JP2020026599A - Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle - Google Patents

Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle Download PDF

Info

Publication number
JP2020026599A
JP2020026599A JP2018153116A JP2018153116A JP2020026599A JP 2020026599 A JP2020026599 A JP 2020026599A JP 2018153116 A JP2018153116 A JP 2018153116A JP 2018153116 A JP2018153116 A JP 2018153116A JP 2020026599 A JP2020026599 A JP 2020026599A
Authority
JP
Japan
Prior art keywords
water
fiber
island
sea
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018153116A
Other languages
Japanese (ja)
Inventor
泰之 米田
Yasuyuki Yoneda
泰之 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2018153116A priority Critical patent/JP2020026599A/en
Publication of JP2020026599A publication Critical patent/JP2020026599A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an ultrafine fiber filament bundle having excellent water repellency even without undergoing a water-repellent post-processing treatment.SOLUTION: A water-repellent ultrafine fiber bundle is provided which comprises a thermoplastic resin having a surface tension of 40 mN/m or less. The single fiber diameter of fibers comprising the thermoplastic resin is 50 to 1500 nm and the coefficient CV of variation of the fiber diameter is 30% or less. A fabric is also provided which comprises the water-repellent ultrafine filament bundle.SELECTED DRAWING: Figure 1

Description

本発明は、撥水後加工処理を特に施さなくても、優れた撥水性を有する極細繊維束及び極細繊維束を用いた布帛に関する。   TECHNICAL FIELD The present invention relates to an ultrafine fiber bundle having excellent water repellency and a fabric using the ultrafine fiber bundle without particularly performing post-water repellency processing.

従来から、フッ素系樹脂やシリコーン系樹脂を含有する分散液等で布帛を処理して布帛
表面にこれらの樹脂を付着せしめて、撥水処理を施すことは広く行われている。(特開2009−56765)しかしながら、これらの加工処理で得られた布帛は撥水性こそあるものの、十分な撥水耐久性を付与する程の量を処理すると布帛の風合が硬くなりこのためスポーツウェア、カジュアルウェア等の撥水性と風合が共に要求される分野への応用が大きく制限されていた。また、元来撥水性、疎水性を有する樹脂のみを用いて極細繊維風合いの柔らかい撥水繊維を得ることも行われている。一方、従来このような樹脂を用いた極細繊維の製造方法はメルトブローやエレクトロスピニング等(特開2005−29931、特開2015−124255)、不織布シートの製造方法に限られており、織、編み、湿式不織布等多様な加工ができるような、撥水後加工処理を施さなくても優れた撥水性を有する繊維束が求められていた。
2. Description of the Related Art Conventionally, it has been widely practiced to treat a cloth with a dispersion liquid containing a fluorine-based resin or a silicone-based resin, attach the resin to the cloth surface, and perform a water-repellent treatment. However, although the fabrics obtained by these processings have water repellency, if the treatment is performed in an amount sufficient to impart sufficient water repellency, the texture of the fabrics becomes hard and, therefore, sports Application to fields where both water repellency and feeling are required, such as wear and casual wear, has been greatly limited. In addition, soft water-repellent fibers having a fine-textured texture are obtained by using only a resin having water-repellency and hydrophobicity. On the other hand, conventional methods for producing ultrafine fibers using such a resin are limited to melt blowing, electrospinning, and the like (JP-A-2005-29931, JP-A-2015-124255), and nonwoven fabric sheet production methods. There has been a demand for a fiber bundle having excellent water repellency without performing post-water repellency processing so that various processes such as wet nonwoven fabric can be performed.

特開2009−56765号公報JP 2009-56765 A 特開2005−29931号公報JP 2005-29931 A 特開2015−124255号公報JP 2015-124255 A

本発明は上記の背景に鑑みなされたものであり、その目的は撥水後加工処理を施さなくても優れた撥水性を有する極細繊維長繊維束を提供することにある。   The present invention has been made in view of the above background, and an object of the present invention is to provide an ultrafine fiber long fiber bundle having excellent water repellency without performing post-water repellency processing.

前記の課題問題点を解決するために鋭意検討した結果、本発明に達した。すなわち、本発明によれば、
1.表面張力が40mN/m以下の熱可塑性樹脂からなり、前記熱可塑性樹脂からなる繊維の単糸繊維径が50〜1500nmであり、繊維直径の変動率CVが30%以下であることを特徴とする撥水性極細繊維束である。
本発明により、撥水後加工処理を施さなくても優れた撥水性を有する繊維束を提供できることを見出した。
また好ましくは、本発明は以下の構成を採用する。
2.接触角が120°以上の撥水性極細繊維からなる前記1の撥水性極細繊維束。
そして、前記課題を解決するために以下の布帛を採用する。
3.前記1または2の撥水性極細繊維束からなる布帛。
As a result of intensive studies to solve the above problems, the present invention has been achieved. That is, according to the present invention,
1. The surface tension is made of a thermoplastic resin having a surface tension of 40 mN / m or less, and the fiber made of the thermoplastic resin has a single fiber diameter of 50 to 1500 nm, and a variation rate CV of the fiber diameter is 30% or less. It is a water-repellent ultrafine fiber bundle.
According to the present invention, it has been found that a fiber bundle having excellent water repellency can be provided without performing post-water repellency processing.
Preferably, the present invention employs the following configuration.
2. The above-mentioned water-repellent ultrafine fiber bundle comprising a water-repellent ultrafine fiber having a contact angle of 120 ° or more.
Then, in order to solve the above-mentioned problem, the following fabric is adopted.
3. A cloth comprising the water-repellent ultrafine fiber bundle of 1 or 2.

本発明によれば、撥水後加工処理を施さなくても優れた撥水性を有し、織、編み、湿式不織布等多様な加工にも優れる撥水性極細繊維束及び撥水性極細繊維束を用いた布帛を提供することができる。   According to the present invention, a water-repellent ultrafine fiber bundle and a water-repellent ultrafine fiber bundle that have excellent water repellency without being subjected to post-water repellent processing and are excellent in various processes such as woven, knitted, and wet nonwoven fabrics are also used. Can be provided.

本発明の海島型複合繊維を紡糸するために用いる口金の概略図。FIG. 1 is a schematic view of a spinneret used for spinning the sea-island composite fiber of the present invention.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、複合繊維断面において海成分中に表面張力が40mN/m以下となる熱可塑性樹脂が多数の島となって繊維軸方向に連続して存在する海島型複合繊維から、極細繊維の単糸からなる撥水性極細繊維束が製造される。そして、前記熱可塑性樹脂からなる繊維の単糸繊維径が50〜1500nmであり、繊維直径の変動率CVが30%以下である撥水性極細繊維束である。   The present invention is directed to a sea-island composite fiber in which a thermoplastic resin having a surface tension of 40 mN / m or less in a sea component in a cross section of a composite fiber is present in a number of islands and continuously present in the fiber axis direction. A water-repellent ultrafine fiber bundle made of yarn is produced. And the water-repellent ultrafine fiber bundle has a single yarn fiber diameter of the thermoplastic resin fiber of 50 to 1500 nm and a variation rate CV of the fiber diameter of 30% or less.

(海島型複合繊維)
まず、本発明の海島型複合繊維は、厚さ20μmのフィルムとした後、JIS K 6768に従って測定した表面張力が40mN/m以下、好ましくは1〜35mN/m以下となる熱可塑性ポリマーからなり、かつその島径が50〜1500nm、好ましくは100〜1000nmである島成分と、前記の島成分よりも溶液に対して優れた溶解性を有する易溶解ポリマーからなる海成分を有し、島成分の直径のばらつきを表すcv%が30%以下であり、好ましくは0.01〜25%以下、さらに好ましくは0.1〜20%以下、とくに好ましくは1〜15%以下である。
(Sea-island type composite fiber)
First, the sea-island composite fiber of the present invention is formed of a thermoplastic polymer having a surface tension of 40 mN / m or less, preferably 1 to 35 mN / m or less, measured according to JIS K 6768, after being formed into a film having a thickness of 20 μm. And an island component having an island diameter of 50 to 1500 nm, preferably 100 to 1000 nm, and a sea component composed of an easily soluble polymer having higher solubility in a solution than the above-mentioned island component. The cv% representing the variation of the diameter is 30% or less, preferably 0.01 to 25% or less, more preferably 0.1 to 20% or less, and particularly preferably 1 to 15% or less.

表面張力が40mN/mを超える熱可塑性樹脂を用いて、島径が50〜1500nmとなる極細繊維を作製しても、撥水性の優れた繊維束が得られず好ましくない。   Even if ultrafine fibers having an island diameter of 50 to 1500 nm are produced using a thermoplastic resin having a surface tension of more than 40 mN / m, it is not preferable because a fiber bundle having excellent water repellency cannot be obtained.

島成分を構成する撥水性を有する熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン、フッ素系等の熱可塑性樹脂等があげられる。   Examples of the water-repellent thermoplastic resin constituting the island component include polyethylene (PE), polypropylene (PP), polymethylpentene, and fluorine-based thermoplastic resins.

島径が50nm未満では、島を多数並べる為の口金設計が極めて困難であり操業性に乏しくなるおそれがある。逆に、島径が1500nmを超える場合、優れた撥水性を得ることができず、好ましくない。なお、島の形状が丸断面以外の異型断面である場合には、前記の島径は外接円の直径を島径とする。また、島成分の直径のばらつきを表すcv%が30%を超える場合、紡糸・延伸時の断糸の原因となることから好ましくない。   If the island diameter is less than 50 nm, it is extremely difficult to design a die for arranging a large number of islands, and the operability may be poor. Conversely, if the island diameter exceeds 1500 nm, excellent water repellency cannot be obtained, which is not preferable. When the shape of the island is an irregular cross-section other than the round cross-section, the above-mentioned island diameter is defined as the diameter of a circumscribed circle. Further, if the cv%, which represents the variation in the diameter of the island component, exceeds 30%, it is not preferable because it may cause a yarn break during spinning / drawing.

海成分である易溶解ポリマーは島成分である難溶解性ポリマーと比較し、溶解速度比が200倍以上、好ましくは300倍以上であることが好ましい。溶解速度が200倍未満の場合には、海島型複合繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維径が小さいために溶解されるため、海相当分が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や島成分自体の溶剤侵食につながり、本発明の目的とする均一な繊維径の超極細短繊維が得ることができないおそれがある。   The easily soluble polymer as the sea component has a dissolution rate ratio of 200 times or more, preferably 300 times or more, as compared with the poorly soluble polymer as the island component. When the dissolution rate is less than 200 times, while the sea component at the center of the sea-island type composite fiber cross section is dissolved, the island component at the surface layer portion of the separated fiber cross section is dissolved due to a small fiber diameter. Despite the considerable amount being reduced, the sea component in the center of the fiber cross section cannot be completely dissolved and removed, leading to unevenness in the thickness of the island component and solvent erosion of the island component itself, and the uniformity of the object of the present invention. There is a possibility that ultra-fine short fibers having a large fiber diameter cannot be obtained.

海成分を形成する易溶解性ポリマーとしては、特に繊維形成性の良いポリエステル類、脂肪族ポリアミド類、ポリスチレン等を好ましい例としてあげることができる。更に具体例を挙げれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルが好ましい。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。これ以外にも、ナイロン6やナイロン66等の脂肪族ポリアミドに対するギ酸、ポリスチレンに対するトリクロロエチレン等、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例として挙げることができる。   Preferable examples of the easily soluble polymer that forms the sea component include polyesters, aliphatic polyamides, and polystyrene having particularly good fiber-forming properties. More specifically, preferred examples of the easily soluble polymer in the aqueous alkali solution include polylactic acid, an ultrahigh molecular weight polyalkylene oxide condensed polymer, and a copolymerized polyester of a polyalkylene glycol compound and 5-sodium sulfoisophthalic acid. Here, the alkaline aqueous solution refers to an aqueous solution of potassium hydroxide, sodium hydroxide, or the like. Other examples include formic acid for aliphatic polyamides such as nylon 6 and nylon 66, and trichloroethylene for polystyrene, and hot water for polyvinyl alcohol and ethylene-modified vinyl alcohol-based polymers.

複合繊維に用いる島成分をポリオレフィンにした場合、海成分を形成する易溶解性ポリマーとしては、特に繊維形成性の良いポリエステル類、脂肪族ポリアミド類、ポリエチレンやポリスチレン等のポリオレフィン類を好ましい例としてあげることができる。中でも繊維成型性に優れることからポリエステル類がとくに好ましい。   When the island component used in the conjugate fiber is polyolefin, preferred examples of the easily soluble polymer forming the sea component include polyesters, aliphatic polyamides, and polyolefins such as polyethylene and polystyrene, which have particularly good fiber-forming properties. be able to. Among them, polyesters are particularly preferable because of excellent fiber moldability.

ポリエステル系ポリマーの中でも、ポリエチレングリコール、5−ナトリウムスルホイソフタル酸、およびジエチレングリコールを含むポリエステル共重合体が好ましい。   Among the polyester-based polymers, a polyester copolymer containing polyethylene glycol, 5-sodium sulfoisophthalic acid, and diethylene glycol is preferable.

ここで、海成分の構成について、以下に述べる。
海成分の構成は、ジカルボン酸(A)、ジオール(B)、そしてポリエチレングリコール(C、またはPEG)からなる。
Here, the composition of the sea component will be described below.
The composition of the sea component consists of dicarboxylic acid (A), diol (B), and polyethylene glycol (C or PEG).

ジカルボン酸(A)の一部に用いる、5−ナトリウムスルホイソフタル酸は、親水性と溶融粘度の向上を目的とし、ポリエチレングリコール(PEG)は親水性の向上、ジオール(B)として用いるジエチレングリコール(DEG)はガラス転移点、および融点の調整と親水性の向上に寄与する。   5-sodium sulfoisophthalic acid used as a part of the dicarboxylic acid (A) aims to improve hydrophilicity and melt viscosity, polyethylene glycol (PEG) improves hydrophilicity, and diethylene glycol (DEG) used as the diol (B) ) Contributes to adjustment of the glass transition point and melting point and improvement of hydrophilicity.

海成分であるポリエステル共重合体中の、前記5−ナトリウムスルホイソフタル酸は、ポリエステルを構成する全ジカルボン酸成分(A)中に対して、好ましくは4〜16モル%、より好ましくは6〜14モル%、さらに好ましくは7〜12モル%含むことが好ましい。   The 5-sodium sulfoisophthalic acid in the polyester copolymer as a sea component is preferably 4 to 16 mol%, more preferably 6 to 14 mol%, based on all dicarboxylic acid components (A) constituting the polyester. Mol%, more preferably 7 to 12 mol%.

5−ナトリウムスルホイソフタル酸が4モル%未満の場合では、十分な溶解性が得られず、16モル%を超える場合は、複合繊維紡糸時の断糸が増加し、工程安定性が悪化する傾向があるので好ましくない。   When the amount of 5-sodium sulfoisophthalic acid is less than 4 mol%, sufficient solubility cannot be obtained, and when it exceeds 16 mol%, the number of breaks during spinning of the conjugate fiber increases, and the process stability tends to deteriorate. Is not preferred.

海成分であるポリエステル共重合体中の、ポリエチレングリコール(PEG)の量は、ポリエステル共重合体(A+B+PEG)100重量%中の好ましくは1〜10重量%、より好ましくは1〜8重量%、さらに好ましくは2〜7重量%である。   The amount of polyethylene glycol (PEG) in the polyester copolymer as a sea component is preferably 1 to 10% by weight, more preferably 1 to 8% by weight, and more preferably 100 to 100% by weight of the polyester copolymer (A + B + PEG). Preferably it is 2 to 7% by weight.

PEGの共重合量が1重量%未満であると、海成分を構成する易溶解性ポリマーの溶解
速度が低くなり、繊維断面中央部の海成分が完全に溶解除去されていないにもかかわらず、既に分離した繊維断面表層部の島成分がさらに侵食されるため、島成分の太さ斑が発生するだけでなく、強度劣化が発生して、毛羽や染め斑が起こるなどの問題が生じる。
一方、PEGの量が10重量%を超えると、溶融粘度が低下し高速紡糸性が悪くなる。
When the copolymerization amount of PEG is less than 1% by weight, the dissolution rate of the easily soluble polymer constituting the sea component becomes low, and although the sea component at the center of the fiber cross section is not completely dissolved and removed, Since the island component in the surface layer portion of the already separated fiber cross section is further eroded, not only unevenness in the thickness of the island component is generated, but also strength deterioration is caused, causing problems such as fluff and dyed spots.
On the other hand, if the amount of PEG exceeds 10% by weight, the melt viscosity decreases and the high-speed spinnability deteriorates.

また、PEGの分子量は好ましくは2,000〜14,000、より好ましくは3,000〜12,000の範囲である。14,000を超えると、高次構造に起因すると考えられる親水性増加作用はあるが、反応性が悪くなってブレンド系になるため、紡糸における耐熱性や高速紡糸安定性の面で問題が生じることがある。   The molecular weight of PEG is preferably in the range of 2,000 to 14,000, and more preferably in the range of 3,000 to 12,000. If it exceeds 14,000, there is an effect of increasing hydrophilicity, which is considered to be caused by a higher-order structure. However, since reactivity becomes poor and a blend system is formed, problems arise in heat resistance and high-speed spinning stability in spinning. Sometimes.

次に、易溶解性ポリマーであるポリエステル共重合体中の前記ジオール(B)中のジエ
チレングリコール(DEG)の量は、好ましくは5モル%以上80モル%以下、より好ましくは7モル%以上60%以下を共重合させる。この場合のポリエチレンテレフタレート系共重合ポリエステルの固有粘度は0.3〜0.6が好ましい。
Next, the amount of diethylene glycol (DEG) in the diol (B) in the polyester copolymer, which is an easily soluble polymer, is preferably from 5 mol% to 80 mol%, more preferably from 7 mol% to 60 mol%. The following are copolymerized. In this case, the intrinsic viscosity of the polyethylene terephthalate-based copolymerized polyester is preferably 0.3 to 0.6.

前記ジエチレングリコールが5モル%未満の場合では、海島型複合繊維とした際に島成分の直径のバラツキが大きくなり、海成分を溶解除去してもポリオレフィン極細繊維同士に融着がみられ、良好な分散性がみられず、湿式不織布にした際に得られた湿式不織布の細孔が大きくなり好ましくない。   When the content of diethylene glycol is less than 5 mol%, the dispersion of the diameter of the island component becomes large when the sea-island composite fiber is formed, and even if the sea component is dissolved and removed, fusion is observed between the polyolefin ultrafine fibers, which is favorable. Dispersibility is not observed, and the wet nonwoven fabric obtained when it is made into a wet nonwoven fabric has undesirably large pores.

なお、海成分を形成するポリマーについて、製糸性および抽出後の極細繊維の物性に影響を及ぼさない範囲で、有機充填剤、酸化防止剤、熱安定剤、難燃剤、滑剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面滑剤、表面光沢改良剤、フッ素樹脂等の離形改良剤等の各種添加剤を含んでいても差しつかえない。   For the polymer forming the sea component, an organic filler, an antioxidant, a heat stabilizer, a flame retardant, a lubricant, a rust inhibitor, a cross-linking agent, as long as it does not affect the spinning properties and the physical properties of the ultrafine fibers after extraction. Various additives such as an agent, a foaming agent, a fluorescent agent, a surface lubricant, a surface gloss improver, and a mold release improver such as a fluororesin may be included.

前記の島成分と海成分を用いた海島型複合繊維の作製時、溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも大きいことが好ましい。かかる関係にある場合には、海成分の複合重量比率が40%未満と少なくなっても、島同士が接合したり、島成分の大部分が接合して海島型複合繊維とは異なるものになり難い。
好ましい溶融粘度比(海/島)は、1.1〜6.0、特に1.3〜4.0の範囲である。
When producing the sea-island composite fiber using the island component and the sea component, it is preferable that the melt viscosity of the sea component during melt spinning is larger than the melt viscosity of the island component. In such a case, even if the composite weight ratio of the sea component is reduced to less than 40%, the islands are bonded to each other, or most of the island components are bonded to each other, so that the sea-island composite fiber is different. hard.
The preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 6.0, especially 1.3 to 4.0.

この比が1.1倍未満の場合には溶融紡糸時に島成分が接合しやすくなり、一方6.0倍を越える場合には、粘度差が大きすぎるために紡糸調子が低下しやすい。   If this ratio is less than 1.1 times, the island components are likely to be joined at the time of melt spinning, while if it exceeds 6.0 times, the viscosity difference is too large and the spinning condition tends to decrease.

次に島数は、好ましくは100以上、より好ましくは300〜1500である。また、その海島複合重量比率(海:島)は、20:80〜80:20の範囲が好ましい。かかる範囲であれば、島間の海成分の厚みを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になるので好ましい。ここで海成分の割合が80%を越える場合には海成分の厚みが厚くなりすぎ、一方20%未満の場合には海成分の量が少なくなりすぎて、島間に接合が発生しやすくなる。   Next, the number of islands is preferably 100 or more, more preferably 300 to 1500. Further, the sea-island composite weight ratio (sea: island) is preferably in the range of 20:80 to 80:20. This range is preferable because the thickness of the sea component between the islands can be reduced, the sea component can be easily dissolved and removed, and the conversion of the island component to ultrafine fibers can be facilitated. Here, when the proportion of the sea component exceeds 80%, the thickness of the sea component becomes too thick, and when it is less than 20%, the amount of the sea component becomes too small, so that bonding is likely to occur between islands.

溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば、中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例は特開2007−107160号公報の図1および図2であるが、必ずしもこれらに限定されるものではない。なお図1は、中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式で島を形成する方法である。吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ、未延伸糸を得る。この引き取り速度は特に限定されないが、200m/分〜5000m/分であることが望ましい。200m/分以下では生産性が悪い。また、5000m/分以上では紡糸安定性が悪い。   As a spinneret used for melt spinning, any one having a group of hollow pins or a group of micropores for forming an island component can be used. For example, a spinneret in which an island component extruded from a hollow pin or a fine hole and a sea component whose flow path is designed to fill the space between them are merged and compressed to form a sea-island cross section may be used. . Examples of the spinneret preferably used are FIGS. 1 and 2 of JP-A-2007-107160, but are not necessarily limited thereto. FIG. 1 shows a method of forming an island by discharging a hollow pin to a sea component resin storage portion and compressing the merged portion. The discharged sea-island composite fibers are solidified by cooling air, and are taken out by a rotating roller or an ejector set at a predetermined take-up speed to obtain an undrawn yarn. The take-up speed is not particularly limited, but is preferably from 200 m / min to 5000 m / min. If it is less than 200 m / min, the productivity is poor. If the speed is 5000 m / min or more, spinning stability is poor.

得られた未延伸糸は、海成分を抽出後に得られる超極細繊維の用途・目的に応じて、そのままカット工程あるいはその後の抽出工程に供してもよいし、目的とする強度・伸度・熱収縮特性に合わせるために、延伸工程や熱処理工程を経由して、カット工程あるいはその後の抽出工程に供することができる。延伸工程は紡糸と延伸を別ステップで行う別延方
式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもかまわない。
The obtained undrawn yarn may be subjected to the cutting step or the subsequent extraction step as it is, depending on the use and purpose of the ultrafine fiber obtained after extracting the sea component, or may have the desired strength, elongation and heat. In order to adjust to the shrinkage property, it can be subjected to a cutting step or a subsequent extraction step via a stretching step or a heat treatment step. The drawing process may be a separate drawing method in which spinning and drawing are performed in separate steps, or a straight drawing method in which drawing is performed immediately after spinning in one step.

(撥水性極細繊維束)
得られた海島型複合繊維の海成分を溶解除去して撥水性極細繊維束とするには、ポリマーを選択的に溶出させる方法であればいかなる方法も採用できる。海成分の溶解除去は、織編物などの布帛の段階で行うのがよいが、糸、紐、綿の段階や二次製品の段階で行っても差し支えない。
(Water-repellent ultrafine fiber bundle)
In order to dissolve and remove the sea component of the obtained sea-island type conjugate fiber to obtain a water-repellent ultrafine fiber bundle, any method can be adopted as long as the polymer is selectively eluted. The dissolution and removal of the sea component is preferably performed at the stage of a fabric such as a woven or knitted fabric, but may be performed at the stage of yarn, string, cotton, or a secondary product.

上記で得られた撥水性極細繊維束は、表面張力が40mN/m以下、好ましくは1〜35mN/m以下の熱可塑性樹脂からなる。
そして、上記繊維束の単糸繊維径は、50〜1500nmであり、好ましくは100〜1000nmである。
そして、繊維直径の変動率CVは30%以下であることが必要であり、好ましくは0.01〜25%以下、さらに好ましくは0.1〜20%以下、とくに好ましくは1〜15%以下である。
The water-repellent ultrafine fiber bundle obtained above is made of a thermoplastic resin having a surface tension of 40 mN / m or less, preferably 1 to 35 mN / m or less.
The single fiber diameter of the fiber bundle is 50 to 1500 nm, preferably 100 to 1000 nm.
The variation rate CV of the fiber diameter needs to be 30% or less, preferably 0.01 to 25% or less, more preferably 0.1 to 20% or less, and particularly preferably 1 to 15% or less. is there.

上記の表面張力が40mN/mを超え、単子繊維径が1500nmを超えると、撥水性後加工処理を行わずに優れた撥水性を得ることができず、好ましくない。また、単子繊維径が50nm未満、島成分の直径のばらつきを表すcv%が30%を超える場合、極細繊維のため、断糸の原因となることから好ましくない。   If the surface tension exceeds 40 mN / m and the diameter of the single fiber exceeds 1500 nm, excellent water repellency cannot be obtained without performing post-water repellency processing, which is not preferable. Further, if the single fiber diameter is less than 50 nm and the cv%, which represents the variation in the diameter of the island component, exceeds 30%, it is not preferable because it is a very fine fiber and may cause breakage.

また、本発明の撥水性極細繊維束からなる接触角は、好ましくは120°以上、さらに好ましくは125°以上が好ましい。接触角が120°より低い場合、満足いく撥水性が得られない。   The contact angle of the water-repellent ultrafine fiber bundle of the present invention is preferably 120 ° or more, more preferably 125 ° or more. If the contact angle is lower than 120 °, satisfactory water repellency cannot be obtained.

本発明の撥水性極細繊維束は、織物、編物、フェルト、不織布、人工皮革などの中間製品とすることができる。そして、これらの布帛、中間製品、これからなる最終製品は、透湿防水性能を有する。透湿防水性とは、水(水滴)は通さないが、湿気(汗)は通す性質のことである。したがって、本発明の前記繊維束を原料に用いることにより、優れた撥水性能による防水効果と、極細繊維束の繊維間空隙を制御することによる透湿性能が得られ、さまざまな製品に透湿防水性を付与することができる。   The water-repellent ultrafine fiber bundle of the present invention can be used as an intermediate product such as a woven fabric, a knitted fabric, a felt, a nonwoven fabric, and artificial leather. And these fabrics, intermediate products, and final products made from them have moisture-permeation and waterproof performance. The moisture-permeation and waterproofness refers to a property that does not allow water (water droplets) to pass through but allows moisture (sweat) to pass. Therefore, by using the fiber bundle of the present invention as a raw material, a waterproof effect by excellent water repellency and a moisture permeability by controlling the inter-fiber gap of the ultrafine fiber bundle can be obtained. Waterproofness can be imparted.

これらは、ジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア製品、カーシートなどの車両内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途に適用することができる。   These include clothing such as jackets, skirts, pants, and underwear, sports clothing, clothing materials, interior products such as carpets, sofas, and curtains, vehicle interior products such as car seats, cosmetics, cosmetic masks, wiping cloths, and health products. It can be applied for daily use.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(1)表面張力
本発明の撥水性極細繊維を構成する熱可塑性樹脂(島成分)を、厚さ20μmのフィルムとした後、JISK6768に従い測定を行った。
(2)溶融粘度
乾燥処理後の海成分、島成分を、紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見る。
(3)海島型複合繊維の島径
透過型電子顕微鏡(TEM)を用いて、倍率30000倍で、繊維軸方向に対して垂直の繊維断面写真を撮影し、海島型複合繊維の島成分の外接円を算出し、その平均値(n数=100)から海島型複合繊維の島径を算出した。
(4)溶解速度測定
海成分および島成分を、各々、径0.3mm、長さ0.6mmのキャピラリーを24孔もつ口金から吐出し、1000〜2000m/分の紡糸速度で引き取って得た未延伸糸を残留伸度が30〜60%の範囲になるように延伸して、83dtex/24フィラメントのマルチフィラメントを作成した。これを所定の溶剤および溶解温度で浴比100として、溶解時間と溶解量から減量速度を算出した。表中では海島溶解速度差が200倍以上の場合を合格、200倍未満の場合を不合格とした。
(5)極細繊維の繊維径の均一性
極細繊維における繊維径の均一性として、繊維直径のばらつき(cv%)を算出し、評価した。倍率30000倍で繊維断面写真を撮影し、極細繊維の各単一糸の外接円を算出し、その外接円直径を求め、ランダムに選択した100個の極細繊維の各単一糸の外接円直径データから平均繊維径(r2)と標準偏差(σ)を算出し、以下に定義する繊維径変動係数(cv)を算出した。
繊維径変動係数(cv%)=σ/r2
(6)接触角
海島型複合繊維を2本合糸し、筒編み機にて度目40〜55となるように行った筒編み(布帛)を30cmの長さ作製した。その後上記筒編みを減量加工して撥水性極細繊維(布帛)としたのち、風乾し、高さ5mmの距離から0.1ccの水をスポイトにて編み地上に滴下する。滴下後編み地と水滴の接触角について測定を行った。この測定結果を、撥水性極細繊維の接触角とする。
Next, Examples and Comparative Examples of the present invention will be described in detail, but the present invention is not limited thereto. In addition, each measurement item in an Example was measured by the following method.
(1) Surface Tension A film having a thickness of 20 μm was formed from the thermoplastic resin (island component) constituting the water-repellent ultrafine fibers of the present invention, and the measurement was performed in accordance with JIS K6768.
(2) Melt viscosity The sea component and the island component after the drying treatment are set in an orifice set to the melting temperature of the ruder during spinning, melted and held for 5 minutes, and then extruded by applying a load of several levels and shearing at that time. Plot velocity versus melt viscosity. By connecting the plots gently, a shear rate-melt viscosity curve is created, and the melt viscosity at a shear rate of 1000 sec- 1 is observed.
(3) Island diameter of sea-island composite fiber Using a transmission electron microscope (TEM), a photograph of the fiber cross section perpendicular to the fiber axis direction is taken at a magnification of 30,000 times, and the circumscribed island component of the sea-island composite fiber is taken. The circle was calculated, and the island diameter of the sea-island composite fiber was calculated from the average value (n number = 100).
(4) Measurement of dissolution speed The sea component and the island component were discharged by discharging a capillary having a diameter of 0.3 mm and a length of 0.6 mm from a die having 24 holes, and were drawn at a spinning speed of 1000 to 2000 m / min. The drawn yarn was drawn so that the residual elongation was in the range of 30 to 60% to prepare a multifilament of 83 dtex / 24 filaments. Using this as a bath ratio of 100 with a predetermined solvent and dissolution temperature, the rate of weight loss was calculated from the dissolution time and dissolution amount. In the table, the case where the difference between the sea-island dissolution rates was 200 times or more was judged as pass, and the case where the difference was less than 200 times was judged as failed.
(5) Uniformity of Fiber Diameter of Ultrafine Fiber As the uniformity of the fiber diameter of the ultrafine fiber, the variation (cv%) of the fiber diameter was calculated and evaluated. Take a photograph of the fiber cross section at a magnification of 30,000 times, calculate the circumscribed circle of each single yarn of the ultrafine fiber, find the circumscribed circle diameter, and from the circumscribed circle diameter data of each single yarn of 100 ultrafine fibers selected at random. The average fiber diameter (r2) and standard deviation (σ) were calculated, and the fiber diameter variation coefficient (cv) defined below was calculated.
Fiber diameter variation coefficient (cv%) = σ / r2
(6) Contact Angle Two sea-island composite fibers were plied, and a cylinder knitting (fabric) was performed with a cylinder knitting machine so as to have a stitch of 40 to 55 to produce a length of 30 cm. Thereafter, the tubular knitting is reduced to a water-repellent ultrafine fiber (cloth), air-dried, and 0.1 cc of water is dropped from a distance of 5 mm onto the knitting ground with a dropper. After dropping, the contact angle between the knitted fabric and the water droplet was measured. The measurement result is defined as the contact angle of the water-repellent ultrafine fiber.

[実施例1]
島成分に表面張力34mN/m、240℃での溶融粘度が77Pa・sec、のポリプロピレン(サンアロマー社製SA03)、海成分に240℃における溶融粘度が300Pa・secであり、分子量4000のポリエチレングリコール(PEG)を3重量%、5−ナトリウムスルホイソフタル酸(SIP)を9mol%、エチレングリコール(EG)を80mol%、ジエチレングリコール(DEG)を20mol%共重合したポリエステル(改質PET1)を使用し、海:島=40:60の海島比率で836島10フィラメントの口金を用いて紡糸し、紡糸速度1000m/minで引き取り、未延伸糸を得た。続いて上記未延伸糸をホットロール−ホットロール系延伸機を用いて、延伸温度80℃、熱セット温度140℃で延伸倍率3倍にて延伸を行い、50dtexの海島型マルチフィラメントを得た。
[Example 1]
The island component has a surface tension of 34 mN / m, a polypropylene having a melt viscosity at 240 ° C. of 77 Pa · sec, and a sea component has a melt viscosity at 240 ° C. of 300 Pa · sec. Polyester (modified PET1) obtained by copolymerizing 3% by weight of PEG), 9 mol% of 5-sodium sulfoisophthalic acid (SIP), 80 mol% of ethylene glycol (EG), and 20 mol% of diethylene glycol (DEG) was used. : Island = 40:60 Sea-island ratio: 836 islands and 10 filaments were spun using a spinneret and taken off at a spinning speed of 1000 m / min to obtain an undrawn yarn. Subsequently, the undrawn yarn was drawn by a hot roll-hot roll drawing machine at a drawing temperature of 80 ° C and a heat setting temperature of 140 ° C at a draw ratio of 3 to obtain a sea-island type multifilament of 50 dtex.

上記海島型複合繊維を束ねて4%NaOH水溶液75℃にて20分間浸漬し、得られたポリプロピレンからなる極細繊維束を得た。この時海成分と島成分の溶解速度比は200倍以上であった。得られたポリプロピレン極細繊維の繊維径は700nm、繊維径変動係数は10%であった。   The sea-island composite fibers were bundled and immersed in a 4% NaOH aqueous solution at 75 ° C. for 20 minutes to obtain the obtained ultrafine fiber bundle made of polypropylene. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. The fiber diameter of the obtained ultrafine polypropylene fiber was 700 nm, and the fiber diameter variation coefficient was 10%.

また、上記海島型複合繊維を2本合糸し、筒編み機にて度目40〜55となるように30cmの長さの筒編みを作製して、海成分を減量加工して撥水性極細繊維としたのち風乾して布帛とした。接触角は140°であった。他結果は表1に示す。   In addition, two sea-island composite fibers are plied, and a 30-cm-long tubular knitted fabric is produced by a tubular knitting machine so as to have a stitch length of 40 to 55. After that, it was air-dried to obtain a fabric. The contact angle was 140 °. Other results are shown in Table 1.

[実施例2]
実施例1と同様の方法で175dtexの海島型マルチフィラメントを得た。この時海成分と島成分の溶解速度比は200倍以上であった。続いて実施例1と同様の方法で減量加工を行い、得られたポリプロピレン極細繊維の繊維径は1300nm、繊維径変動係数は9%であった。また、接触角は実施例1と同様の測定方法をしたところ125°であった。他結果は表1に示す。
[Example 2]
A sea-island type multifilament of 175 dtex was obtained in the same manner as in Example 1. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. Subsequently, weight reduction was performed in the same manner as in Example 1, and the fiber diameter of the obtained ultrafine polypropylene fiber was 1300 nm, and the fiber diameter variation coefficient was 9%. The contact angle measured by the same measurement method as in Example 1 was 125 °. Other results are shown in Table 1.

[実施例3]
島成分として、表面張力32mN/m、240℃での溶融粘度が130Pa・sec、の高密度ポリエチレン(三菱ケミカル社製HE495)を用いた以外は実施例1と同様の方法で17dtexの海島型マルチフィラメントを得た。この時海成分と島成分の溶解速度比は200倍以上であった。続いて実施例1と同様の方法で減量加工を行い、得られたポリプロピレン極細繊維の繊維径は400nm、繊維径変動係数は15%であった。また、接触角は実施例1と同様の測定方法をしたところ150°であった。他結果は表1に示す。
[Example 3]
A 17 dtex sea-island type multi-layered multi-layer of the same method as in Example 1 except that high-density polyethylene (HE495 manufactured by Mitsubishi Chemical Corporation) having a surface tension of 32 mN / m and a melt viscosity at 240 ° C. of 130 Pa · sec was used as the island component. Filament was obtained. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. Subsequently, weight reduction was carried out in the same manner as in Example 1, and the obtained ultrafine polypropylene fiber had a fiber diameter of 400 nm and a fiber diameter variation coefficient of 15%. The contact angle measured by the same measuring method as in Example 1 was 150 °. Other results are shown in Table 1.

[比較例1]
実施例1と同様の方法で300dtexの海島型マルチフィラメントを得た。この時海成分と島成分の溶解速度比は200倍以上であった。続いて実施例1と同様の方法で減量加工を行い、得られたポリプロピレン極細繊維の繊維径は1700nm、繊維径変動係数は12%であった。また、接触角は実施例1と同様の測定方法をしたところ110°であった。他結果は表1に示す。
[Comparative Example 1]
A sea-island type multifilament of 300 dtex was obtained in the same manner as in Example 1. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. Subsequently, weight reduction was performed in the same manner as in Example 1, and the fiber diameter of the obtained ultrafine polypropylene fiber was 1700 nm, and the fiber diameter variation coefficient was 12%. The contact angle measured by the same measuring method as in Example 1 was 110 °. Other results are shown in Table 1.

[比較例2]
実施例1と同様の方法で極細繊維の直径が40nmとなるように0.3dtexの海島型マルチフィラメントを得ようとしたが、断糸のためサンプルを採取することが困難であった。他結果は表1に示す。
[Comparative Example 2]
An attempt was made to obtain a 0.3 dtex sea-island type multifilament so that the diameter of the ultrafine fiber became 40 nm in the same manner as in Example 1, but it was difficult to collect a sample due to thread breakage. Other results are shown in Table 1.

[比較例3]
島成分として、表面張力43mN/m、290℃での溶融粘度が100Pa・sec、のポリエチレンテレフタレートを用いた。海成分として280℃における溶融粘度が300Pa・secであり、分子量4000のポリエチレングリコール(PEG)を3重量%、5−ナトリウムスルホイソフタル酸(SIP)を9mol%、ジオール成分としてエチレングリコール(EG)を100mol%共重合したポリエステル(改質PET2)を使用し、海:島=30:70の海島比率で836島10フィラメントの口金を用いて紡糸し、紡糸速度1000m/minで引き取り、未延伸糸を得た。海成分として以外は実施例1と同様の方法で62dtexの海島型マルチフィラメントを得た。この時海成分と島成分の溶解速度比は200倍以上であった。続いて実施例1と同様の方法で減量加工を行い、得られたポリエチレンテレフタレート極細繊維の繊維径は700nm、繊維径変動係数は11%であった。また、接触角は実施例1と同様の測定方法をしたところ60°であった。他結果は表1に示す。
[Comparative Example 3]
Polyethylene terephthalate having a surface tension of 43 mN / m and a melt viscosity at 290 ° C. of 100 Pa · sec was used as the island component. Melt viscosity at 280 ° C. is 300 Pa · sec as a sea component, 3% by weight of polyethylene glycol (PEG) having a molecular weight of 4000, 9 mol% of 5-sodium sulfoisophthalic acid (SIP), and ethylene glycol (EG) as a diol component. Using 100 mol% copolymerized polyester (modified PET2), spinning is performed with a sea: island = 30: 70 sea / island ratio using a die of 836 islands and 10 filaments, taken up at a spinning speed of 1000 m / min, and an undrawn yarn is obtained. Obtained. A sea-island type multifilament of 62 dtex was obtained in the same manner as in Example 1 except that the sea component was used. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. Subsequently, weight reduction was performed in the same manner as in Example 1, and the resulting polyethylene terephthalate ultrafine fibers had a fiber diameter of 700 nm and a fiber diameter variation coefficient of 11%. The contact angle measured by the same method as in Example 1 was 60 °. Other results are shown in Table 1.

[比較例4]
島成分として、表面張力46mN/m、溶融粘度が100Pa・sec、のナイロン6,6を用いた。他比較例3と同様の方法で50dtexの海島型マルチフィラメントを得た。この時、海成分と島成分の溶解速度比は200倍以上であった。続いて実施例1と同様の方法で減量加工を行い、得られたポリエチレンテレフタレート極細繊維の繊維径は700nm、繊維径変動係数は10%であった。また、接触角は実施例1と同様の測定方法をしたところ、水滴がすぐに繊維に吸水されたため測定できなかった。他結果は表1に示す。
[Comparative Example 4]
As the island component, nylon 6, 6 having a surface tension of 46 mN / m and a melt viscosity of 100 Pa · sec was used. In the same manner as in Comparative Example 3, a sea-island type multifilament of 50 dtex was obtained. At this time, the dissolution rate ratio between the sea component and the island component was 200 times or more. Subsequently, weight reduction was performed in the same manner as in Example 1, and the resulting polyethylene terephthalate ultrafine fibers had a fiber diameter of 700 nm and a fiber diameter variation coefficient of 10%. When the contact angle was measured in the same manner as in Example 1, the contact angle could not be measured because water droplets were immediately absorbed by the fibers. Other results are shown in Table 1.

Figure 2020026599
Figure 2020026599

本発明の撥水性熱可塑性極細繊維からなる撥水性極細繊維束は、撥水後加工を行わなくても優れた撥水性を示し、織、編み、湿式不織布等多様な加工ができることから、様々な繊維製品に複合し、優れた撥水性を付与することが可能である。   The water-repellent ultrafine fiber bundle made of the water-repellent thermoplastic ultrafine fiber of the present invention exhibits excellent water repellency without performing post-water-repellent processing, and can be woven, knitted, and variously processed from wet nonwoven fabrics. It can be combined with fiber products to give excellent water repellency.

1:分配前島成分ポリマー溜め部分
2:島成分分配用導入孔
3:海成分導入孔
4:分配前海成分ポリマー溜め部分
5:個別海/島=鞘/芯構造形成部
6:海島全体合流絞り部
7:最外列の島成分分配用導入孔から外周までの距離
1: Island component polymer reservoir portion before distribution 2: Inlet hole for island component distribution 3: Sea component introduction hole 4: Sea component polymer reservoir portion before distribution 5: Individual sea / island = sheath / core structure forming portion 6: Constriction of the entire sea-island Part 7: Distance from outermost row of island component distribution introduction holes to outer periphery

Claims (3)

表面張力が40mN/m以下の熱可塑性樹脂からなり、前記熱可塑性樹脂からなる繊維の単糸繊維径が50〜1500nmであり、繊維直径の変動率CVが30%以下であることを特徴とする撥水性極細繊維束。   The surface tension is made of a thermoplastic resin having a surface tension of 40 mN / m or less, and the fiber made of the thermoplastic resin has a single fiber diameter of 50 to 1500 nm, and a variation rate CV of the fiber diameter is 30% or less. Water-repellent ultrafine fiber bundle. 接触角が120°以上の撥水性極細繊維からなる請求項1に記載の撥水性極細繊維束。   The water-repellent microfine fiber bundle according to claim 1, comprising a water-repellent microfine fiber having a contact angle of 120 ° or more. 請求項1または2に記載の撥水性極細繊維束からなる布帛。   A cloth comprising the water-repellent ultrafine fiber bundle according to claim 1 or 2.
JP2018153116A 2018-08-16 2018-08-16 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle Pending JP2020026599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018153116A JP2020026599A (en) 2018-08-16 2018-08-16 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018153116A JP2020026599A (en) 2018-08-16 2018-08-16 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle

Publications (1)

Publication Number Publication Date
JP2020026599A true JP2020026599A (en) 2020-02-20

Family

ID=69622061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018153116A Pending JP2020026599A (en) 2018-08-16 2018-08-16 Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle

Country Status (1)

Country Link
JP (1) JP2020026599A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163353A (en) * 1990-10-19 1992-06-08 Toyobo Co Ltd Nonwoven fabric of olefin-based ultra-fine fiber
JPH07258964A (en) * 1994-03-16 1995-10-09 Mito Kagaku Kogyo Kk Ultrafine fiber and method for producing the same
JP2012057278A (en) * 2010-09-10 2012-03-22 Toray Ind Inc Ultra fine fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163353A (en) * 1990-10-19 1992-06-08 Toyobo Co Ltd Nonwoven fabric of olefin-based ultra-fine fiber
JPH07258964A (en) * 1994-03-16 1995-10-09 Mito Kagaku Kogyo Kk Ultrafine fiber and method for producing the same
JP2012057278A (en) * 2010-09-10 2012-03-22 Toray Ind Inc Ultra fine fiber

Similar Documents

Publication Publication Date Title
JP4571541B2 (en) Method for producing moisture-permeable and waterproof polyester fabric
JP4473867B2 (en) Sea-island type composite fiber bundle and manufacturing method thereof
JP4818273B2 (en) Manufacturing method of sea-island type composite spun fiber
US10604866B2 (en) Sea-island composite fiber, composite ultra-fine fiber, and fiber product
TWI709674B (en) Core-sheath composite fiber, SLIT FIBRE and manufacturing methods of these fibers
TWI541399B (en) Composite fiber
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
JP4950472B2 (en) Method for producing short cut nanofibers
JP2007262610A (en) Combined filament yarn
JP5284889B2 (en) Fiber products
JP2007084946A (en) Splittable conjugate fiber
JP2016172945A (en) Ultrafine polyester fiber having convexoconcave surface, and sea-island type conjugate fiber
JP2020026599A (en) Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle
JP4922668B2 (en) Permeability woven and knitted fabric, production method thereof and textile
JP4995523B2 (en) False twisted yarn and method for producing the same
JP7176886B2 (en) Island-in-the-sea composite fibers and ultrafine fiber bundles
JP4315002B2 (en) High elongation polymer alloy fiber and method for producing the same
JP2015183343A (en) sea-island type multi-component composite fiber
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JP6829134B2 (en) Porous hollow fiber
JP2005048339A (en) Method and apparatus for producing polylactic acid filament nonwoven fabric
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JP2020076193A (en) Fiber bundle and textile product
KR100804039B1 (en) A process of preparing for sea- island type composite yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230502