JP6829134B2 - Porous hollow fiber - Google Patents

Porous hollow fiber Download PDF

Info

Publication number
JP6829134B2
JP6829134B2 JP2017067888A JP2017067888A JP6829134B2 JP 6829134 B2 JP6829134 B2 JP 6829134B2 JP 2017067888 A JP2017067888 A JP 2017067888A JP 2017067888 A JP2017067888 A JP 2017067888A JP 6829134 B2 JP6829134 B2 JP 6829134B2
Authority
JP
Japan
Prior art keywords
sea
island
fiber
component
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067888A
Other languages
Japanese (ja)
Other versions
JP2018168511A (en
Inventor
中島 卓
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2017067888A priority Critical patent/JP6829134B2/en
Publication of JP2018168511A publication Critical patent/JP2018168511A/en
Application granted granted Critical
Publication of JP6829134B2 publication Critical patent/JP6829134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、多孔中空繊維およびその製造に用いる海島型複合繊維に関する。 The present invention relates to a porous hollow fiber and a sea-island type composite fiber used for producing the same.

ポリエステル繊維は、機械的特性をはじめ様々な優れた特性を有しており、衣料用途をはじめとして各種の用途や分野に利用されている。しかし、ポリエステル繊維は、天然繊維に比べて風合い的に硬い、吸水性がない、触感の点で好ましくないと言われ、繊維の断面形状を変えることによって、これらの問題の解決が図られてきた。 Polyester fibers have various excellent properties including mechanical properties, and are used in various uses and fields including clothing applications. However, polyester fibers are said to be harder in texture, less water-absorbent, and less preferable in terms of tactile sensation than natural fibers, and these problems have been solved by changing the cross-sectional shape of the fibers. ..

衣料用途においては、軽量でありながら高い布帛強度を得るために、断面形状を中空にした中空繊維が用いられている。中空繊維を得るためには、紡糸口金を中空形状にしたり、複合繊維(通常コンジュゲート紡糸と呼ばれている)装置を用いて、繊維中心部(芯部)にポリビニールアルコール樹脂を用い、繊維外周部(鞘部)にポリエステル樹脂を用いる芯鞘構造の複合繊維とし、紡糸捲取後に芯部のポリビニールアルコール樹脂を溶出させ、鞘部のポリエステル繊維を残すことで高い中空率の中空繊維を得ることが提案されている(例えば、特許文献1)。しかし、紡糸口金を中空形状にすることによって中空繊維を得る方法では、紡糸断糸が発生しやすく、安定して生産を行うことが難しい。他方、芯鞘構造の複合繊維から中空繊維を得る方法では、中空率を高くすることは比較的容易でありながらも、紡糸口金の一吐出孔あたりの面積が巨大になってしまう他、芯部の樹脂成分の位置をコントロールすることが難しく、均一な繊維を得ることが困難である。特に、長繊維では芯部の樹脂成分の溶出を完全に行うことが難しい。これまで、糸長方向および糸断面方向に均一に多くの中空部を形成した良好な多孔中空繊維は得られていない。 In garment applications, hollow fibers having a hollow cross-sectional shape are used in order to obtain high fabric strength while being lightweight. In order to obtain hollow fibers, the spinneret is made hollow, or a composite fiber (usually called conjugate spinning) device is used, and a polyvinyl alcohol resin is used for the fiber center (core). A composite fiber with a core-sheath structure that uses polyester resin for the outer periphery (sheath), and the polyvinyl alcohol resin in the core is eluted after spinning and winding, leaving the polyester fiber in the sheath to create a hollow fiber with a high hollow ratio. It has been proposed to obtain (eg, Patent Document 1). However, in the method of obtaining hollow fibers by making the spinneret into a hollow shape, spinning breakage is likely to occur, and it is difficult to carry out stable production. On the other hand, in the method of obtaining hollow fibers from composite fibers having a core-sheath structure, although it is relatively easy to increase the hollow ratio, the area per discharge hole of the spinneret becomes huge and the core portion. It is difficult to control the position of the resin component of the resin component, and it is difficult to obtain a uniform fiber. In particular, it is difficult to completely elute the resin component of the core portion of long fibers. So far, good porous hollow fibers in which many hollow portions are uniformly formed in the yarn length direction and the yarn cross-section direction have not been obtained.

ところで、特開平9−241941号公報(特許文献2)および特開2001−115334号公報(特許文献3)には、繊維軸に対して直交する断面が中空であるコアー部と、該コアー部外表面から突出し且つ該コアー部の長さ方向に沿って延在するフィン部とからなる形状の中空糸が提案されている。しかし、この形状では、マルチフィラメントの状態での空隙率は低くなり、結果的に軽量性が劣ることになる。 By the way, in Japanese Patent Application Laid-Open No. 9-241941 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2001-115334 (Patent Document 3), a core portion having a hollow cross section orthogonal to the fiber axis and a core portion outside the core portion. A hollow fiber having a shape including a fin portion protruding from the surface and extending along the length direction of the core portion has been proposed. However, with this shape, the porosity in the multifilament state is low, resulting in poor lightness.

また、特開2008−57060号公報(特許文献4)にも中空繊維が記載されているが、この中空繊維はフィンの枚数が少なく、高度に異型化された断面であるために、繊維のシルクファクター(強度×√伸度)が低くなり、延伸工程における毛羽の発生が多く、繊維断面の変形により中空率と空隙率が大きく低下する。 Further, Japanese Patent Application Laid-Open No. 2008-57060 (Patent Document 4) also describes hollow fibers, but since these hollow fibers have a small number of fins and a highly deformed cross section, the silk of the fibers The factor (strength x √ elongation) becomes low, fluffing occurs frequently in the drawing process, and the hollowness ratio and void ratio greatly decrease due to the deformation of the fiber cross section.

特開2002−173824号公報Japanese Unexamined Patent Publication No. 2002-173824 特開平9−241941号公報Japanese Unexamined Patent Publication No. 9-241941 特開2001−115334号公報Japanese Unexamined Patent Publication No. 2001-115334 特開2008−57060号公報Japanese Unexamined Patent Publication No. 2008-57060

本発明は、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を提供することを目的とする。 An object of the present invention is to provide a porous hollow fiber having a uniform diameter of the hollow portion even if the proportion of the hollow portion is large, and which is lightweight and has high heat retention.

本発明はまた、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を得るために用いる海島型複合繊維であって、海島型複合繊維における島成分の含有比率が高くても島成分を容易に除去でき、実用に耐える十分な機械的強度を有し、中空部の数が極めて多い多孔中空繊維を得ることができる、海島型複合繊維を提供することを目的とする。 The present invention is also a sea-island type composite fiber used to obtain a porous hollow fiber having a uniform diameter of the hollow part even if the proportion of the hollow part is large, which is lightweight and has high heat retention, and is an island in the sea-island type composite fiber. Provided is a sea-island type composite fiber capable of easily removing island components even if the content ratio of the components is high, having sufficient mechanical strength to withstand practical use, and being able to obtain porous hollow fibers having an extremely large number of hollow portions. The purpose is to do.

〔多孔中空繊維〕
すなわち本発明は、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする複数本の海島型複合繊維から該島成分を除去して得られる多孔中空繊維であって、該繊維の長さ方向に対して直角な繊維断面において観察される中空部の数が多孔中空繊維の1本あたり100以上であり、互に隣り合う中空部の間隔が100nm以上であり、中空部のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーがジカルボン酸成分とジオール成分とのエステル化反応によりオリゴマーを生成しその後オリゴマーを重縮合反応させることにより製造されたポリエステルであり、該ポリエステルにはアルカリ金属化合物および/またはアルカリ土類金属化合物が全ジカルボン酸成分に対して0.5〜2.0モル%となる量で含まれ、かつ下記化学式(I)で表されるリン化合物が下記式(1)を満足する量で含まれていることを特徴とする、多孔中空繊維である。
[Perforated hollow fiber]
That is, the present invention is a porous hollow fiber obtained by removing the island component from a plurality of sea-island type composite fibers having an easily soluble polymer as an island component and a poorly soluble polymer as a sea component. The number of hollow portions observed in the fiber cross section perpendicular to the length direction is 100 or more per porous hollow fiber, the distance between the hollow portions adjacent to each other is 100 nm or more, and each of the hollow portions The diameter is in the range of 10 to 1000 nm, the variation in the diameter of the hollow portion (CV value) is 30% or less, and the poorly soluble polymer forms an oligomer by the esterification reaction of the dicarboxylic acid component and the diol component. Then, it is a polyester produced by subjecting an oligomer to a polycondensation reaction, and the polyester contains 0.5 to 2.0 mol% of an alkali metal compound and / or an alkaline earth metal compound with respect to the total dicarboxylic acid component. It is a porous hollow fiber, which is contained in such an amount and contains a phosphorus compound represented by the following chemical formula (I) in an amount satisfying the following formula (1).

0.80<P[モル]/M[モル]≦2.0 ・・・・(1)
(上記式(1)中、Pはリン化合物のモル数、Mはアルカリ金属化合物および/またはアルカリ土類金属化合物のモル数を表す。)
0.80 <P [molar] / M [molar] ≤ 2.0 ... (1)
(In the above formula (1), P represents the number of moles of the phosphorus compound, and M represents the number of moles of the alkali metal compound and / or the alkaline earth metal compound.)

〔海島型複合繊維〕
本発明はまた、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする海島型複合繊維であって、この複合繊維の繊維長さ方向に対して直角な繊維断面において観察される島成分の数が100以上であり、互に隣り合う島成分の間隔が100nm以上であり、かつ島成分のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーがジカルボン酸成分とジオール成分とのエステル化反応によりオリゴマーを生成しその後オリゴマーを重縮合反応させることにより製造されたポリエステルであり、該ポリエステルにはアルカリ金属化合物および/またはアルカリ土類金属化合物が全ジカルボン酸成分に対して0.5〜2.0モル%となる量で含まれ、かつ下記化学式(I)で表されるリン化合物が下記式(1)を満足する量で含まれていることを特徴とする、海島型複合繊維である。
[Kaijima type composite fiber]
The present invention is also a sea-island type composite fiber containing an easily soluble polymer as an island component and a poorly soluble polymer as a sea component, and is observed in a fiber cross section perpendicular to the fiber length direction of the composite fiber. The number of island components is 100 or more, the distance between adjacent island components is 100 nm or more, the diameter of each of the island components is in the range of 10 to 1000 nm, and the variation in the diameter of the hollow portion (CV value). ) Is 30% or less, and the poorly soluble polymer is a polyester produced by forming an oligomer by an esterification reaction of a dicarboxylic acid component and a diol component and then subjecting the oligomer to a polycondensation reaction. Contains an alkali metal compound and / or an alkaline earth metal compound in an amount of 0.5 to 2.0 mol% with respect to the total dicarboxylic acid component, and the phosphorus compound represented by the following chemical formula (I) is as follows. It is a sea-island type composite fiber characterized in that it is contained in an amount satisfying the formula (1).

0.80<P[モル]/M[モル]≦2.0 ・・・・(1)
(上記式(1)中、Pはリン化合物のモル数、Mはアルカリ金属化合物および/またはアルカリ土類金属化合物のモル数を表す。)
0.80 <P [molar] / M [molar] ≤ 2.0 ... (1)
(In the above formula (1), P represents the number of moles of the phosphorus compound, and M represents the number of moles of the alkali metal compound and / or the alkaline earth metal compound.)

本発明によれば、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を提供することができる。 According to the present invention, it is possible to provide a porous hollow fiber having a uniform diameter of the hollow portion even if the proportion of the hollow portion is large, and is lightweight and has high heat retention.

本発明はまた、多孔中空繊維を得るために用い、海島型複合繊維における島成分の含有比率が高くても島成分を容易に除去することができ、実用に耐える十分な機械的強度を有し、中空部の数が極めて多い多孔中空繊維を得ることができる、海島型複合繊維を提供することができる。 The present invention is also used to obtain a porous hollow fiber, and even if the content ratio of the island component in the sea-island type composite fiber is high, the island component can be easily removed and has sufficient mechanical strength to withstand practical use. It is possible to provide a sea-island type composite fiber capable of obtaining a porous hollow fiber having an extremely large number of hollow portions.

本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。It is sectional drawing of a part of the spinneret used for spinning the sea-island type composite fiber of this invention. 本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。It is sectional drawing of a part of the spinneret used for spinning the sea-island type composite fiber of this invention. 本発明の海島型複合繊維の一例の横断面説明図である。It is sectional drawing explanatory view of an example of the sea-island type composite fiber of this invention.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

〔多孔中空繊維〕
本発明の多孔中空繊維において繊維の長さ方向に対して直角な繊維断面において観察される中空部の数は繊維1本あたり100以上、好ましくは500以上である。中空部の数が100未満であると、多孔中空繊維の軽量性、保温性およびソフト感について十分な性能を得ることができない。なお、中空部の数をあまりに多くしすぎると、紡糸口金の製造コストが高くなる他、紡糸口金の加工精度自体も低下しやすくなるので、中空部の数を1000以下とすることが好ましい。
[Perforated hollow fiber]
In the porous hollow fiber of the present invention, the number of hollow portions observed in the fiber cross section perpendicular to the length direction of the fiber is 100 or more, preferably 500 or more per fiber. If the number of hollow portions is less than 100, it is not possible to obtain sufficient performance regarding the lightness, heat retention and soft feeling of the porous hollow fiber. If the number of hollow portions is too large, the manufacturing cost of the spinneret increases and the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of hollow portions is preferably 1000 or less.

多孔中空繊維の中空部の直径は10〜1000nm、好ましくは100〜700nmである。中空部の直径が10nm未満であると繊維構造自身が不安定で、中空形成性が不安定になり、1000nmを越えると多孔中空繊維特有の保温性が得られない。なお、多孔中空繊維の中空部の直径は均一であるほど繊維の品位が向上する。 The diameter of the hollow portion of the porous hollow fiber is 10 to 1000 nm, preferably 100 to 700 nm. If the diameter of the hollow portion is less than 10 nm, the fiber structure itself becomes unstable and the hollow forming property becomes unstable, and if it exceeds 1000 nm, the heat retention characteristic of the porous hollow fiber cannot be obtained. The more uniform the diameter of the hollow portion of the porous hollow fiber, the better the quality of the fiber.

繊維の長さ方向に対して直角な繊維断面において観察される互に隣り合う中空部の間隔は100nm以上、好ましくは200nm以上である。100nm未満であると島成分を溶解除去した後に得られる多孔中空繊維の機械的強度を十分に確保することができない。中空部とそれに隣接する中空部との間隔は、多孔中空繊維を製造するときに海島型複合繊維の海成分内に貫通した微細孔を効率的に形成し、均質性の高い多孔中空繊維を得る観点から、500nm未満であることが好ましい。 The distance between the hollow portions adjacent to each other observed in the fiber cross section perpendicular to the length direction of the fiber is 100 nm or more, preferably 200 nm or more. If it is less than 100 nm, it is not possible to sufficiently secure the mechanical strength of the porous hollow fiber obtained after dissolving and removing the island component. The distance between the hollow portion and the hollow portion adjacent to the hollow portion efficiently forms micropores penetrating into the sea component of the sea-island type composite fiber when the porous hollow fiber is manufactured, and a highly homogeneous porous hollow fiber is obtained. From the viewpoint, it is preferably less than 500 nm.

中空部の直径のばらつき(CV値)は、特に、長繊維において、糸長方向および糸断面方向に均一に中空部を形成する観点から、好ましくは0〜30%、さらに好ましくは0〜20%、さらに好ましくは0〜15%である。このCV値が低いことは、繊度のばらつきが少なく、均一な多孔中空繊維であることを意味する。 The variation in the diameter of the hollow portion (CV value) is preferably 0 to 30%, more preferably 0 to 20%, particularly from the viewpoint of uniformly forming the hollow portion in the yarn length direction and the yarn cross-section direction in the long fibers. , More preferably 0 to 15%. When the CV value is low, it means that the fiber is a uniform porous hollow fiber with little variation in fineness.

本発明の多孔中空繊維は、引張り強さが1.0〜6.0cN/dtexであることが好ましい。この範囲の引っ張り強さを備えることで、引張強さを必要とする多くの用途に対応することができる。 The porous hollow fiber of the present invention preferably has a tensile strength of 1.0 to 6.0 cN / dtex. By providing the tensile strength in this range, it is possible to cope with many applications requiring tensile strength.

また、本発明の多孔中空繊維は、切断伸び率が15〜60%であることが好ましい。この範囲の切断伸び率を備えることで、様々な用途に応用展開可能な強度を持つ。 Further, the porous hollow fiber of the present invention preferably has a cutting elongation rate of 15 to 60%. By providing a cutting elongation in this range, it has strength that can be applied and developed in various applications.

〔易溶解性ポリマー〕
本発明の多孔中空繊維を得るために用いる海島型複合繊維の島成分に用いる易溶解性ポリマーとしては、海成分に用いる難溶解性ポリマーよりもアルカリ水溶液に対する溶解性が高く、難溶解性ポリマーよりも容易に溶解するポリマーを用いる。この易溶解性ポリマーは、アルカリ水溶液に容易に溶解するポリマーであり、例えば、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合ポリマー、ポリエチレングリコール化合物共重合ポリエステル、およびポリエチレングリコール化合物と5−ナトリウムスルホイソフタル酸との共重合ポリエステルを用いることができる。
[Easy-soluble polymer]
The easily soluble polymer used for the island component of the sea-island type composite fiber used to obtain the porous hollow fiber of the present invention has higher solubility in an alkaline aqueous solution than the poorly soluble polymer used for the sea component, and is more soluble than the poorly soluble polymer. Also use a polymer that dissolves easily. This easily soluble polymer is a polymer that is easily dissolved in an alkaline aqueous solution, and includes, for example, polylactic acid, ultrahigh molecular weight polyalkylene oxide condensed polymer, polyethylene glycol compound copolymerized polyester, and polyethylene glycol compound and 5-sodium sulfoisophthalic acid. Copolymerized polyester with can be used.

なかでも、アルカリへの易溶解性と海島断面形成性とを両立させるために、易溶解性ポリマーが、6〜12モル%の5−ナトリウムスルホン酸および94〜88モル%のテレフタル酸をジカルボン酸成分とし、3〜10重量%の分子量4000〜12000のポリエチレングリコールおよび97〜90重量%のジエチレングリコールをジオール成分としてなる共重合ポリエステルであることが好ましい。この共重合ポリエステルは、固有粘度が0.4〜0.6であることが好ましい。 Among them, in order to achieve both the solubility in alkali and the cross-sectional formation property of sea islands, the easily soluble polymer contains 6 to 12 mol% of 5-sodium sulfonic acid and 94 to 88 mol% of terephthalic acid as dicarboxylic acid. A copolymerized polyester containing 3 to 10% by weight of polyethylene glycol having a molecular weight of 4000 to 12000 and 97 to 90% by weight of diethylene glycol as a diol component is preferable. The copolymerized polyester preferably has an intrinsic viscosity of 0.4 to 0.6.

この共重合ポリエステルにおける共重合成分の5−ナトリウムイソフタル酸は、得られる共重合ポリエステルの親水性と溶融粘度の向上に寄与し、ポリエチレングリコールは得られる共重合体の親水性を向上させる。 The copolymerization component 5-sodium isophthalic acid in this copolymerized polyester contributes to the improvement of the hydrophilicity and melt viscosity of the obtained copolymerized polyester, and the polyethylene glycol improves the hydrophilicity of the obtained copolymer.

この共重合ポリエステルにおけるポリエチレングリコールの分子量は4000〜12000である。分子量が12000を超えるとその高次構造に起因すると考えられる親水性が高くなるが、ジカルボン酸成分との反応性が低下して、得られる反応生成物はブレンド系になるため、耐熱性・紡糸安定性が不足することになる。他方分子量が4000未満であると親水性が不十分となり島成分の除去が困難になる。 The molecular weight of polyethylene glycol in this copolymerized polyester is 4000 to 12000. When the molecular weight exceeds 12000, the hydrophilicity, which is considered to be due to the higher-order structure, increases, but the reactivity with the dicarboxylic acid component decreases, and the obtained reaction product becomes a blend system, so that it is heat-resistant and spun. There will be a lack of stability. On the other hand, if the molecular weight is less than 4000, the hydrophilicity becomes insufficient and it becomes difficult to remove the island component.

共重合ポリエステルにおけるポリエチレングリコールの共重合量が3重量%未満であると親水性が不十分であり、島成分をアルカリ水溶液で除去することが困難になりやすく、好ましくない。他方、ポリエチレングリコールの共重合量が10重量%を超えると、ポリエチレングリコールには本来溶融粘度低下作用があるので、得られる共重合体の粘度が低すぎ、多孔中空繊維を提供する本発明の目的を達成することが困難になりやすく、好ましくない。 If the copolymerization amount of polyethylene glycol in the copolymerized polyester is less than 3% by weight, the hydrophilicity is insufficient and it tends to be difficult to remove the island component with an alkaline aqueous solution, which is not preferable. On the other hand, when the copolymerization amount of polyethylene glycol exceeds 10% by weight, polyethylene glycol originally has a melt viscosity lowering effect, so that the viscosity of the obtained copolymer is too low, and an object of the present invention to provide a porous hollow fiber. Is not preferable because it tends to be difficult to achieve.

〔溶解速度比〕
島成分の易溶解性ポリマーと海成分の難溶解性ポリマーの溶解速度比(島成分/海成分)は、200以上であることが好ましい。この溶解速度比が200未満であると、得られる海島型複合繊維の断面中央部の島成分をアルカリ水溶液で溶解させている間に、繊維断面表層部の海成分もその一部が溶解されることになり、島成分を完全に溶解除去するために海成分も部分的に溶解され繊維が減量されてしまうことになり、難溶解性ポリマーの太さ斑や溶剤浸食による繊維の強度劣化が発生するとともに、毛羽やフィブリルを生じ、繊維を用いた製品の品位を低下させることがあり好ましくない。
[Dissolution rate ratio]
The dissolution rate ratio (island component / sea component) of the easily soluble polymer of the island component and the poorly soluble polymer of the sea component is preferably 200 or more. When this dissolution rate ratio is less than 200, a part of the sea component in the surface layer of the fiber cross section is also dissolved while the island component in the central part of the cross section of the obtained sea island type composite fiber is dissolved in the alkaline aqueous solution. As a result, in order to completely dissolve and remove the island component, the sea component is also partially dissolved and the amount of fiber is reduced, resulting in thickness unevenness of the poorly soluble polymer and deterioration of fiber strength due to solvent erosion. At the same time, fluff and fibrils may be generated, which may deteriorate the quality of the product using the fiber, which is not preferable.

〔難溶解性ポリマー〕
本発明の多孔中空繊維を得るために用いる海島型複合繊維の海成分に用いられる難溶解性ポリマーは、アルカリ水溶液に容易に溶解しないポリマーである。この難溶解性ポリマーは、海島型複合繊維において島成分として組み合わせて用いる易溶解性ポリマーとの間で、上記の溶解速度比を満足するポリマーである。
[Slightly soluble polymer]
The poorly soluble polymer used in the sea component of the sea-island type composite fiber used to obtain the porous hollow fiber of the present invention is a polymer that is not easily dissolved in an alkaline aqueous solution. This poorly soluble polymer is a polymer that satisfies the above-mentioned dissolution rate ratio with the easily soluble polymer used in combination as an island component in the sea-island type composite fiber.

本発明ではこの難溶解性ポリマーとして、ジカルボン酸成分とジオール成分とのエステル化反応によりオリゴマーを生成しその後オリゴマーを重縮合反応させることにより製造されたポリエステルを用いる。そしてこのポリエステルには、アルカリ金属化合物および/またはアルカリ土類金属化合物が全ジカルボン酸成分に対して0.5〜2.0モル%となる量で含まれる。さらにこのポリエステルには、下記化学式(I)で表されるリン化合物が下記式(1)を満足する量で含まれている。 In the present invention, as this poorly soluble polymer, a polyester produced by forming an oligomer by an esterification reaction of a dicarboxylic acid component and a diol component and then polycondensing the oligomer is used. The polyester contains an alkali metal compound and / or an alkaline earth metal compound in an amount of 0.5 to 2.0 mol% with respect to the total dicarboxylic acid component. Further, this polyester contains a phosphorus compound represented by the following chemical formula (I) in an amount satisfying the following formula (1).

0.80<P[モル]/M[モル]≦2.0 ・・・・(1)
(上記式(1)中、Pはリン化合物のモル数、Mはアルカリ金属化合物および/またはアルカリ土類金属化合物のモル数を表す。)
0.80 <P [molar] / M [molar] ≤ 2.0 ... (1)
(In the above formula (1), P represents the number of moles of the phosphorus compound, and M represents the number of moles of the alkali metal compound and / or the alkaline earth metal compound.)

このアルカリ金属化合物および/またはアルカリ土類金属化合物およびリン化合物には、海島型複合繊維から島成分を溶解除去する際に、同時に海成分の繊維表面に微細孔を形成する作用がある。難溶解性ポリマーとしてジカルボン酸成分とジオール成分とのエステル化反応によりオリゴマーを生成しその後オリゴマーを重縮合反応させることにより製造されたポリエステルを用い、アルカリ金属化合物および/またはアルカリ土類金属化合物およびリン化合物をこの範囲で含有することによって、特に長繊維において、糸長方向および糸断面方向に、島成分を除去するための溶剤を浸透させ、島成分を均一に除去し、数多くの中空部を形成させることができる。 The alkali metal compound and / or the alkaline earth metal compound and the phosphorus compound have an action of forming micropores on the fiber surface of the sea component at the same time when the island component is dissolved and removed from the sea island type composite fiber. As a poorly soluble polymer, polyester produced by forming an oligomer by an esterification reaction of a dicarboxylic acid component and a diol component and then subjecting the oligomer to a polycondensation reaction is used, and an alkali metal compound and / or an alkaline earth metal compound and phosphorus are used. By containing the compound in this range, a solvent for removing island components is permeated in the yarn length direction and the yarn cross-sectional direction, especially in long fibers, the island components are uniformly removed, and a large number of hollow portions are formed. Can be made to.

アルカリ金属化合物および/またはアルカリ土類金属化合物のアルカリ金属元素とアルカリ土類金属元素としては、好ましくはLi、Na、Mg、Ca、Sr、Ba、さらに好ましくはCa、Sr、Ba、特に好ましくはCaを用いる。また、アルカリ金属化合物および/またはアルカリ土類金属化合物として、リン化合物と反応して含金属リン化合物を形成するものを用いる。具体的には、有機カルボン酸との塩が好ましく、なかでも酢酸塩は反応により副生する酢酸を容易に除去できるので特に好ましい。アルカリ金属および/またはアルカリ土類金属化合物は1種のみで使用しても2種以上併用してもよい。 The alkali metal element and the alkaline earth metal element of the alkali metal compound and / or the alkaline earth metal compound are preferably Li, Na, Mg, Ca, Sr, Ba, more preferably Ca, Sr, Ba, particularly preferably. Use Ca. Further, as the alkali metal compound and / or the alkaline earth metal compound, a compound that reacts with a phosphorus compound to form a metal-containing phosphorus compound is used. Specifically, salts with organic carboxylic acids are preferable, and acetic acid salts are particularly preferable because acetic acid produced as a by-product can be easily removed by the reaction. The alkali metal and / or alkaline earth metal compound may be used alone or in combination of two or more.

P[モル]/M[モル]の値は、好ましくは0.80〜2.0、さらに好ましくは0.82〜1.5である。P[モル]/M[モル]の値が0.80未満であるとリン化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物とから形成される粒子量が減少するため、得られるポリエステルを溶融紡糸し、次いでアルカリ減量することで得られるポリエステル繊維の海成分の繊維表面への微細孔形成が不十分となり、十分な多孔中空を得ることが難く、ポリエステル中のアルカリ金属化合物および/またはアルカリ土類金属化合物量が過剰となり、過剰な金属原子成分がポリエステルの熱分解を促進し熱安定性を損なうため好ましくない。他方、P[モル]/M[モル]の値が2.0を超えるとリン化合物が過剰となり、過剰なリン化合物がポリエステルの重合反応を阻害するため好ましくない。 The value of P [molar] / M [molar] is preferably 0.80 to 2.0, more preferably 0.82 to 1.5. When the value of P [mol] / M [mol] is less than 0.80, the amount of particles formed from the phosphorus compound and the alkali metal compound and / or the alkaline earth metal compound decreases, so that the obtained polyester is melted. The formation of fine pores on the fiber surface of the sea component of the polyester fiber obtained by spinning and then reducing the amount of alkali is insufficient, and it is difficult to obtain a sufficiently porous hollow, and the alkali metal compound and / or alkaline soil in the polyester It is not preferable because the amount of the metal compound is excessive and the excess metal atomic component promotes the thermal decomposition of the polyester and impairs the thermal stability. On the other hand, if the value of P [molar] / M [molar] exceeds 2.0, the phosphorus compound becomes excessive, and the excess phosphorus compound inhibits the polymerization reaction of polyester, which is not preferable.

アルカリ金属化合物および/またはアルカリ土類金属化合物は、上述のポリエステルのジカルボン酸成分に対して0.5〜2.0モル%、好ましくは0.8〜1.5モル%の範囲で含有するように添加する。添加量が0.5モル%未満であると、リン化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物とから形成される粒子量が減少するため、得られるポリエステルを溶融紡糸し次いでアルカリ減量することで得られるポリエステル繊維の海成分の繊維表面への微細孔形成が不十分となり、十分な多孔中空が得られない。他方、2.0モル%を越えるとこれらのリン化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物とから形成される粒子が粗大な粒子となり、得られるポリエステルを溶融紡糸し次いでアルカリ減量することで得られるポリエステル繊維の海成分の繊維表面への微細孔も粗大なものとなり、多孔中空は得られるものの残った海成分の糸強度が低下し過ぎてしまう他、溶融紡糸工程での製糸性も著しく悪化する。 The alkali metal compound and / or the alkaline earth metal compound is contained in the range of 0.5 to 2.0 mol%, preferably 0.8 to 1.5 mol% with respect to the dicarboxylic acid component of the polyester described above. Add to. When the addition amount is less than 0.5 mol%, the amount of particles formed from the phosphorus compound and the alkali metal compound and / or the alkaline earth metal compound decreases, so that the obtained polyester is melt-spun and then alkali-reduced. As a result, the formation of fine pores on the fiber surface of the sea component of the polyester fiber obtained is insufficient, and a sufficient porous hollow cannot be obtained. On the other hand, when it exceeds 2.0 mol%, the particles formed from these phosphorus compounds and alkali metal compounds and / or alkaline earth metal compounds become coarse particles, and the obtained polyester is melt-spun and then alkali-reduced. The fine pores of the sea component of the polyester fiber obtained in the above process are also coarse, and although a porous hollow is obtained, the thread strength of the remaining sea component is excessively reduced, and the yarn-making property in the melt spinning process is also improved. It gets worse significantly.

〔海島型複合繊維〕
本発明はまた、海島型複合繊維である。すなわち、本発明はまた、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする海島型複合繊維であって、この複合繊維の繊維長さ方向に対して直角な繊維断面において観察される島成分の数が100以上であり、互に隣り合う島成分の間隔が100nm以上であり、かつ島成分のそれぞれの直径が10〜1000nmの範囲内にあることを特徴とする、海島型複合繊維である。
[Kaijima type composite fiber]
The present invention is also a sea-island type composite fiber. That is, the present invention is also a sea-island type composite fiber containing an easily soluble polymer as an island component and a poorly soluble polymer as a sea component, and is observed in a fiber cross section perpendicular to the fiber length direction of the composite fiber. The sea-island type is characterized in that the number of island components to be formed is 100 or more, the distance between adjacent island components is 100 nm or more, and the diameter of each of the island components is within the range of 10 to 1000 nm. It is a composite fiber.

この海島型複合繊維は、上記の多孔中空繊維を得るために用いることができる。この海島型複合繊維において、島成分の数は100以上であることが必要であり、好ましくは500以上である。100未満であると、海島型複合繊維から得られる多孔中空繊維の島成分の数も100未満となり、多孔中空繊維の軽量性、保温性およびソフト感について十分な性能を得ることができない。なお、島成分の数をあまりに多くしすぎると、紡糸口金の製造コストが高くなる他、紡糸口金の加工精度自体も低下しやすくなるので、島成分の数を1000以下とすることが好ましい。 This sea-island type composite fiber can be used to obtain the above-mentioned porous hollow fiber. In this sea-island type composite fiber, the number of island components needs to be 100 or more, preferably 500 or more. If it is less than 100, the number of island components of the porous hollow fiber obtained from the sea-island type composite fiber is also less than 100, and it is not possible to obtain sufficient performance in terms of lightness, heat retention and softness of the porous hollow fiber. If the number of island components is too large, the manufacturing cost of the spinneret increases and the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of island components is preferably 1000 or less.

海島型複合繊維において、互に隣り合う島成分同士の間隔は100nm以上であり、好ましくは200nm以上である。間隔が100nm未満であると得られる多孔中空繊維において互に隣り合う島成分の間隔も100nm未満となり島成分を溶解除去した後に得られる多孔中空繊維の機械的強度を十分に確保することができない。 In the sea-island type composite fiber, the distance between the island components adjacent to each other is 100 nm or more, preferably 200 nm or more. In the porous hollow fiber obtained when the interval is less than 100 nm, the interval between the island components adjacent to each other is also less than 100 nm, and the mechanical strength of the porous hollow fiber obtained after the island components are dissolved and removed cannot be sufficiently secured.

島成分のそれぞれの直径は10〜1000nm、好ましくは100〜700nmである。島成分の直径が10nm未満であると海島型複合繊維から得られる多孔中空繊維構造自体が不安定であり中空形成性が不安定になり、1000nmを越えると多孔中空繊維特有の保温性が得られない。なお、多孔中空繊維の中空部の直径は均一であるほど繊維の品位が向上する。 The diameter of each of the island components is 10 to 1000 nm, preferably 100 to 700 nm. If the diameter of the island component is less than 10 nm, the porous hollow fiber structure itself obtained from the sea-island type composite fiber becomes unstable and the hollow forming property becomes unstable, and if it exceeds 1000 nm, the heat retention characteristic of the porous hollow fiber can be obtained. Absent. The more uniform the diameter of the hollow portion of the porous hollow fiber, the better the quality of the fiber.

海成分の島成分に対する質量比率(海成分:島成分)は、好ましくは30:70〜80:20、さらに好ましくは40:60〜70:30である。この範囲にあれば多孔中空繊維を得るときに島成分を溶解除去することが容易にでき、かつ島成分の溶解除去後に実用に耐え得る十分な機械的強度を有する多孔中空繊維を得ることができる。 The mass ratio of the sea component to the island component (sea component: island component) is preferably 30:70 to 80:20, more preferably 40:60 to 70:30. Within this range, it is possible to easily dissolve and remove the island component when obtaining the porous hollow fiber, and it is possible to obtain a porous hollow fiber having sufficient mechanical strength that can withstand practical use after the dissolution and removal of the island component. ..

海島型複合繊維は、繊維の長さ方向と直角な繊維断面において実用に耐え得る機械的強度を有する多孔中空繊維を得る観点から、島成分の直径(r)と前記繊維断面にその中心を通り互に45度の角間隔をおいて4本の直線を引いたときこの4本の直線上にある島成分の間隔の最小値(Smin)、および繊維直径(R)と前記島成分の間隔の最大値(Smax)が、下記式(I)かつ(II)の関係を満たすことが好ましい。
0.001≦Smin/r≦1.0 (I)
max/R≦0.15 (II)
これらは、下記式(III)かつ(IV)を満たすことがさらに好ましい。
0.01≦Smin/r≦0.7 (III)
max/R≦0.08 (IV)
The sea-island type composite fiber passes through the center of the diameter (r) of the island component and the fiber cross section from the viewpoint of obtaining a porous hollow fiber having mechanical strength that can withstand practical use in the fiber cross section perpendicular to the fiber length direction. When four straight lines are drawn with an angular interval of 45 degrees from each other, the minimum value (S min ) of the interval between the island components on these four straight lines, and the interval between the fiber diameter (R) and the island component. It is preferable that the maximum value (S max ) of the above satisfies the relationship of the following formulas (I) and (II).
0.001 ≤ S min / r ≤ 1.0 (I)
S max / R ≤ 0.15 (II)
It is more preferable that these satisfy the following formulas (III) and (IV).
0.01 ≤ S min / r ≤ 0.7 (III)
S max / R ≤ 0.08 (IV)

これらの条件を満足すると、海島型複合繊維を製造するときの高速紡糸性を良好に保ち、延伸倍率を上げることができ、高い機械的強度を得るとともに隣接する島成分同士が互いに膠着することを防止することができる。 When these conditions are satisfied, the high-speed spinnability at the time of producing the sea-island type composite fiber can be maintained well, the draw ratio can be increased, high mechanical strength can be obtained, and adjacent island components can be stuck to each other. Can be prevented.

なお、島成分間の間隔の測定において、海島型複合繊維の中心部分が海成分により形成されている場合には、この中心部分の海成分を介して隣り合う島成分間の間隔は測定から除外する。 In the measurement of the distance between island components, if the central part of the sea-island type composite fiber is formed by the sea component, the distance between adjacent island components via the sea component of this central part is excluded from the measurement. To do.

〔海島型複合繊維の製造方法〕
本発明の海島型複合繊維は、例えば下記の方法により製造することができる。
[Manufacturing method of sea-island type composite fiber]
The sea-island type composite fiber of the present invention can be produced, for example, by the following method.

まず易溶解性ポリマーと難溶解性ポリマーとを、前者が島成分、後者が海成分となるように溶融紡糸する。溶融紡糸に用いる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものを用いることができる。具体的には例えば、中空ピンや微細孔より押し出された島成分流と、その間を埋めるように設計された流路から供給された海成分流とを合流し、この合流体流を次第に細くしながら吐出口より押出して、海島型複合繊維を形成する紡糸口金を用いる。 First, the easily soluble polymer and the poorly soluble polymer are melt-spun so that the former is an island component and the latter is a sea component. As the spinneret used for melt spinning, one having a group of hollow pins or a group of micropores for forming an island component can be used. Specifically, for example, the island component flow extruded from a hollow pin or micropores and the sea component flow supplied from a flow path designed to fill the space between them are merged, and this combined fluid flow is gradually narrowed. While extruding from the discharge port, a spinneret for forming a sea-island type composite fiber is used.

好ましく用いられる紡糸口金の一例を図1および2に示す。図1は本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。図2は本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の他の例の一部分の断面説明図である。 An example of a preferably used spinneret is shown in FIGS. 1 and 2. FIG. 1 is a cross-sectional explanatory view of a part of a spinneret used for spinning the sea-island type composite fiber of the present invention. FIG. 2 is a cross-sectional explanatory view of a part of another example of the spinneret used for spinning the sea-island type composite fiber of the present invention.

図1に示されている紡糸口金1において、分配前島成分用ポリマー溜め部2内の島成分用ポリマー(溶融体)は、複数の中空ピンにより形成された島成分用ポリマー導入路3中に分配される。他方、海成分用ポリマー導入通路4を通って、海成分用ポリマー(溶融体)が、分配前海成分用ポリマー溜め部5に導入される。島成分用ポリマー導入路3を形成している中空ピンは、それぞれ海成分用ポリマー溜め部5を貫通して、その下に形成された複数の芯鞘型複合流用通路6の各々の入口の中央部分において下向さに開口している。 In the spinneret 1 shown in FIG. 1, the island component polymer (melt) in the distribution front island component polymer reservoir 2 is distributed in the island component polymer introduction path 3 formed by a plurality of hollow pins. Will be done. On the other hand, the sea component polymer (melt) is introduced into the pre-distribution sea component polymer reservoir 5 through the sea component polymer introduction passage 4. The hollow pin forming the island component polymer introduction path 3 penetrates the sea component polymer reservoir 5, and is the center of each inlet of the plurality of core-sheath type composite diversion passages 6 formed below the hollow pin. It opens downward in the part.

島成分用ポリマー導入路3の下端から、島成分ポリマー流が、芯鞘型複合流用通路6の中心部分に導入され、海成分用ポリマー溜め部5中の海成分用ポリマー流は、芯鞘型複合流用通路6中に、島成分ポリマー流をかこむように導入され、島成分ポリマー流を芯とし、海成分ポリマー流を鞘とする芯鞘型複合流が形成し、複数の芯鞘型複合流がロート状の合流通路7中に導入され、この合流通路7中において、複数の芯鞘型複合流はそれぞれの鞘部が互に接合して、海島型複合流が形成される。この海島型複合流は、ロート状合流通路7中を流下する間に次第にその水平方向の断面積を減少し、合流通路7の下端の吐出口8から吐出される。 From the lower end of the island component polymer introduction path 3, the island component polymer flow is introduced into the central portion of the core-sheath type composite diversion passage 6, and the sea component polymer flow in the sea component polymer reservoir 5 is a core-sheath type. A core-sheath type composite flow is introduced into the composite diversion passage 6 so as to enclose the island component polymer flow, and the island component polymer flow is the core and the sea component polymer flow is the sheath, and a plurality of core-sheath type composite flows are formed. It is introduced into the funnel-shaped merging passage 7, and in the merging passage 7, the sheath portions of the plurality of core-sheath type composite flows are joined to each other to form a sea-island type composite flow. The sea-island type complex flow gradually decreases its horizontal cross-sectional area while flowing down the funnel-shaped merging passage 7, and is discharged from the discharge port 8 at the lower end of the merging passage 7.

図2に示されている紡糸口金11においては、島成分ポリマー溜め部2と海成分ポリマー溜め部5とが、複数の透孔からなる島成分ポリマー用導入通路13により連結されていて、島成分ポリマー溜め部2中の島成分ポリマーの溶融体は、複数の島成分ポリマー用導入通路13中に分配され、それを通って、海成分ポリマー溜め部5中に導入され、導入された島成分ポリマー流は、海成分ポリマー溜め部5に収容されている海成分ポリマー(溶融体)中を貫いて、芯鞘型複合流用通路6中に流入し、その中心部分を流下する。 In the spinneret 11 shown in FIG. 2, the island component polymer reservoir 2 and the sea component polymer reservoir 5 are connected by an island component polymer introduction passage 13 composed of a plurality of through holes, and the island component is formed. The melt of the island component polymer in the polymer reservoir 2 is distributed into a plurality of island component polymer introduction passages 13, through which the island component polymer stream is introduced into the sea component polymer reservoir 5. , It penetrates through the sea component polymer (melt) housed in the sea component polymer reservoir 5, flows into the core-sheath type composite diversion passage 6, and flows down the central portion thereof.

他方、海成分ポリマー溜め部5中の海成分ポリマーは、芯鞘型複合流用通路6中に、その中心部を流下する島成分ポリマー流のまわりをかこむように流下する。これによって、複数の芯鞘型複合流用通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路7中に流下し、図1の紡糸口金と同様にして海島型複合流を形成し、かつ、その水平方向の断面積を減少しつつ流下し、吐出口8を通って吐出される。 On the other hand, the sea component polymer in the sea component polymer reservoir 5 flows down into the core-sheath type composite diversion passage 6 so as to surround the island component polymer flow flowing down the central portion thereof. As a result, a plurality of core-sheath type composite flows are formed in the plurality of core-sheath type composite diversion passages 6 and flow down into the funnel-shaped confluence passage 7, and the sea-island type composite flow is formed in the same manner as the spinneret of FIG. It is formed and flows down while reducing its horizontal cross-sectional area, and is discharged through the discharge port 8.

紡糸口金から吐出された海島型断面複合繊維を冷却風によって固化し、好ましくは400〜6000m/分、さらに好ましくは1000〜3500m/分の速度で巻き取り、未延伸の海島型複合繊維を得る。紡糸速度が400m/分以下では生産性が不十分であり好ましくなく、他方、6000m/分以上では紡糸安定性が不良になり好ましくない。 The sea-island type cross-sectional composite fiber discharged from the spinneret is solidified by cooling air and wound at a speed of preferably 400 to 6000 m / min, more preferably 1000 to 3500 m / min to obtain an unstretched sea-island type composite fiber. When the spinning speed is 400 m / min or less, the productivity is insufficient and not preferable, while when the spinning speed is 6000 m / min or more, the spinning stability is poor and not preferable.

このため本発明は、海島型複合繊維を製造するために、海島型複合繊維用紡糸口金から、易溶解性ポリマーからなる島成分と、難溶解性ポリマーからなる海成分とを溶融・押出す工程と、この押出された海島型複合繊維を400〜6000m/分の紡糸速度で引き取る工程とをこの順序で含む、海島型複合繊維の製造方法を含む。 Therefore, the present invention is a step of melting and extruding an island component made of an easily soluble polymer and a sea component made of a poorly soluble polymer from a spinneret for a sea island type composite fiber in order to produce a sea island type composite fiber. A method for producing a sea-island type composite fiber, which comprises a step of taking the extruded sea-island type composite fiber at a spinning speed of 400 to 6000 m / min in this order.

得られた未延伸の海島型複合繊維は、別途延伸工程をとおして所望の引張り強さ、切断伸び率および熱収縮特性を有する延伸された海島型複合繊維とするか、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取り、延伸された海島型複合繊維とする。 The obtained unstretched sea-island type composite fiber is made into a stretched sea-island type composite fiber having a desired tensile strength, cutting elongation and heat shrinkage property through a separate drawing step, or is constant without being wound once. It is taken up by a roller at a speed, and then wound up after passing through a drawing step to obtain a stretched sea-island type composite fiber.

この延伸工程について具体的に説明すると、例えば60〜220℃、好ましくは60〜190℃、さらに好ましくは75〜180℃の温度の予熱ローラー上で海島型複合繊維を予熱し、例えば1.2〜6.0倍、好ましくは2.0〜5.0倍の延伸倍率で延伸する。この際には熱セットすることが好ましく、例えば120〜220℃、好ましくは130〜200℃の温度のセットローラーで熱セットする。 Specifically, this drawing step is described by preheating the sea-island type composite fiber on a preheating roller having a temperature of, for example, 60 to 220 ° C., preferably 60 to 190 ° C., more preferably 75 to 180 ° C., and for example, 1.2 to 1.2 to Stretching is performed at a stretching ratio of 6.0 times, preferably 2.0 to 5.0 times. In this case, heat setting is preferable, and heat setting is performed with a set roller having a temperature of, for example, 120 to 220 ° C, preferably 130 to 200 ° C.

予熱温度不足の場合には、目的とする高倍率延伸を達成することができなくなる。また、熱セット温度が低すぎると、得られる延伸繊維の収縮率が高すぎるため好ましくない。他方、熱セット温度が高すぎると、得られる延伸繊維の物性が著しく低下するため好ましくない。
このようにして、本発明の海島型複合繊維を得ることができる。
If the preheating temperature is insufficient, the desired high-magnification stretching cannot be achieved. Further, if the heat setting temperature is too low, the shrinkage rate of the obtained drawn fibers is too high, which is not preferable. On the other hand, if the heat setting temperature is too high, the physical properties of the obtained drawn fibers are significantly deteriorated, which is not preferable.
In this way, the sea-island type composite fiber of the present invention can be obtained.

図3は本発明の海島型複合繊維の一例の横断面説明図である。マトリックスを形成する海成分22とその中に互に離間して配置された多数の島成分23とにより構成されている。 FIG. 3 is an explanatory cross-sectional view of an example of the sea-island type composite fiber of the present invention. It is composed of a sea component 22 forming a matrix and a large number of island components 23 arranged apart from each other in the sea component 22.

本発明の海島型複合繊維において島成分間の間隔を測定するためには、図3の横断面21に、その中心24を通り、互に45度の角間隔をおいて4本の直線25−1,25−2,25−3,25−4を引き、この4直線上にある島成分の間隔を測定し、その中から最大間隔Smax、最小間隔Sminを定め、島成分間隔の平均値Saveを算出する。なお、図3においては、4直線上の島成分を主として記載したものであるので、その他の島成分の記載が図3では省略されている。 In order to measure the distance between the island components in the sea-island type composite fiber of the present invention, four straight lines 25- are passed through the center 24 of the cross section 21 of FIG. 3 and are spaced 45 degrees from each other. Draw 1,25-2,25-3,25-4, measure the spacing of the island components on these four straight lines, determine the maximum spacing S max and the minimum spacing S min, and average the island component spacing. Calculate the value Save . In FIG. 3, since the island components on the four straight lines are mainly described, the description of other island components is omitted in FIG.

〔多孔中空繊維の製造方法〕
本発明の多孔中空繊維は、上記の海島型複合繊維から島成分を溶解除去する減量処理を行うことによって得ることができる。島成分の溶解除去は、例えば水酸化ナトリウム水溶液に浸漬して行うことができる。水酸化ナトリウム水溶液の濃度は、例えば1〜10重量%、好ましくは2〜6重量%である。海島型複合繊維をこれに浸漬する時の温度は、例えば60〜97℃、好ましくは80〜95℃である。
[Manufacturing method of porous hollow fiber]
The porous hollow fiber of the present invention can be obtained by performing a weight loss treatment for dissolving and removing island components from the above-mentioned sea-island type composite fiber. The island component can be dissolved and removed, for example, by immersing it in an aqueous sodium hydroxide solution. The concentration of the aqueous sodium hydroxide solution is, for example, 1 to 10% by weight, preferably 2 to 6% by weight. The temperature at which the sea-island type composite fiber is immersed therein is, for example, 60 to 97 ° C, preferably 80 to 95 ° C.

本発明を下記実施例によりさらに説明する。測定および評価は、以下の方法で行った。 The present invention will be further described with reference to the following examples. The measurement and evaluation were carried out by the following methods.

(1)溶融粘度
供試ポリマーを乾燥し、溶融紡糸用押出機の溶融温度に設定されたオリフィス中にセットし、5分間溶融状態に保持したのち、所定水準の荷重下に、押出し、このときの剪断速度と溶融粘度とをプロットした。上記操作を、複数水準の荷重下において繰返した。上記データに基づいて、剪断速度一溶融粘度関係曲線を作成した。この曲線上において、剪断速度が1000秒−1のときの溶融粘度を見積った。
(1) Melt Viscosity The polymer under test is dried, set in an orifice set at the melting temperature of a melt spinning extruder, held in a molten state for 5 minutes, and then extruded under a predetermined level of load. Shear rate and melt viscosity were plotted. The above operation was repeated under a plurality of levels of load. Based on the above data, a shear rate-melt viscosity relationship curve was created. On this curve, the melt viscosity was estimated when the shear rate was 1000 seconds -1 .

(2)溶解速度比
海成分用ポリマーおよび島両成分用ポリマーの各々を、10個の孔径0.3mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金を通して押し出し(以下、「溶融紡糸工程」という)、1000〜2000m/分の速度で巻取った。この繊維を延伸しその切断伸び率が30〜60%の範囲になるようにコントロールして50dtex/10fのマルチフィラメンドを製造した。このマルチフィラメントを用いて筒編みを作成した。筒編みを4重量%NaOH水溶液の液温95℃中に浸漬し、このときの溶解時間と溶解量から、減量速度比(溶解速度比)を算出した。海島型複合繊維における島成分用ポリマーの海成分用ポリマーに対する溶解速度比が200以上であるとき「良好」と評価し、200未満であるとき「不良」と評価した。
(2) Dissolution rate ratio Each of the polymer for the sea component and the polymer for the island component is extruded through a spinneret for manufacturing a sea-island type composite fiber having 10 discharge holes having a pore diameter of 0.3 mm and a land length of 0.6 mm (hereinafter, , "Melting spinning process"), winding at a speed of 1000-2000 m / min. This fiber was stretched and controlled so that the cutting elongation was in the range of 30 to 60% to produce a multifilament of 50 dtex / 10 f. A tubular knitting was made using this multifilament. The tube knitting was immersed in a solution temperature of 4 wt% NaOH aqueous solution at 95 ° C., and the weight loss rate ratio (dissolution rate ratio) was calculated from the dissolution time and the dissolution amount at this time. When the dissolution rate ratio of the island component polymer to the sea component polymer in the sea-island type composite fiber was 200 or more, it was evaluated as "good", and when it was less than 200, it was evaluated as "poor".

(3)紡糸性
前記(2)の溶融紡糸工程において7時間以上連続操業できた場合を「良好」と評価表記し、その他の場合を「不良」と評価した。
(3) Spinnability In the melt spinning step of (2) above, the case where continuous operation was possible for 7 hours or more was evaluated as "good", and the other cases were evaluated as "poor".

(4)糸物性
海島複合繊維を用いて質量1g以上の筒編み布を作製した。この編布を4重量%NaOH水溶液の液温95℃中に浸漬処理して島成分を除去した。筒編をほどき繊維束を得た。得られた繊維束の荷重−伸長曲線チャートを、室温で初期試料長100mm、引張速度200m/分の条件で作成した。このチャートから繊維束の引張強さ(cN/dtex)および切断伸び率(%)を求めた。引張強さが1.5cN/dtex以上かつ切断伸び率が15%以上である場合を「良好」、引張強さが1.5cN/dtex未満または切断伸び率が15%未満となる場合を「不良」と判定した。
(4) Thread physical characteristics A tubular knitted fabric having a mass of 1 g or more was produced using Kaishima composite fibers. The knitted fabric was immersed in a 4 wt% NaOH aqueous solution at a liquid temperature of 95 ° C. to remove island components. The tube knitting was unwound to obtain a fiber bundle. A load-elongation curve chart of the obtained fiber bundle was prepared at room temperature under the conditions of an initial sample length of 100 mm and a tensile speed of 200 m / min. From this chart, the tensile strength (cN / dtex) and the cutting elongation (%) of the fiber bundle were determined. "Good" when the tensile strength is 1.5 cN / dtex or more and the cutting elongation rate is 15% or more, and "Defective" when the tensile strength is less than 1.5 cN / dtex or the cutting elongation rate is less than 15%. It was judged.

(5)固有粘度
オルソクロロフェノールを溶媒として使用して35℃で測定した。
(5) Intrinsic Viscosity Measured at 35 ° C. using orthochlorophenol as a solvent.

(6)糸の断面観察
供試繊維を長さ方向に対して直角な断面が得られるように切断し、断面を透過型電子顕微鏡TEMを用い倍率30000倍において写真撮影した。この電子顕微鏡写真を用いて、複合繊維の直径Rおよび島成分の直径rを測定した。電子顕微鏡写真において、複合繊維の中心点を通り互に45度の角度をもって交差する4本の直線を引き、前記直線上にある島成分間の最大間隔Sminおよび最大間隔Smaxを測定し、島成分間の平均間隔Saveを算出した。
(6) Observation of cross section of thread The fiber under test was cut so as to obtain a cross section perpendicular to the length direction, and the cross section was photographed at a magnification of 30,000 using a transmission electron microscope TEM. Using this electron micrograph, the diameter R of the composite fiber and the diameter r of the island component were measured. In the electron micrograph, four straight lines passing through the center point of the composite fiber and intersecting each other at an angle of 45 degrees were drawn, and the maximum spacing S min and the maximum spacing S max between the island components on the straight lines were measured. The average interval Save between the island components was calculated.

(7)多孔中空部の直径のばらつき(CV値)
供試海島型複合繊維から溶剤を用いて島成分を除去し、得られた多孔中空繊維束を透過型電子顕微鏡(TEM)を用い30000倍の倍率で観察し多孔中空部の直径を測定し、この標準偏差(σ)と中空部平均直径(r)を算出し、下記式によりばらつき(CV値)を算出した。
CV値=(標準偏差σ/中空部平均直径r)×100(%)
中空部平均径(r)は、中空繊維の断面をTEMを用い、倍率30000倍で観察し、測定された中空部の長径と、短径の平均値である。
(7) Variation in diameter of porous hollow portion (CV value)
The island component was removed from the test sea-island type composite fiber using a solvent, and the obtained porous hollow fiber bundle was observed with a transmission electron microscope (TEM) at a magnification of 30,000 times to measure the diameter of the porous hollow portion. The standard deviation (σ) and the average diameter (r) of the hollow portion were calculated, and the variation (CV value) was calculated by the following formula.
CV value = (standard deviation σ / average diameter r of hollow portion) × 100 (%)
The hollow portion average diameter (r) is an average value of the major axis and the minor axis of the hollow portion measured by observing the cross section of the hollow fiber using a TEM at a magnification of 30,000 times.

(8)多孔中空繊維の均一性
供試海島型複合繊維を、島成分用溶剤で処理し、島成分含有比率に相当する質量減少が認められたとき溶解処理を中止し、得られた繊維束の断面をTEMにより観察し、単繊維の断面の均一性に基いて、中空部の均一性を「均一」と「不均一」で評価した。
(8) Homogeneity of Porous Hollow Fiber The test sea-island type composite fiber was treated with a solvent for island components, and when a mass reduction corresponding to the island component content ratio was observed, the dissolution treatment was stopped and the obtained fiber bundle was obtained. The cross section of the hollow portion was observed by TEM, and the uniformity of the hollow portion was evaluated as "uniform" and "non-uniform" based on the uniformity of the cross section of the single fiber.

(9)軽量化率(%)
通常の中実の断面で構成されるポリエステル繊維56dtexの10フィラメントを使用した筒編み布の目付け(g/m)と布帛厚み(mm)を測定し、布帛厚みに対する目付けの基準曲線を作成した。同じ筒編み布を作成した際の基準曲線の同一厚み値における目付けの減少率を軽量化率(%)とした。
(9) Weight reduction rate (%)
The texture (g / m 2 ) and the fabric thickness (mm) of the tubular knitted fabric using 10 filaments of polyester fiber 56dtex composed of a normal solid cross section were measured, and a reference curve for the texture with respect to the fabric thickness was created. .. The weight reduction rate (%) was defined as the reduction rate of the basis weight at the same thickness value of the reference curve when the same tubular knitted cloth was prepared.

(10)布帛保温性
温度20℃ 、湿度60%RHの恒温恒湿環境下で、エネルギー源として200Wレフランプ光源を用い、高さ50cmから光照射し、180秒後の布帛の裏面の温度を熱電対で測定した。かかる温度が30℃以上である場合を良好と判定し、30度未満である場合を不良と判定した。
(10) Cloth heat retention In a constant temperature and humidity environment with a temperature of 20 ° C. and a humidity of 60% RH, a 200 W ref lamp light source is used as an energy source, light is irradiated from a height of 50 cm, and the temperature of the back surface of the cloth is thermocoupled 180 seconds later. Measured in pairs. When the temperature was 30 ° C. or higher, it was judged to be good, and when it was less than 30 ° C., it was judged to be defective.

(11)原料
海島型複合繊維を製造するための用いた原料を表1に示す。表1に記載されたポリマーは下記のとおりである。
PET1:
280℃における溶融粘度が120Pa・sであるポリエチレンテレフタレート
Ny−6:
280℃における溶融粘度が140Pa・sであるナイロン6
改質PET1:
エステル化反応槽にて、テレフタル酸86部とエチレングリコール40部とを、常法に従ってエステル化反応させオリゴマーを得た。このオリゴマーに、テレフタル酸86部とエチレングリコール40部を65分間かけて連続的に供給し、245℃にてエステル化反応を行った。ついで三酸化アンチモン0.045部を添加して20分後、追加供給したテレフタル酸とエチレングリコールとから生成されるオリゴマー量と等モル量のオリゴマーを重縮合反応槽へ送液した。送液終了後直ちに酢酸カルシウムをポリマー中の酸成分に対して1.0モル%を重縮合反応槽に添加した。さらに5分後にフェニルホスホン酸をポリマー中の酸成分に対して1.25モル%を重縮合反応槽に添加した。その後290℃まで昇温し、0.03kPa以下の高真空化にて重縮合反応を行い、得られた固有粘度が0.64dL/gのポリエステルを改質PET1と称する。
改質PET2:
285℃での溶融粘度が1600poiseである平均分子量4000のポリエチレングリコール(PEG)を4wt%、5−ナトリウムスルホイソフタル酸を8モル%共重合した改質ポリエチレンテレフタレートを改質PET2と称する。
(11) Raw materials Table 1 shows the raw materials used for producing the sea-island type composite fiber. The polymers listed in Table 1 are:
PET1:
Polyethylene terephthalate Ny-6: having a melt viscosity at 280 ° C. of 120 Pa · s:
Nylon 6 having a melt viscosity at 280 ° C. of 140 Pa · s
Modified PET1:
In the esterification reaction tank, 86 parts of terephthalic acid and 40 parts of ethylene glycol were esterified according to a conventional method to obtain an oligomer. 86 parts of terephthalic acid and 40 parts of ethylene glycol were continuously supplied to this oligomer over 65 minutes, and an esterification reaction was carried out at 245 ° C. Then, 0.045 parts of antimony trioxide was added, and 20 minutes later, an oligomer having an equimolar amount equal to the amount of the oligomer produced from the additionally supplied terephthalic acid and ethylene glycol was sent to the polycondensation reaction tank. Immediately after the completion of the liquid feeding, 1.0 mol% of calcium acetate was added to the polycondensation reaction tank with respect to the acid component in the polymer. After a further 5 minutes, 1.25 mol% of phenylphosphonic acid was added to the polycondensation reaction tank with respect to the acid component in the polymer. After that, the temperature is raised to 290 ° C., a polycondensation reaction is carried out in a high vacuum of 0.03 kPa or less, and the obtained polyester having an intrinsic viscosity of 0.64 dL / g is referred to as modified PET1.
Modified PET2:
Modified polyethylene terephthalate obtained by copolymerizing 4 wt% of polyethylene glycol (PEG) having an average molecular weight of 4000 with a melt viscosity at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid is referred to as modified PET2.

実施例1
表1に示す島成分用ポリマーと海成分用ポリマーを用いて海島型複合繊維を製造した。この実施例1においては、改質PET1および改質PET2を、それぞれ海成分用ポリマーおよび島成分用ポリマーとして50:50の重量比率で用い、両者をそれぞれ加熱溶融し、海島型複合繊維紡糸用口金に供して290℃の紡糸温度で押出し、表1に記載の引き取り速度で巻取ローラー上に巻き取った。得られた未延伸繊維束をでローラー延伸して、延伸された繊維束に温度150℃の熱処理を施し巻き取った。このとき、得られる延伸熱処理された繊維束のヤーンカウントが50dtex/10fになるように紡糸吐出流量および延伸倍率を調整した。
Example 1
Sea-island type composite fibers were produced using the island component polymer and the sea component polymer shown in Table 1. In this Example 1, modified PET1 and modified PET2 are used as a polymer for sea components and a polymer for island components at a weight ratio of 50:50, respectively, and both are heated and melted to form a base for spinning sea-island type composite fibers. It was extruded at a spinning temperature of 290 ° C. and wound on a take-up roller at the take-up speeds shown in Table 1. The obtained unstretched fiber bundle was roller-stretched with, and the stretched fiber bundle was heat-treated at a temperature of 150 ° C. and wound up. At this time, the spinning discharge flow rate and the draw ratio were adjusted so that the yarn count of the obtained stretch-heat-treated fiber bundle was 50 dtex / 10f.

得られた海島型複合繊維の測定および評価の結果を表1に示す。得られた海島型複合繊維は、島成分と島成分との間の海成分の厚さが薄く、均一な直径をもつ島を形成していた。この海島型複合繊維の断面をTEMで観察し、島成分の直径(r)と島成分の間隔の最小値(Smin)、海島型複合繊維の直径(R)と島成分の間隔の最大値(Smax)の関係を調べたところ、Smin/r=0.49、Smax/R=0.1であった。 Table 1 shows the results of measurement and evaluation of the obtained sea-island type composite fiber. In the obtained sea-island type composite fiber, the thickness of the sea component between the island components was thin, and islands having a uniform diameter were formed. The cross section of this sea-island type composite fiber was observed by TEM, and the minimum value (S min ) between the diameter (r) of the island component and the distance between the island components and the maximum value between the diameter (R) of the sea-island type composite fiber and the distance between the island components. When the relationship of (S max ) was examined, it was found that S min / r = 0.49 and S max / R = 0.1.

この海島型複合繊維を用いて筒編みを作成し、4%重量NaOH水溶液の液温95℃中に浸漬し50重量%減量し50重量%になるまで減量処理をした。減量処理後の筒編を構成する繊維束の断面を観察したところ均一な多孔中空を有する多孔中空繊維が形成されていた。減量処理後の繊維束の引張強さは2.5cN/dtex、切断伸び率は45%であった。 A tubular knitting was prepared using this sea-island type composite fiber, and the mixture was immersed in a 4% weight NaOH aqueous solution at a liquid temperature of 95 ° C. to reduce the weight by 50% by weight until the weight was reduced to 50% by weight. When the cross section of the fiber bundle constituting the tubular knitting after the weight loss treatment was observed, a porous hollow fiber having a uniform porous hollow was formed. The tensile strength of the fiber bundle after the weight loss treatment was 2.5 cN / dtex, and the cutting elongation was 45%.

実施例2
実施例1と同様にして海島型複合繊維を製造した。ただし、実施例2では、実施例1と同じ海成分用ポリマーおよび島成分のポリマーを用い、両者を60:40の重量比率で用いた。実施例1と同様にして筒編みを作成し、4重量%NaOH水溶液の液温95℃中に浸漬して、海島型複合繊維の繊維重量が40重量%減量し60重量%になるまで減量処理をした。海島型複合繊維の減量処理後の断面を観察したところ、均一な多孔中空を有する多孔中空繊維が形成されていた。得られた多孔中空繊維の繊維束の引張強さは3.0cN/dtex、切断伸び率は35%であった。
Example 2
A sea-island type composite fiber was produced in the same manner as in Example 1. However, in Example 2, the same polymer for sea components and polymer for island components as in Example 1 were used, and both were used in a weight ratio of 60:40. A tubular knitting was prepared in the same manner as in Example 1, and immersed in a 4 wt% NaOH aqueous solution at a liquid temperature of 95 ° C. to reduce the fiber weight of the sea-island type composite fiber by 40 wt% to 60 wt%. Did. When the cross section of the sea-island type composite fiber after the weight reduction treatment was observed, a porous hollow fiber having a uniform porous hollow was formed. The tensile strength of the fiber bundle of the obtained porous hollow fiber was 3.0 cN / dtex, and the cutting elongation was 35%.

実施例3
実施例1と同様にして海島型複合繊維を製造した。ただし、実施例3では実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを用い、両者を80:20の重量比率で用いた。海島型複合繊維の断面を観察すると、島成分と島間成分との間の海成分の厚さが薄く、均一な直径をもつ島を形成していた。この海島型複合繊維の断面をTEM観察して島成分の直径(r)と島成分の間隔の最小値Smin、海島型複合繊の維径(R)と島成分の間隔の最大値Smaxの関係を調べたところ、Smin/r=0.30、Smax/R=0.01であった。
Example 3
A sea-island type composite fiber was produced in the same manner as in Example 1. However, in Example 3, the same polymer for sea components and polymer for island components as in Example 1 were used, and both were used in a weight ratio of 80:20. When observing the cross section of the sea-island type composite fiber, the thickness of the sea component between the island component and the inter-island component was thin, and islands having a uniform diameter were formed. By TEM observation of the cross section of this sea-island type composite fiber, the minimum value S min of the diameter (r) of the island component and the distance between the island components, and the maximum value S max of the diameter (R) of the sea-island type composite fiber and the distance between the island components. As a result of investigating the relationship between S min / r = 0.30 and S max / R = 0.01.

得られた延伸糸を用いて実施例1と同様に筒編みを作成し、4重量%NaOH水溶液の液温95℃中に浸漬して海島型複合繊維が20重量%減量して80重量%になるまで減量処理をした。得られた繊維束の断面を観察したところ、均一な多孔中空を有する繊維が形成されていた。島成分の除去後の繊維束の引張強さは3.5cN/dtex、切断伸び率は50%であっなお、得られる延伸熱処理された繊維束のヤーンカウントが50dtex/10fになるように、紡糸吐出流量および延伸倍率を調整した。 Using the obtained drawn yarn, a tubular knitting was prepared in the same manner as in Example 1 and immersed in a 4 wt% NaOH aqueous solution at a liquid temperature of 95 ° C. to reduce the weight of the sea-island type composite fiber by 20 wt% to 80 wt%. Weight loss processing was performed until it became. When the cross section of the obtained fiber bundle was observed, fibers having a uniform porous hollow were formed. The tensile strength of the fiber bundle after removing the island component is 3.5 cN / dtex, the cutting elongation is 50%, and the yarn count of the obtained stretch-heat-treated fiber bundle is 50 dtex / 10f. The discharge flow rate and the draw ratio were adjusted.

実施例4〜9
実施例2と同様にして海島型複合繊維を製造した。実施例4および7では、実施例2と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を60:40とし、島数および島の直径を表1記載のとおりとした口金にて製糸した。得られた海島型複合繊維の断面形成性は良好であった。
Examples 4-9
A sea-island type composite fiber was produced in the same manner as in Example 2. In Examples 4 and 7, the same polymer for sea components and polymer for island components as in Example 2 were used, the weight ratio of the two was 60:40, and the number of islands and the diameter of the islands were as shown in Table 1. The yarn was made at. The cross-sectional formability of the obtained sea-island type composite fiber was good.

比較例1
実施例1と同様にして海島型複合繊維を製造した。比較例1では、実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を20:80とし、島数を800として紡糸・延伸した。得られた海島型複合繊維の断面形成性は良好であったが、海成分量が少な過ぎるために、島−島間の海成分の厚みが薄く、アルカリ水溶液による減量処理により島成分を溶出した後に得られる多孔中空繊維の強度が弱く、実用に耐えうるものではなかった。
Comparative Example 1
A sea-island type composite fiber was produced in the same manner as in Example 1. In Comparative Example 1, the same polymer for sea components and polymer for island components as in Example 1 were used, the weight ratio of both was 20:80, and the number of islands was 800 for spinning and stretching. The cross-sectional formability of the obtained sea-island type composite fiber was good, but the thickness of the sea component between islands was thin because the amount of sea component was too small, and after the island component was eluted by weight loss treatment with an alkaline aqueous solution. The strength of the obtained porous hollow fiber was weak, and it was not practically usable.

比較例2
実施例1と同様にして海島型複合繊維を製造した。比較例2では実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を90:10とし、島数を800として紡糸・延伸した。得られた海島型複合繊維の断面形成性は良好であったが、海成分量が多過ぎるために、島−島間の海成分厚みが厚く、繊維中心部の島成分を溶解除去できず、多孔中空が均一に形成されなかった。
Comparative Example 2
A sea-island type composite fiber was produced in the same manner as in Example 1. In Comparative Example 2, the same polymer for sea components and polymer for island components as in Example 1 were used, the weight ratio of both was 90:10, and the number of islands was 800 for spinning and stretching. The cross-sectional formability of the obtained sea-island type composite fiber was good, but because the amount of sea component was too large, the thickness of the sea component between islands was thick, and the island component in the center of the fiber could not be dissolved and removed, resulting in porosity. Hollows were not formed uniformly.

比較例3
実施例1と同様にして海島型複合繊維を製造した。比較例3においては、改質PET1を海成分用ポリマー、PET1を島成分用ポリマーとして、両者の重量比率60:40で用いた。海島形成性は良好であったが、島成分のアルカリ水溶液による減量速度が海成分のそれと比較して不十分なために、アルカリ減量のときに海成分用ポリマーのかなりの量が減量されてしまい、海成分用ポリマーの相当分が除去されているにもかかわらず、複合繊維の中心部分に分布している島成分用ポリマーの大部分が減量されずに残存していて、均一な多孔中空繊維が得られなかった。
Comparative Example 3
A sea-island type composite fiber was produced in the same manner as in Example 1. In Comparative Example 3, the modified PET1 was used as a polymer for sea components and PET1 was used as a polymer for island components at a weight ratio of 60:40. Although the sea-island formation was good, the weight loss rate of the island component by the alkaline aqueous solution was insufficient compared to that of the sea component, so that a considerable amount of the polymer for the sea component was reduced during the alkali weight loss. , Despite the removal of a significant portion of the marine component polymer, most of the island component polymer distributed in the central part of the composite fiber remains unreduced and is a uniform porous hollow fiber. Was not obtained.

比較例4
実施例1と同様にして海島型複合繊維を製造した。比較例4においては、PET1を海成分用ポリマー、改質PET2を島成分用ポリマーとして、両者の重量比率60:40で用いた。海島形成性は良好であったが、海成分のポリマーに微細孔形成剤が含まれていないため、海成分のかなりの量が減量されても、島成分の相当分が完全に除去されず、複合繊維の中心部分に残存してしまい、均一な多孔中空繊維が得られなかった。
Comparative Example 4
A sea-island type composite fiber was produced in the same manner as in Example 1. In Comparative Example 4, PET1 was used as a polymer for sea components and modified PET2 was used as a polymer for island components at a weight ratio of 60:40. Although the sea-island formation was good, since the polymer of the sea component did not contain a micropore-forming agent, even if a considerable amount of the sea component was reduced, a considerable amount of the island component was not completely removed. It remained in the central portion of the composite fiber, and a uniform porous hollow fiber could not be obtained.

本発明の多孔中空繊維によれば、単繊維内に多孔中空が均一に形成されており、軽量性と保温性を両立するポリエステル系中空繊維を提供することができる。 According to the porous hollow fiber of the present invention, the porous hollow fiber is uniformly formed in the single fiber, and it is possible to provide a polyester-based hollow fiber having both light weight and heat retention.

また、本発明の海島型複合繊維は、その島成分を容易に溶解除去できるので、単繊維内に多孔中空を均一に形成でき、軽量性と保温性に優れたポリエステル系中空繊維の製造に用いることができる。 Further, since the sea-island type composite fiber of the present invention can easily dissolve and remove the island component, a porous hollow can be uniformly formed in the single fiber, and it is used for producing a polyester-based hollow fiber having excellent lightness and heat retention. be able to.

1 紡糸口金
2 分配前島成分用ポリマー溜め部
3 複数の中空ピンにより形成された島成分用ポリマー導入路
4 海成分用ポリマー導入通路
5 分配前海成分用ポリマー溜め部
6 複数の芯鞘型複合流用通路
7 ロート状の合流通路
8 吐出口
11 紡糸口金
13 複数の透孔からなる島成分ポリマー用導入通路
21 海島型複合繊維の一例の横断面説明図
22 マトリックスを形成する海成分
23 互に離間して配置された多数の島成分
24 紡糸口金の横断面の中心
25 紡糸口金の横断面の中心をとおり互に45度の角間隔をおいた直線
1 Spinning cap 2 Polymer reservoir for island components before distribution 3 Polymer introduction path for island components formed by multiple hollow pins 4 Polymer introduction passage for sea components 5 Polymer reservoir for sea components before distribution 6 Multiple core-sheath composite diversion Passage 7 Rohto-shaped merging passage 8 Discharge port 11 Spinning spout 13 Introductory passage for island component polymer consisting of multiple through holes 21 Cross section explanatory view of an example of sea-island type composite fiber Fig. 22 Sea components forming a matrix 23 Separated from each other 24 Centers of the cross section of the spinneret 25 Straight lines that pass through the center of the cross section of the spinneret and are spaced 45 degrees from each other.

Claims (3)

易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする複数本の海島型複合繊維から該島成分を除去して得られる多孔中空繊維であって、該繊維の長さ方向に対して直角な繊維断面において観察される中空部の数が多孔中空繊維の1本あたり100以上であり、互に隣り合う中空部の間隔が100nm以上であり、中空部のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーがジカルボン酸成分とジオール成分とのエステル化反応によりオリゴマーを生成しその後オリゴマーを重縮合反応させることにより製造されたポリエステルであり、該ポリエステルにはアルカリ金属化合物および/またはアルカリ土類金属化合物が全ジカルボン酸成分に対して0.5〜2.0モル%となる量で含まれ、かつ下記化学式(I)で表されるリン化合物が下記式(1)を満足する量で含まれていることを特徴とする、多孔中空繊維。
0.80<P[モル]/M[モル]≦2.0 ・・・・(1)
(上記式(1)中、Pはリン化合物のモル数、Mはアルカリ金属化合物および/またはアルカリ土類金属化合物のモル数を表す。)
It is a porous hollow fiber obtained by removing the island component from a plurality of sea-island type composite fibers having an easily soluble polymer as an island component and a poorly soluble polymer as a sea component, with respect to the length direction of the fiber. The number of hollow portions observed in the right-angled fiber cross section is 100 or more per porous hollow fiber, the distance between the hollow portions adjacent to each other is 100 nm or more, and the diameter of each of the hollow portions is 10 to 1000 nm. The variation in the diameter of the hollow part (CV value) is 30% or less, and the poorly soluble polymer produces an oligomer by the esterification reaction of the dicarboxylic acid component and the diol component, and then the oligomer is weighted. It is a polyester produced by a condensation reaction, and the polyester contains an alkali metal compound and / or an alkaline earth metal compound in an amount of 0.5 to 2.0 mol% with respect to the total dicarboxylic acid component. A porous hollow fiber, which comprises a phosphorus compound represented by the following chemical formula (I) in an amount satisfying the following formula (1).
0.80 <P [molar] / M [molar] ≤ 2.0 ... (1)
(In the above formula (1), P represents the number of moles of the phosphorus compound, and M represents the number of moles of the alkali metal compound and / or the alkaline earth metal compound.)
易溶解性ポリマーが、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングリコール化合物共重合ポリエステル、およびポリエチレングリコール化合物と5−ナトリウムスルホイソフタル酸との共重合ポリエステルから成る群から選ばれる少なくとも1種である、請求項1に記載の多孔中空繊維。 The easily soluble polymer is selected from the group consisting of polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymerized polyester, and polyethylene glycol compound and 5-sodium sulfoisophthalic acid copolymerized polyester. The porous hollow fiber according to claim 1, which is a seed. 中空部の数が多孔中空繊維の1本あたり500以上である、請求項1に記載の多孔中空繊維。 The porous hollow fiber according to claim 1, wherein the number of hollow portions is 500 or more per one of the porous hollow fibers.
JP2017067888A 2017-03-30 2017-03-30 Porous hollow fiber Active JP6829134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067888A JP6829134B2 (en) 2017-03-30 2017-03-30 Porous hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067888A JP6829134B2 (en) 2017-03-30 2017-03-30 Porous hollow fiber

Publications (2)

Publication Number Publication Date
JP2018168511A JP2018168511A (en) 2018-11-01
JP6829134B2 true JP6829134B2 (en) 2021-02-10

Family

ID=64019168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067888A Active JP6829134B2 (en) 2017-03-30 2017-03-30 Porous hollow fiber

Country Status (1)

Country Link
JP (1) JP6829134B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389722B2 (en) * 1995-02-22 2003-03-24 東レ株式会社 Porous hollow fiber for woven or knitted fabric and method for producing the same
WO2008090566A2 (en) * 2007-01-23 2008-07-31 Reliance Industries Ltd. Easily alkali soluble polyester and method for producing the same
JP2010018927A (en) * 2008-07-14 2010-01-28 Teijin Fibers Ltd Polyester nanofiber
JP2011021287A (en) * 2009-07-15 2011-02-03 Teijin Fibers Ltd Deep-colorable sheath-core type conjugated fiber
JP5336310B2 (en) * 2009-09-15 2013-11-06 帝人株式会社 Method for producing polyester composition for producing high-definition polyester fiber with alkali weight loss
JP2013249337A (en) * 2012-05-30 2013-12-12 Teijin Ltd Method for producing polyester composition for producing water absorptive polyester fiber

Also Published As

Publication number Publication date
JP2018168511A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR101250683B1 (en) Composite fabric of island-in-sea type and process for producing the same
KR101296470B1 (en) Process for producing sea-island-type composite spun fiber
JP2007262610A (en) Combined filament yarn
WO2005066403A1 (en) Ultrafine polytrimethylene terephthalate conjugate fiber for artificial leather and manufacturing method thereof
TWI638919B (en) Fiber with phase separation structure and manufacturing method thereof
JP6829134B2 (en) Porous hollow fiber
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
JP2012158842A (en) Fiber, method for manufacturing the same and water-repellent fabric
JP4922668B2 (en) Permeability woven and knitted fabric, production method thereof and textile
JP2018168510A (en) Porous hollow fiber
JPH08113829A (en) New polymer blend fiber and its production
JP4315002B2 (en) High elongation polymer alloy fiber and method for producing the same
JP7260362B2 (en) Island-in-the-sea composite fiber and porous hollow fiber made of the same
JPWO2018079567A1 (en) Nanovoid polyester fiber
JPH09170128A (en) Cellulose acetate multifilament yarn having each specific cross section and its production
JP2019090135A (en) Nanovoid conjugate polyester fiber
JP4100180B2 (en) Polymer alloy fiber
JP3376744B2 (en) Method for producing polyester fiber with improved spinnability
KR100804039B1 (en) A process of preparing for sea- island type composite yarn
JP2020026599A (en) Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle
JP2006265788A (en) Method for producing conjugated fiber
JP2008075228A (en) False-twist textured yarn and method for producing the same
TW202235711A (en) Sea-island composite polyester fiber
JP2019052395A (en) Sea-island type composite fiber and ultra fine fiber
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250