
動率(CV)が30%以下、幅方向の目付け変動率(C
V)が5%以下のオレフイン系繊維からなることを特徴
とするオレフイン系極細繊維不織布。
1. The average fiber diameter is 0.1 to 5.0 μm or less, the fiber diameter variation rate (CV) is 30% or less, and the width direction basis weight variation rate (C
An olefin-based ultrafine fiber nonwoven fabric characterized by comprising V) of 5% or less of olefin-based fibers.
2.オレフイン系繊維の配列がランダム配列であり、か
さ密度が0.15g/cm^3以上、0.80g/cm
^3以下である請求項1に記載のオレフイン系極細繊維
不織布。
2. Olefin fibers are arranged randomly, and the bulk density is 0.15 g/cm^3 or more, 0.80 g/cm
The olefin-based ultrafine fiber nonwoven fabric according to claim 1, which has a particle diameter of ^3 or less.
JP2283028A 1990-10-19 1990-10-19 Nonwoven fabric of olefin-based ultra-fine fiber Pending JPH04163353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283028A JPH04163353A (en) 1990-10-19 1990-10-19 Nonwoven fabric of olefin-based ultra-fine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283028A JPH04163353A (en) 1990-10-19 1990-10-19 Nonwoven fabric of olefin-based ultra-fine fiber

Publications (1)

Publication Number Publication Date
JPH04163353A true JPH04163353A (en) 1992-06-08

Family

ID=17660287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283028A Pending JPH04163353A (en) 1990-10-19 1990-10-19 Nonwoven fabric of olefin-based ultra-fine fiber

Country Status (1)

Country Link
JP (1) JPH04163353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077638A1 (en) * 2010-12-06 2012-06-14 三井化学株式会社 Melt-blown nonwoven fabric, and production method and device for same
WO2012111723A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Spunbonded nonwoven fabric
JPWO2012102398A1 (en) * 2011-01-28 2014-07-03 タピルス株式会社 Melt blown nonwoven fabric made of ultrafine fibers, method for producing the same, and apparatus for producing the same
JP2020026599A (en) * 2018-08-16 2020-02-20 帝人フロンティア株式会社 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813008B2 (en) * 2010-12-06 2015-11-17 三井化学株式会社 Melt blown nonwoven fabric, manufacturing method and apparatus thereof
EP2650419B1 (en) 2010-12-06 2016-09-28 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production method and device for same
CN103228832A (en) * 2010-12-06 2013-07-31 三井化学株式会社 Melt-blown nonwoven fabric, and production method and device for same
EP2650419A1 (en) * 2010-12-06 2013-10-16 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production method and device for same
US9404207B2 (en) 2010-12-06 2016-08-02 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production process and apparatus for the same
WO2012077638A1 (en) * 2010-12-06 2012-06-14 三井化学株式会社 Melt-blown nonwoven fabric, and production method and device for same
EP2650419A4 (en) * 2010-12-06 2015-01-21 Mitsui Chemicals Inc Melt-blown nonwoven fabric, and production method and device for same
US9200392B2 (en) 2010-12-06 2015-12-01 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, and production process and apparatus for the same
JP2015092038A (en) * 2010-12-06 2015-05-14 三井化学株式会社 Melt-blown nonwoven fabric, and method and device for producing the same
KR20150070433A (en) * 2010-12-06 2015-06-24 미쓰이 가가쿠 가부시키가이샤 Melt-blown nonwoven fabric, and production method and device for same
JP2016053241A (en) * 2011-01-28 2016-04-14 タピルス株式会社 Melt blown nonwoven fabric comprising ultrafine fiber and laminated processed product
JPWO2012102398A1 (en) * 2011-01-28 2014-07-03 タピルス株式会社 Melt blown nonwoven fabric made of ultrafine fibers, method for producing the same, and apparatus for producing the same
JP5905400B2 (en) * 2011-01-28 2016-04-20 タピルス株式会社 Method for producing melt blown nonwoven fabric comprising ultrafine fibers and apparatus for producing melt blown nonwoven fabric comprising ultrafine fibers
JP5717769B2 (en) * 2011-02-15 2015-05-13 三井化学株式会社 Spunbond nonwoven fabric
CN103370464A (en) * 2011-02-15 2013-10-23 三井化学株式会社 Spunbonded nonwoven fabric
WO2012111723A1 (en) * 2011-02-15 2012-08-23 三井化学株式会社 Spunbonded nonwoven fabric
US9693912B2 (en) 2011-02-15 2017-07-04 Mitsui Chemicals, Inc. Spunbonded nonwoven fabrics
JP2020026599A (en) * 2018-08-16 2020-02-20 帝人フロンティア株式会社 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle

Similar Documents

Publication Publication Date Title
US7902096B2 (en) Monocomponent monolayer meltblown web and meltblowing apparatus
US7858163B2 (en) Molded monocomponent monolayer respirator with bimodal monolayer monocomponent media
KR101453578B1 (en) Molded monocomponent monolayer respirator
US8372175B2 (en) Pleated filter with bimodal monolayer monocomponent media
US7807591B2 (en) Fibrous web comprising microfibers dispersed among bonded meltspun fibers
JP2825514B2 (en) Oriented melt-sprayed fiber, method for producing the same and web thereof
JPH08502790A (en) Metal melt blown cloth
US5730923A (en) Post-treatment of non-woven webs
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JPH04163353A (en) Nonwoven fabric of olefin-based ultra-fine fiber
JP2797482B2 (en) Nonwoven fabric with good uniformity
JPH11293555A (en) Highly air-permeable nonwoven fabric and its production, and filter material made thereof
JPH05295645A (en) Nonwoven fabric and its production
JP2989684B2 (en) Polymethylpentene ultrafine fiber web and method for producing the same
EP0581909B1 (en) Non-woven Fabric
JP3134964B2 (en) Ultrafine fiber nonwoven fabric and method for producing same
JP2995844B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JPH03249249A (en) Nonwoven fabric of olefin-based ultrathin yarn
JPH0233368A (en) Production of ultrafine non-woven fabric and melt blow nozzle
JPH0515717A (en) Electret fiber filter
JPS63282350A (en) Production of bulky long fiber nonwoven fabric
JPH04163359A (en) Melt-blowing nozzle