JP2006265788A - Method for producing conjugated fiber - Google Patents

Method for producing conjugated fiber Download PDF

Info

Publication number
JP2006265788A
JP2006265788A JP2005087902A JP2005087902A JP2006265788A JP 2006265788 A JP2006265788 A JP 2006265788A JP 2005087902 A JP2005087902 A JP 2005087902A JP 2005087902 A JP2005087902 A JP 2005087902A JP 2006265788 A JP2006265788 A JP 2006265788A
Authority
JP
Japan
Prior art keywords
island
resin
fiber
sea
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087902A
Other languages
Japanese (ja)
Inventor
Wataru Takarada
亘 宝田
Takashi Ochi
隆志 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005087902A priority Critical patent/JP2006265788A/en
Publication of JP2006265788A publication Critical patent/JP2006265788A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a conjugated fiber, by which the conjugated fiber suitable for producing ultra fine carbon fibers can efficiently be produced. <P>SOLUTION: This method for producing the conjugated fiber is characterized by producing the sea-island conjugated fiber comprising a carbon raw material resin having melt shapability as the island component and a thermally decomposable resin as a sea component by a melt-spinning method so that the rate of the island component resin occupying in all of the fiber is 10 to 50 wt.% and the diameter of the island component is 1 to 10 μm, and then super-drawing the obtained fiber. It is preferable that the island component and the sea component are a melt-shapable acrylonitrile-based resin and an aliphatic polyester, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は微細炭素繊維を製造する際に有用な複合繊維の製造方法に関する。   The present invention relates to a method for producing a composite fiber useful for producing fine carbon fibers.

炭素繊維の強度に代表される特性値は繊維中の欠陥の数に大きく左右され、その欠陥の数は繊維の太さに従い多くなるため、炭素繊維を細くして欠陥の個数を減らすことにより炭素繊維の性能を大きく向上することが可能である。また、炭素繊維は樹脂等に含浸して補強剤として使用されることが多いが、その場合は炭素繊維自身の強度に加えて、樹脂との接着性が複合材料の性能に大きな影響を与える。ここでも炭素繊維を細くすると、単位重量あたりの表面積が増加することから、接着性を改善することが可能であり、複合材料の性能を大きく改善することが可能となる。   The characteristic value represented by the strength of carbon fiber depends greatly on the number of defects in the fiber, and the number of defects increases with the thickness of the fiber. It is possible to greatly improve the performance of the fiber. Carbon fibers are often impregnated into a resin or the like and used as a reinforcing agent. In that case, in addition to the strength of the carbon fibers themselves, the adhesion to the resin greatly affects the performance of the composite material. Here too, when the carbon fiber is thinned, the surface area per unit weight increases, so that the adhesion can be improved and the performance of the composite material can be greatly improved.

近年話題となっているカーボンナノチューブは、ほぼ完全な黒鉛シートから形成された理想の炭素繊維とよべる材料であり、その物性値は通常の炭素繊維を大きく上回る物である。特に、単層ナノチューブは直径が10nm以下と非常に細く、樹脂等への添加剤として大きな期待を受けている。しかし、カーボンナノチューブは炭素原子を1個ずつ積み上げるボトムアップ的手法で製造されるため、生産性が非常に低く価格が高くなってしまう。このため、優れた性能を有するにも関わらず、広く利用されるに至っていない。そこで、生産性の高い通常の炭素繊維の製造方法を改良して、できるだけ細い炭素繊維すなわちカーボンナノファイバーを作成し、カーボンナノチューブに近い性能を得る試みが多く行われている。   Carbon nanotubes that have become a hot topic in recent years are materials called ideal carbon fibers formed from almost perfect graphite sheets, and their physical properties are much higher than those of ordinary carbon fibers. In particular, single-walled nanotubes are very thin with a diameter of 10 nm or less, and are highly expected as additives for resins and the like. However, since carbon nanotubes are manufactured by a bottom-up method in which carbon atoms are stacked one by one, the productivity is very low and the price is high. For this reason, although it has excellent performance, it has not been widely used. Therefore, many attempts have been made to improve the production method of a normal carbon fiber with high productivity to produce carbon fibers that are as thin as possible, that is, carbon nanofibers, and obtain performance close to that of carbon nanotubes.

近年、焼成することで炭素繊維を形成する樹脂(以下、炭素原料樹脂と記す)と、焼成時に熱分解して焼失する樹脂(以下、熱分解性樹脂と記す)を混合してブレンド繊維を作成し、それを焼成して微細な炭素繊維を得る方法が開発されている。例えば、特開2001−73226号公報および特開2003−20517号公報には炭素原料樹脂としてフェノール樹脂をもちい、熱分解性樹脂であるポリエチレン(PE)やポリプロピレン(PP)とブレンド紡糸を行うことで微細な炭素繊維を得る方法が記載されている。   In recent years, blended fibers are created by mixing a resin that forms carbon fibers by firing (hereinafter referred to as carbon raw material resin) and a resin that decomposes and burns down during firing (hereinafter referred to as thermally decomposable resin). However, a method for obtaining fine carbon fibers by firing the same has been developed. For example, Japanese Patent Laid-Open Nos. 2001-73226 and 2003-20517 use a phenol resin as a carbon raw material resin, and perform blend spinning with polyethylene (PE) and polypropylene (PP), which are thermally decomposable resins. A method for obtaining fine carbon fibers is described.

このようなブレンド紡糸を利用する方法を用いれば、比較的容易に熱分解性樹脂中に炭素原料樹脂が分散した形態を得ることが可能であり、これを焼成することで微細な炭素繊維を得ることも可能である。しかし、ブレンド紡糸を利用した場合、島成分のサイズは樹脂同士の相溶性と混練状態により決定されるため、ばらつきが大きく任意のサイズに制御することが難しいことが問題であった。加えて、混練時に球状になった島成分を紡糸時に繊維軸方向に引き延ばすことで繊維化していることから、得られる炭素繊維は連続した繊維ではなく、ある長さをもった短繊維の集合体であり、航空機等の構造材として多く使用されている長繊維強化材料の強化材としては使用できないという問題があった。   If a method using such blend spinning is used, it is possible to obtain a form in which a carbon raw material resin is dispersed in a thermally decomposable resin relatively easily, and fine carbon fibers are obtained by firing this. It is also possible. However, when blend spinning is used, the size of the island component is determined by the compatibility between the resins and the kneading state, so that there is a problem that it is difficult to control the size of the island component to an arbitrary size. In addition, because the island components that have become spherical during kneading are fiberized by stretching in the fiber axis direction during spinning, the resulting carbon fibers are not continuous fibers but a collection of short fibers with a certain length Therefore, there is a problem that it cannot be used as a reinforcing material for long fiber reinforced materials that are often used as structural materials for aircraft and the like.

その一方で、極細の合成繊維を製造する際に使用されている海島型複合繊維の技術をもちいて微細な炭素原料樹脂繊維を作製する試みも行われている。たとえば、特許文献1には溶融賦形可能なアクリロニトリル系ポリマーを炭素前駆体とし、酸変性PEやメタクリル酸メチル(PMMA)を海部として紡糸口金装置をもちいて溶融紡糸する複合繊維の製造方法が記載されている。しかし、この方法で作成できる複合繊維では、島成分の直径は5〜10μm程度が一般的であり、島成分の直径が1μm以下の繊維を作製することは非常に難しく、十分に細い炭素繊維を作製することはできなかった。   On the other hand, attempts have been made to produce fine carbon raw material resin fibers using the technology of sea-island type composite fibers used when producing ultrafine synthetic fibers. For example, Patent Document 1 describes a method for producing a composite fiber that is melt-spun using a spinneret apparatus using an acrylonitrile-based polymer that can be melt-formed as a carbon precursor and acid-modified PE or methyl methacrylate (PMMA) as a sea part. Has been. However, in the composite fiber that can be produced by this method, the diameter of the island component is generally about 5 to 10 μm, and it is very difficult to produce a fiber having an island component diameter of 1 μm or less. It could not be produced.

また、特許文献2では長さの長いカーボンナノファイバーを作製するために、海島型複合繊維を焼成してカーボンナノファイバーを作成する方法が開示されており、その海島型複合繊維を得るための方法として炭素原料樹脂からなる繊維と熱分解性樹脂からなる繊維を束にしたのちに細孔から押し出して超延伸する方法が記載されている。しかし、異種類の繊維を均一に混繊することは難しく、非常に手間が必要となるため生産性に乏しいものであった。さらに、海島複合繊維を超延伸するためには複合繊維を高温で加熱して流動性を向上させる必要があるが、加熱時の両性分の流動特性の違いから海島構造に乱れが発生しやすく、島成分同士の合一や島成分の断裂等が発生し、均一な微細炭素繊維を得ることは難しかった。特に島成分をナノレベルまで微細化すると、少しの流れの乱れによっても海島構造が破壊されてしまうため、ナノレベルの細さをもつ炭素繊維を得ることは非常に困難であった。   Patent Document 2 discloses a method for producing a carbon nanofiber by firing a sea-island composite fiber in order to produce a carbon nanofiber having a long length, and a method for obtaining the sea-island composite fiber. Describes a method in which fibers made of a carbon raw material resin and fibers made of a heat-decomposable resin are bundled and then extruded from the pores and super-stretched. However, it is difficult to mix different kinds of fibers uniformly, and it is very laborious, so productivity is poor. Furthermore, in order to super stretch the sea-island composite fiber, it is necessary to improve the fluidity by heating the composite fiber at a high temperature, but the sea-island structure is likely to be disturbed due to the difference in the flow characteristics of the amphoteric during heating, It was difficult to obtain uniform fine carbon fibers due to coalescence of island components and breakage of island components. In particular, when the island component is refined to the nano level, the sea-island structure is destroyed even by a slight turbulence in the flow, so that it is very difficult to obtain carbon fibers having a nano level fineness.

このように、微細で連続した炭素繊維が求められているにもかかわらず、その原料となる炭素原料樹脂と熱分解性樹脂からなる複合繊維を安定して作成する方法は存在しなかった。
特開2004−43994号公報 特開2003−301335号公報
As described above, despite the demand for fine and continuous carbon fibers, there has been no method for stably producing a composite fiber composed of a carbon raw material resin and a thermally decomposable resin.
JP 2004-43994 A JP 2003-301335 A

本発明は微細炭素繊維を製造するのに好適な複合繊維を効率的に生産する方法を提供することを目的とする。   An object of this invention is to provide the method of producing efficiently the composite fiber suitable for manufacturing a fine carbon fiber.

上記目的は、溶融賦形性を有する炭素原料樹脂を島成分、熱分解性樹脂を海成分とした海島複合繊維を、島成分の直径が1〜10μmとなるように溶融紡糸にて作製し、さらに得られた繊維を超延伸することを特徴とする複合繊維の製造方法によって達成できる。   The above-mentioned purpose is to produce a sea-island composite fiber using a carbon raw material resin having melt-forming properties as an island component and a thermally decomposable resin as a sea component by melt spinning so that the island component has a diameter of 1 to 10 μm, Furthermore, it can achieve by the manufacturing method of the composite fiber characterized by super-drawing the obtained fiber.

熱分解性樹脂中に炭素原料樹脂を含有した炭素繊維原料繊維の生産において、生産性に優れた溶融紡糸により島成分の形状が制御された海島繊維を作成し、これを超延伸して島成分を微細化することで、炭素原料樹脂による連続した島成分を有する複合繊維を安定して生産することが可能となる。   In the production of carbon fiber raw material fiber containing carbon raw material resin in the thermally decomposable resin, sea island fiber whose shape of island component is controlled by melt spinning with excellent productivity is created, and this is super-stretched to make island component It is possible to stably produce a composite fiber having a continuous island component made of a carbon raw material resin.

本発明の複合繊維の製造方法においては、まず溶融賦形性を有する炭素原料樹脂を島成分、熱分解性樹脂を海成分とする海島型複合繊維を作成することが重要である。一般に、炭素原料樹脂は製糸性に乏しく、単体で紡糸を行う場合には安定性の面から、直径20μm(約5dtex)以下の繊維を得ることは困難である。しかし、製糸性に優れた熱分解性の樹脂との複合繊維とすることにより、製糸性を改善し繊維を微細化することが可能となる。さらに、1本の繊維中に複数の島成分を有する海島型複合繊維とすることにより、複合繊維の太さに対する島成分の太さを格段に小さくすることが可能となり、直径10μm(約1dtex)以下の島成分を有する複合繊維を安定して製造することが可能である。微細な炭素繊維を得るためには、溶融紡糸時に複合繊維中の島成分を微細化しておくことが望ましく、島成分の直径が5μm以下であるとより好ましい。ただし、溶融紡糸時に島成分を微細化しすぎると島1個に対する樹脂の供給量が非常に少なくなるため、島成分間で繊度のばらつきが大きくなり、後の延伸工程で部分的な島成分の断裂を引き起こす原因となることから、溶融紡糸時における複合繊維中の島成分の直径は1μm以上であることが好ましく、2μm以上であることがより好ましい。このような海島複合繊維は、例えば特公昭47−26723号公報に記載されているような紡糸口金を用いて溶融紡糸を行うことで作成することが可能である。
本発明における炭素原料樹脂とは、適切な前処理を行った後に焼成処理を行うことによって炭素繊維となる能力を持った樹脂のことを指し、具体的には所定の前処理を行った後、熱重量分析装置を用いて窒素雰囲気下で室温から600℃まで10℃/分で加熱し、その後1時間保持した後の熱減量率が80%以下のものを示す。このような樹脂の代表的なものとしてはフェノール樹脂、ピッチ、ポリアクリロニトリル、セルロース等が挙げられるが、本発明では紡糸方法として溶融紡糸を用いることから熱可塑性を有することが必要であり、ノボラック型のフェノール樹脂やブタジエンやアクリル酸メチル等を共重合して溶融賦形性を付与したポリアクリロニトリル樹脂(以下、熱可塑性ポリアクリロニトリル樹脂と記す)が好まい。
また、熱分解性樹脂とは高温で熱処理を行うことにより完全に熱分解する樹脂のことを指し、具体的には熱重量分析装置を用いて樹脂を窒素下で室温から600℃まで10℃/分で昇温したときに、重量減少率が95%を越えるものを指す。このような樹脂の例としてはポリエチレン、ポリプロピレンなどのポリオレフィン、ナイロン6、ナイロン6,6などの脂肪族ポリアミド、ポリ乳酸等の脂肪族ポリエステルが挙げられる。
In the method for producing a composite fiber of the present invention, it is important to first create a sea-island composite fiber having an island component of a carbon raw material resin having melt-forming properties and a sea component of a thermally decomposable resin. In general, the carbon raw material resin is poor in spinning performance, and when spinning alone, it is difficult to obtain fibers having a diameter of 20 μm (about 5 dtex) or less from the viewpoint of stability. However, by using a composite fiber with a thermally decomposable resin excellent in yarn forming property, it becomes possible to improve the yarn forming property and to refine the fiber. Furthermore, by using a sea-island type composite fiber having a plurality of island components in one fiber, the thickness of the island component relative to the thickness of the composite fiber can be remarkably reduced, and the diameter is 10 μm (about 1 dtex). It is possible to stably produce a composite fiber having the following island components. In order to obtain a fine carbon fiber, it is desirable to make the island component in the composite fiber fine at the time of melt spinning, and it is more preferable that the diameter of the island component is 5 μm or less. However, if the island component is made too fine during melt spinning, the amount of resin supplied to one island will be very small, resulting in large variations in fineness among island components, and partial island component rupture in the subsequent drawing process. Therefore, the diameter of the island component in the composite fiber during melt spinning is preferably 1 μm or more, and more preferably 2 μm or more. Such a sea-island composite fiber can be produced by performing melt spinning using a spinneret as described in Japanese Patent Publication No. 47-26723, for example.
The carbon raw material resin in the present invention refers to a resin having an ability to become a carbon fiber by performing a baking treatment after performing an appropriate pretreatment, specifically, after performing a predetermined pretreatment, The heat loss rate after heating at 10 ° C./min from room temperature to 600 ° C. in a nitrogen atmosphere using a thermogravimetric analyzer and then holding for 1 hour is 80% or less. Typical examples of such resins include phenolic resin, pitch, polyacrylonitrile, cellulose, etc. In the present invention, it is necessary to have thermoplasticity because melt spinning is used as the spinning method, and a novolak type Polyacrylonitrile resin (hereinafter referred to as thermoplastic polyacrylonitrile resin) obtained by copolymerizing a phenol resin, butadiene, methyl acrylate, or the like to impart melt-forming properties is preferred.
The thermally decomposable resin refers to a resin that is completely thermally decomposed by heat treatment at a high temperature. Specifically, the resin is removed from room temperature to 600 ° C. under nitrogen using a thermogravimetric analyzer at 10 ° C. / When the temperature is raised in minutes, the weight reduction rate is over 95%. Examples of such resins include polyolefins such as polyethylene and polypropylene, aliphatic polyamides such as nylon 6, nylon 6,6, and aliphatic polyesters such as polylactic acid.

本発明の複合繊維の製造方法においては、溶融紡糸にて得られた海島型複合繊維を超延伸することで複合繊維中の島成分を微細化することが重要である。超延伸により島成分を微細化することにより、該複合繊維を焼成した後に得られる炭素繊維の直径が微細になり、特性の優れた炭素繊維を得ることが可能となる。ここで、単成分繊維を超延伸する方法では元の繊維が太いことから非常に高い倍率の超延伸が必要であるため生産性が低くなる。一方で、延伸前の島成分の直径が小さいブレンド繊維を用いれば延伸倍率は低く抑えることが可能となるが、カーボンファイバーの直径のばらつきが大きくなる上、連続したカーボンファイバーを得ることができない。本発明のように、均一で微細な海島構造が作成可能である海島型複合繊維を出発点として超延伸を行うことで延伸倍率を低く抑え、効率的に連続したカーボンナノファイバーを作製することが可能となるのである。   In the method for producing a composite fiber of the present invention, it is important to refine the island components in the composite fiber by super-drawing the sea-island type composite fiber obtained by melt spinning. By miniaturizing the island component by super-drawing, the diameter of the carbon fiber obtained after firing the composite fiber becomes fine, and it becomes possible to obtain a carbon fiber having excellent characteristics. Here, in the method of super-drawing single component fibers, the original fiber is thick, so that super-stretching at a very high magnification is required, and therefore productivity is lowered. On the other hand, if a blend fiber having a small diameter of the island component before stretching is used, the draw ratio can be kept low, but the variation in the diameter of the carbon fibers becomes large, and continuous carbon fibers cannot be obtained. As in the present invention, it is possible to produce a continuous carbon nanofiber efficiently by keeping the draw ratio low by performing super-drawing with a sea-island type composite fiber that can create a uniform and fine sea-island structure. It becomes possible.

通常、繊維の延伸は加熱ロールを用いて繊維を変形温度より少し高い温度に加熱し、より高速に設定した巻取ロールで巻き上げることで繊維を細くする。この時、繊維は延伸されて細くなると同時に分子配向が進み強伸度特性が改善される。しかし、分子配向の進展とともに延伸張力が増大し、繊維の破断に繋がるため、一定以上の延伸倍率で延伸することは不可能である。一般にポリエステルやポリアミドでは5〜7倍が限度であり、延伸倍率の上げやすいポリエチレンやポリプロピレンにおいても15〜20倍が限界である。一方で超延伸とは、通常の延伸よりも繊維を融点近くの高温にまで加熱することで分子配向が十分に進まない状態で延伸を行い、延伸張力の増加を抑えて通常の延伸よりも高い倍率で行われる延伸のことを言い、本発明においては延伸倍率20倍以上の延伸のことを指す。   Usually, the fiber is stretched by heating the fiber to a temperature slightly higher than the deformation temperature using a heating roll and winding the fiber with a winding roll set at a higher speed to make the fiber thinner. At this time, the fibers are drawn and thinned, and at the same time, the molecular orientation advances and the strength and elongation characteristics are improved. However, since the stretching tension increases with the progress of molecular orientation and leads to fiber breakage, it is impossible to stretch at a certain stretching ratio. In general, the limit is 5 to 7 times for polyester and polyamide, and the limit is 15 to 20 times for polyethylene and polypropylene that can easily increase the draw ratio. On the other hand, super-stretching is higher than normal stretching by suppressing the increase in stretching tension by stretching the fiber in a state where the molecular orientation does not advance sufficiently by heating the fiber to a high temperature close to the melting point. This refers to stretching performed at a magnification, and in the present invention refers to stretching at a stretching ratio of 20 times or more.

超延伸においては繊維の加熱方法が重要となるが、繊維を半溶融状態まで加熱するため、レーザー光線やスチーム等の非接触の加熱方法が好ましい。なかでも、レーザー光線であれば、繊維を狭い範囲で急速に加熱できるため、超延伸が安定しやすく好ましい。また、接触式のヒーターを用いる場合においても、図1に示すような繊維入口2がテーパー状として繊維出口3に通じたテーパー状のダイ1をもちいて加熱と同時に延伸を行うなど、繊維の形状が崩れない工夫を行うことで安定した延伸が可能となる。この時、延伸倍率が高いと延伸後の繊維が極端に細くなり延伸糸が破断しやすくなるため、予め繊維を複数本束ねて太くすると延伸後の繊維も太くなり延伸が安定するため好ましい。   In super-stretching, the fiber heating method is important. However, in order to heat the fiber to a semi-molten state, a non-contact heating method such as laser beam or steam is preferable. Among these, a laser beam is preferable because the fiber can be rapidly heated in a narrow range, and thus superstretching is easy to stabilize. Even when a contact heater is used, the shape of the fiber is such that the fiber inlet 2 is tapered as shown in FIG. 1 and is drawn simultaneously with heating using a tapered die 1 leading to the fiber outlet 3. Stable stretching can be achieved by devising a technique that does not collapse. At this time, if the draw ratio is high, the stretched fiber becomes extremely thin and the stretched yarn is easily broken. Therefore, it is preferable to bundle a plurality of fibers in advance to increase the thickness of the stretched fiber and stabilize the stretching.

このように海島複合紡糸と超延伸を組み合わせて微細な島成分を持つ複合繊維を作製するためには、紡糸・延伸による微細化中に起こる島成分の断裂や、島成分同士の合一を防ぐ必要がある。このため、本発明の複合繊維においては複合繊維全体の質量に対する島成分の比率が10〜50重量%であることが重要である。このような分率とすることで、紡糸・延伸工程における島成分同士の合一を防止し、島成分を効率的に微細化することが可能である。特に、海島複合繊維においては外周部において海成分樹脂が少なくなる傾向が見られるため、島成分比率を多くすると島成分が繊維表面に露出し、複数本束ねて超延伸を行う際に島成分同士が合一してしまう可能性がある。このような島成分同士の合一を防ぐためには、島成分の重量分率が45%以下であることが好ましく、40%以下であるとさらに好ましい。また、焼成後の炭素繊維の収率を高めるためには島成分の重量分率が15%以上であることが好ましく、25%以上であるとより好ましい。   In this way, in order to produce a composite fiber with fine island components by combining sea-island composite spinning and ultra-drawing, it prevents island components from rupturing and coalescence between island components during refinement by spinning and drawing. There is a need. For this reason, in the composite fiber of this invention, it is important that the ratio of the island component with respect to the mass of the whole composite fiber is 10 to 50% by weight. By setting it as such a fraction, it is possible to prevent the island components from being united with each other in the spinning / drawing step, and to efficiently miniaturize the island components. In particular, in the sea-island composite fiber, there is a tendency for the sea component resin to decrease in the outer peripheral portion. May be united. In order to prevent such union of island components, the weight fraction of the island components is preferably 45% or less, and more preferably 40% or less. In order to increase the yield of carbon fiber after firing, the weight fraction of the island component is preferably 15% or more, and more preferably 25% or more.

さらに、海成分樹脂と島成分樹脂の流動特性が異なると、紡糸口金内部での圧力バランスの偏りにより、島成分同士が合一したり島成分の太さが不均一になったりする。加えて、流動特性が大きく異なると、超延伸の際に流動が乱れて島成分の断裂や合一の原因となる。このため、超延伸時の海成分樹脂と島成分樹脂の流動特性が似ていることが好ましく、特に海成分樹脂と島成分樹脂の粘度比が一定の範囲内に入っていることが好ましい。この粘度比を式で表すと下記のようになる。   Furthermore, if the flow characteristics of the sea component resin and the island component resin are different, the island components may be united or the thickness of the island components may be uneven due to the uneven pressure balance inside the spinneret. In addition, if the flow characteristics are greatly different, the flow is disturbed during super-stretching, causing island components to break or coalesce. For this reason, it is preferable that the flow characteristics of the sea component resin and the island component resin at the time of super-stretching are similar, and it is particularly preferable that the viscosity ratio of the sea component resin and the island component resin is within a certain range. This viscosity ratio is represented by the following formula.

Figure 2006265788
Figure 2006265788

ηs:海成分(熱分解性樹脂)の粘度
ηi:島成分(炭素原料樹脂)の粘度
ここで、各樹脂成分の粘度は、両方の樹脂が成形可能となるように、融点の高い方の樹脂の融点より50℃高い温度で測定した物である。ここで、本発明における融点とは示差走査熱量計(パーキンエルマー社製DSC)で行う示差熱量測定において、測定する樹脂を室温から16℃/分の昇温条件で測定した際に観測される吸熱ピーク温度を指す。ここで、結晶性を示さず示差走査熱量計による測定において明確な吸熱ピークを示さない樹脂については軟化点を融点の代わりに用いる。また、溶融粘度はキャピラリーレオメーター(東洋精機製作所(株)キャピログラフ1B型)により測定される値である。
η s : Viscosity of sea component (thermally decomposable resin) η i : Viscosity of island component (carbon raw material resin) Here, each resin component has a higher melting point so that both resins can be molded. Measured at a temperature 50 ° C. higher than the melting point of the resin. Here, the melting point in the present invention is an endotherm observed when a resin to be measured is measured from a room temperature under a temperature rising condition of 16 ° C./min in a differential calorimetry performed by a differential scanning calorimeter (DSC manufactured by Perkin Elmer). Refers to peak temperature. Here, for a resin that does not show crystallinity and does not show a clear endothermic peak in measurement with a differential scanning calorimeter, the softening point is used instead of the melting point. The melt viscosity is a value measured with a capillary rheometer (Toyo Seiki Seisakusho Co., Ltd. Capillograph Type 1B).

このようにして得られた複合繊維をもちいて、複合繊維中の炭素原料樹脂に熱安定性を付与する工程と、複合繊維を焼成して炭素繊維を製造する工程を行うことにより、微細な炭素繊維を製造することができる。   By using the composite fiber thus obtained, fine carbon is obtained by performing a process of imparting thermal stability to the carbon raw material resin in the composite fiber and a process of firing the composite fiber to produce carbon fiber. Fiber can be produced.

ここで、複合繊維を焼成した後に得られる炭素繊維がカーボンナノファイバーとして十分な性能を発揮するためには、繊維軸に垂直な横断面内において炭素前駆体により形成される島成分の平均直径が500nm以下になるまで微細化することが好ましい。本発明で示される横断面内の島成分の直径は繊維軸に垂直方向に切り出した薄片サンプルを必要により染色して透過型電子顕微鏡(TEM)により観察することによって測定することが可能であり、繊維断面の1/10以上の面積が入ったTEM写真において画像処理を行い、個々の島成分の直径を算出し、得られた島成分の直径から平均直径を得ることができる。また、カーボンナノファイバーは細いほどその性能が向上するため、島成分の平均直径は200nm以下であればより好ましく、100nm以下であればさらに好ましい。ただし、細くなりすぎるとグラファイトシートの形成性に悪影響がでることが予測されるため、直径は1nm以上であることが好ましい。   Here, in order for the carbon fiber obtained after firing the composite fiber to exhibit sufficient performance as a carbon nanofiber, the average diameter of the island component formed by the carbon precursor in the cross section perpendicular to the fiber axis is It is preferable to reduce the size to 500 nm or less. The diameter of the island component in the cross section shown in the present invention can be measured by staining a thin sample cut in the direction perpendicular to the fiber axis as necessary and observing with a transmission electron microscope (TEM), Image processing is performed on a TEM photograph containing an area of 1/10 or more of the fiber cross section, the diameter of each island component is calculated, and the average diameter can be obtained from the diameter of the obtained island component. Moreover, since the performance improves, so that carbon nanofiber is thin, the average diameter of an island component is more preferable if it is 200 nm or less, and it is further more preferable if it is 100 nm or less. However, if it becomes too thin, it is predicted that the formability of the graphite sheet will be adversely affected. Therefore, the diameter is preferably 1 nm or more.

上記のようにして得られた複合繊維に熱安定性を付与し、焼成することで微細な炭素繊維を得ることができる。複合繊維中の炭素原料樹脂に熱安定性を付与する工程は、紡糸時には溶融賦形性を有していた炭素原料樹脂を、焼成時に形態が変化しないように熱安定性を付与する工程である。熱安定性の付与は炭素原料樹脂にあった方法で行えばよく、例えばフェノール樹脂においては架橋触媒の存在下、アルデヒド類でフェノール樹脂を硬化することで行うことができる。また、ポリアクリロニトリル樹脂においては長時間の加熱や薬品処理によりアクリロニトリル基を環化する事で熱安定性を付与することが可能である。   A fine carbon fiber can be obtained by imparting thermal stability to the composite fiber obtained as described above and firing it. The step of imparting thermal stability to the carbon raw material resin in the composite fiber is a step of imparting thermal stability so that the shape of the carbon raw material resin that had melt-shaped property during spinning does not change during firing. . The heat stability may be imparted by a method suitable for the carbon raw material resin. For example, in the case of a phenol resin, the phenol resin can be cured by aldehydes in the presence of a crosslinking catalyst. Moreover, in polyacrylonitrile resin, it is possible to impart thermal stability by cyclizing acrylonitrile groups by prolonged heating or chemical treatment.

複合繊維を焼成して炭素繊維を得る工程では、炭素化樹脂内部の炭素以外の元素を除去し、純粋な炭素からなる繊維を作成する。ここで、炭素原料樹脂が炭素化するとともに、熱分解性樹脂が完全に除去されるため、島成分の炭素原料樹脂に由来する極細炭素繊維を得ることができる。焼成は公知な方法に従って良く、窒素やアルゴン等の不活性ガス下において600〜1200℃の熱処理を行うのが好ましい。   In the process of firing the composite fiber to obtain the carbon fiber, elements other than carbon inside the carbonized resin are removed to produce a fiber made of pure carbon. Here, since the carbon raw material resin is carbonized and the thermally decomposable resin is completely removed, ultrafine carbon fibers derived from the island raw material carbon raw material resin can be obtained. Firing may be performed according to a known method, and it is preferable to perform heat treatment at 600 to 1200 ° C. under an inert gas such as nitrogen or argon.

このようにして得られる炭素繊維は、本発明の複合繊維中の炭素化樹脂の形状を反映して極めて細いことが特徴であり、大きな表面積を活用して高性能な電極や吸着材に使用できるほか、優れた力学特性から樹脂の添加剤としても有用なものである。特に、本発明の複合繊維より得られる炭素繊維は、従来の気相法やブレンド繊維から得られる極細炭素繊維と異なり完全に連続した形態で得られるため、長繊維強化複合材料の強化材として特に有用である。   The carbon fibers obtained in this way are characterized by being extremely thin reflecting the shape of the carbonized resin in the composite fiber of the present invention, and can be used for high-performance electrodes and adsorbents utilizing a large surface area. In addition, it is also useful as a resin additive because of its excellent mechanical properties. In particular, the carbon fiber obtained from the composite fiber of the present invention is obtained in a completely continuous form, unlike the ultrafine carbon fiber obtained from the conventional gas phase method or blend fiber, and is particularly useful as a reinforcing material for long fiber reinforced composite materials. Useful.

以下、実施例により本発明をさらに具体的に説明する。なお、各実施例中における各種測定値は下記手法により測定された値である。
A.未延伸糸の総繊度、単糸繊度
巻取ドラムより検尺機を用いて100mの長さの繊維を採取し、測定した重量を100倍する事で未延伸糸の総繊度を求めた。また、総繊度をフィラメント数で割ることで単糸繊度を求めた。
B.未延伸糸中の島成分の直径
繊維を銅板に通し剃刀で切断することで、繊維軸に垂直な方向で厚さ0.5mmの試料を作製し、光学顕微鏡(オリンパス株式会社 BX60)を用いて断面観察を行い、観察像から島成分の直径を求めた。
C.延伸繊維中の島成分の円形度、平均直径
まず、延伸繊維をエポキシ樹脂に含浸した上で、RuOによる染色を行った後にミクロトームをもちいて繊維軸に垂直な面の超薄切片を作製し、透過型電子顕微鏡((株)日立製作所、H−7100FA)により繊維中央部を4万倍の倍率で観察を行った。次に、得られた画像を画像処理ソフト(三谷商事(株)製、Winroof)で画像処理を行い、各島成分の面積と円形度を求めた。さらに、得られた各島成分の面積から円換算径を計算し、下記式より平均直径を計算した。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the various measured values in each Example are the values measured by the following method.
A. Total fineness of undrawn yarn, single yarn fineness Fiber of 100 m length was collected from a winding drum using a measuring machine, and the total fineness of the undrawn yarn was determined by multiplying the measured weight by 100. The single yarn fineness was determined by dividing the total fineness by the number of filaments.
B. Diameter of island component in unstretched yarn Cut the fiber through a copper plate and cut with a razor to prepare a sample with a thickness of 0.5 mm in the direction perpendicular to the fiber axis, and observe the cross section using an optical microscope (Olympus Corporation BX60) The diameter of the island component was obtained from the observed image.
C. Circularity and average diameter of island component in drawn fiber First, after impregnating the drawn fiber with epoxy resin and dyeing with RuO 4, an ultrathin section with a plane perpendicular to the fiber axis is prepared using a microtome and transmitted. The center part of the fiber was observed at a magnification of 40,000 times with a scanning electron microscope (Hitachi Ltd., H-7100FA). Next, the obtained image was subjected to image processing with image processing software (Winroof, manufactured by Mitani Corporation), and the area and circularity of each island component were obtained. Furthermore, the diameter in terms of a circle was calculated from the area of each island component obtained, and the average diameter was calculated from the following formula.

Figure 2006265788
Figure 2006265788

D.融点
示差走査熱量計(パーキンエルマー社製DSC)をもちいて室温から16℃/分の昇温条件で測定し、観測される吸熱ピーク温度を融点とした。
E.溶融粘度
キャピラリーレオメーター(東洋精機製作所(株)製キャピログラフ1B型)をもちいて、孔径1mmφ、L/D=10のダイスを用い、剪断速度1216sec−1で測定した。
D. Melting point Measurement was performed using a differential scanning calorimeter (DSC manufactured by PerkinElmer Co., Ltd.) at a temperature rising condition of 16 ° C./min from room temperature, and the observed endothermic peak temperature was taken as the melting point.
E. Melt Viscosity Using a capillary rheometer (Capillograph 1B type, manufactured by Toyo Seiki Seisakusho Co., Ltd.), the viscosity was measured at a shear rate of 1216 sec −1 using a die having a pore diameter of 1 mmφ and L / D = 10.

実施例1
以下の条件で海島型複合繊維を作製した。
島成分:熱可塑性ポリアクリロニトリル樹脂(三井化学(株)製、バレックス(登録商標)#3000)
海成分:ポリラクチド(Cargill Dow Polymer LLC製、6200D、融点170℃、220℃における溶融粘度155Pa・sec)
紡糸口金:36島×16フィラメント
海島比:島/海=30/70(重量割合)
総吐出量:25g/min
紡糸温度:220℃
巻取速度:1300m/min
紡糸時の紡糸性は良好であり、得られた未延伸糸の総繊度は192dTexで単糸繊度は12dTexであった。また、未延伸糸の断面観察を行ったところ、繊維内部に均一に島成分が観測され、その直径は3.3μmであった。この繊維を550本引き揃えて熱収縮チューブに充填し、真空乾燥機内部で120℃、3時間処理して繊維同士を融着させた後、整形して直径10mmのロッドを作製した。得られたロッドを210℃に加熱された入口側の直径が10mm、出口側の直径が1mmのテーパー状ダイに押し込み、吐出された繊維を引き取ることで直径0.73mmのモノフィラメントを得た。延伸前後の直径から算出される理論延伸倍率は193倍である。
Example 1
Sea-island type composite fibers were produced under the following conditions.
Island component: Thermoplastic polyacrylonitrile resin (Mitsui Chemicals, Valex (registered trademark) # 3000)
Sea component: Polylactide (Cargill Dow Polymer LLC, 6200D, melting point 170 ° C., melt viscosity 155 Pa · sec at 220 ° C.)
Spinneret: 36 islands × 16 filaments Sea-island ratio: island / sea = 30/70 (weight ratio)
Total discharge amount: 25 g / min
Spinning temperature: 220 ° C
Winding speed: 1300m / min
The spinnability at the time of spinning was good, and the obtained undrawn yarn had a total fineness of 192 dTex and a single yarn fineness of 12 dTex. Further, when the cross-section of the undrawn yarn was observed, the island component was uniformly observed inside the fiber, and the diameter thereof was 3.3 μm. 550 fibers were drawn and filled in a heat-shrinkable tube, treated in a vacuum dryer at 120 ° C. for 3 hours to fuse the fibers together, and then shaped to produce a rod having a diameter of 10 mm. The obtained rod was pressed into a tapered die heated to 210 ° C. having a diameter of 10 mm on the inlet side and a diameter of 1 mm on the outlet side, and the discharged fiber was taken out to obtain a monofilament having a diameter of 0.73 mm. The theoretical stretching ratio calculated from the diameter before and after stretching is 193 times.

得られたモノフィラメントの断面観察を行った結果、内部に熱可塑性ポリアクリロニトリルからなる島成分を無数に含んだ海島型複合繊維で、島成分同士はほぼ完全に独立していた。ここで、島成分の平均直径は234nmであっり、円形度が0.9以上の島成分の割合は96.3%であった。     As a result of cross-sectional observation of the obtained monofilament, it was a sea-island type composite fiber containing countless island components made of thermoplastic polyacrylonitrile inside, and the island components were almost completely independent. Here, the average diameter of the island component was 234 nm, and the ratio of the island component having a circularity of 0.9 or more was 96.3%.

この海島型複合繊維を窒素雰囲気下において、240℃、45分の熱処理を行い不融化処理し、その後窒素雰囲気下、600℃、1時間の熱処理を行い焼成することで炭素繊維を作製した。作製した炭素繊維を電子顕微鏡で観察したところ、直径180nmの連続した炭素繊維の束が観測された。   This sea-island type composite fiber was heat treated at 240 ° C. for 45 minutes in a nitrogen atmosphere to make it infusible, and then subjected to heat treatment at 600 ° C. for 1 hour in a nitrogen atmosphere to produce a carbon fiber. When the produced carbon fiber was observed with an electron microscope, a bundle of continuous carbon fibers having a diameter of 180 nm was observed.

実施例2
以下の条件で海島型複合繊維を作製した。
島成分:熱可塑性ポリアクリロニトリル樹脂(三井化学(株)製、バレックス(登録商標)#3000)
海成分:ポリラクチド(Cargill Dow Polymer LLC製、6400D、融点170℃、220℃における溶融粘度265Pa・sec)
紡糸口金:36島×16フィラメント
海島比:島/海=40/60(重量割合)
総吐出量:25g/min
紡糸温度:220℃
巻取速度:1300m/min
紡糸時の紡糸性は良好であり、得られた未延伸糸の総繊度は192dTexで単糸繊度は12dTexであった。また、未延伸糸の断面観察を行ったところ、繊維内部に均一に島成分が観測され、その直径は3.8μmであった。この繊維を実施例1と同様に超延伸し、直径0.73mmのモノフィラメントを作製した。
Example 2
Sea-island type composite fibers were produced under the following conditions.
Island component: Thermoplastic polyacrylonitrile resin (Mitsui Chemicals, Valex (registered trademark) # 3000)
Sea component: Polylactide (Cargill Dow Polymer LLC, 6400D, melting point 170 ° C., melt viscosity 265 Pa · sec at 220 ° C.)
Spinneret: 36 islands × 16 filaments Sea-island ratio: island / sea = 40/60 (weight ratio)
Total discharge amount: 25 g / min
Spinning temperature: 220 ° C
Winding speed: 1300m / min
The spinnability at the time of spinning was good, and the obtained undrawn yarn had a total fineness of 192 dTex and a single yarn fineness of 12 dTex. Further, when the cross section of the undrawn yarn was observed, the island component was uniformly observed inside the fiber and the diameter was 3.8 μm. This fiber was ultradrawn in the same manner as in Example 1 to produce a monofilament having a diameter of 0.73 mm.

得られたモノフィラメントの断面観察を行った結果、内部に熱可塑性ポリアクリロニトリルからなる島成分を無数に含んだ海島型複合繊維で、島成分のほとんどは独立しているが、島成分同士の距離が近いため一部の島成分は融着しているのが観測された。ここで、島成分の平均直径は284nmであり、円形度が0.9以上の島の割合は84.5%であった。     As a result of cross-sectional observation of the obtained monofilament, it is a sea-island type composite fiber containing countless island components made of thermoplastic polyacrylonitrile inside, and most of the island components are independent, but the distance between the island components is It was observed that some island components were fused because they were close. Here, the average diameter of the island component was 284 nm, and the proportion of islands having a circularity of 0.9 or more was 84.5%.

実施例3
以下の条件で海島型複合繊維を作製した。
島成分:熱可塑性ポリアクリロニトリル樹脂(三井化学(株)製、バレックス(登録商標)#3000)
海成分:ポリラクチド(Cargill Dow Polymer LLC製、6250D、融点170℃、220℃における溶融粘度83Pa・sec)
紡糸口金:36島×16フィラメント
海島比:島/海=20/80(重量割合)
総吐出量:25g/min
紡糸温度:220℃
巻取速度:1300m/min
紡糸時の紡糸性は良好であり、得られた未延伸糸の総繊度は192dTexで単糸繊度は12dTexであった。また、未延伸糸の断面観察を行ったところ、繊維内部に均一に島成分が観測され、その直径は2.7μmであった。この繊維を3500本引き揃えて熱収縮チューブに充填し、真空乾燥機内部で120℃、3時間処理して繊維同士を融着させた後、整形して直径25mmのロッドを作製した。得られたロッドを210℃に加熱された入口側の直径が25mm、出口側の直径が1mmのテーパー状ダイに押し込み、吐出された繊維を引き取ることで直径0.82mmのモノフィラメントを得た。延伸前後の直径から算出される理論延伸倍率は930倍である。
Example 3
Sea-island type composite fibers were produced under the following conditions.
Island component: Thermoplastic polyacrylonitrile resin (Mitsui Chemicals, Barex (registered trademark) # 3000)
Sea component: Polylactide (Cargill Dow Polymer LLC, 6250D, melting point 170 ° C., melt viscosity at 220 ° C. 83 Pa · sec)
Spinneret: 36 islands × 16 filaments Sea-island ratio: island / sea = 20/80 (weight ratio)
Total discharge amount: 25 g / min
Spinning temperature: 220 ° C
Winding speed: 1300m / min
The spinnability at the time of spinning was good, and the resulting undrawn yarn had a total fineness of 192 dTex and a single yarn fineness of 12 dTex. Further, when the cross-section of the undrawn yarn was observed, the island component was uniformly observed inside the fiber and the diameter was 2.7 μm. 3,500 fibers were drawn and filled in a heat-shrinkable tube, treated in a vacuum dryer at 120 ° C. for 3 hours to fuse the fibers together, and then shaped to produce a rod having a diameter of 25 mm. The obtained rod was pushed into a tapered die heated to 210 ° C. having a diameter of 25 mm on the inlet side and a diameter of 1 mm on the outlet side, and a monofilament having a diameter of 0.82 mm was obtained by taking out the discharged fiber. The theoretical stretching ratio calculated from the diameter before and after stretching is 930 times.

得られたモノフィラメントの断面観察を行った結果、内部に熱可塑性ポリアクリロニトリルからなる島成分を無数に含んだ海島型複合繊維で、島成分はほぼ完全に独立していた。ここで、島成分の平均直径は87nmであり、円形度が0.9以上の島の割合は97.5%であった。     As a result of cross-sectional observation of the obtained monofilament, it was a sea-island type composite fiber containing countless island components made of thermoplastic polyacrylonitrile inside, and the island components were almost completely independent. Here, the average diameter of the island component was 87 nm, and the proportion of islands having a circularity of 0.9 or more was 97.5%.

実施例4
以下の条件で海島型複合繊維を作製した。
島成分:ノボラック型フェノール樹脂(住友ベークライト(株) 軟化点95℃)
海成分:低密度ポリエチレン(三井化学(株) ミラソン(登録商標)FL60 MFR=70 融点102℃)
紡糸口金:36島×16フィラメント
海島比:島/海=20/80(重量割合)
総吐出量:12g/min
紡糸温度:200℃
巻取速度:200m/min
紡糸時は高速で巻取を試みると繊維が破断するため、巻取速度を下げて紡糸を行う必要があったが、糸切れは観測されなかった。得られた未延伸糸の総繊度は600dTexであった。ここで、未延伸糸の断面観察を行ったところ、繊維内部の島成分の大きさはかなりばらついており、島成分のほとんど入っていない繊維も観測された。そこで16本の繊維に対して島成分の直径を測定し平均したところ、島成分の平均直径は4.2μmとなった。この繊維を240本引き揃えて熱収縮チューブに充填し、真空乾燥機内で170℃、3時間処理して繊維同士を融着させた後、整形して直径10mmのロッドを作製した。得られたロッドを340℃に加熱された入口側の直径が10mm、出口側の直径が1mmのテーパー状ダイに押し込み、吐出された繊維を引き取ることで直径0.92mmのモノフィラメントを得た。延伸前後の直径から算出される理論延伸倍率は121倍である。
Example 4
Sea-island type composite fibers were produced under the following conditions.
Island component: Novolac-type phenolic resin (Sumitomo Bakelite Co., Ltd. softening point 95 ° C)
Sea component: low density polyethylene (Mitsui Chemicals, Inc. Mirason (registered trademark) FL60 MFR = 70 melting point 102 ° C.)
Spinneret: 36 islands × 16 filaments Sea-island ratio: island / sea = 20/80 (weight ratio)
Total discharge amount: 12 g / min
Spinning temperature: 200 ° C
Winding speed: 200m / min
At the time of spinning, if the winding was attempted at a high speed, the fiber was broken. Therefore, it was necessary to perform spinning at a lower winding speed, but no yarn breakage was observed. The total fineness of the obtained undrawn yarn was 600 dTex. Here, when the cross-section observation of the undrawn yarn was performed, the size of the island component inside the fiber was considerably varied, and fibers with almost no island component were observed. Therefore, when the diameter of the island component was measured and averaged for 16 fibers, the average diameter of the island component was 4.2 μm. 240 fibers were aligned and filled in a heat-shrinkable tube, treated in a vacuum dryer at 170 ° C. for 3 hours to fuse the fibers together, and then shaped to produce a rod having a diameter of 10 mm. The obtained rod was pressed into a tapered die heated to 340 ° C. having a diameter of 10 mm on the inlet side and a diameter of 1 mm on the outlet side, and the discharged fiber was taken out to obtain a monofilament having a diameter of 0.92 mm. The theoretical stretching ratio calculated from the diameter before and after stretching is 121 times.

得られたモノフィラメントの断面観察を行った結果、内部にフェノール樹脂からなる島成分を無数に含んだ海島型複合繊維であったが、島成分の大きさはかなりばらついていた。ここで、島成分の平均直径は463nmであり、円形度が0.9以上の島の割合は97.8%であった。     As a result of cross-sectional observation of the obtained monofilament, it was a sea-island type composite fiber containing innumerable island components made of phenol resin inside, but the size of the island components varied considerably. Here, the average diameter of the island component was 463 nm, and the ratio of islands having a circularity of 0.9 or more was 97.8%.

比較例1
以下の条件で海島型複合繊維を作製した。
島成分:メソフェーズピッチ(三菱ガス化学 ARレジン 軟化点270℃、キノリン不融分21%)
海成分:ポリエチレンテレフタレート([η]=0.63、融点260℃、310℃における溶融粘度92Pa・sec)
紡糸口金:36島×16フィラメント
海島比:島/海=20/80(重量割合)
総吐出量:12g/min
紡糸温度:310℃
巻取速度:100m/min
紡糸時は押出繊維の粘度が非常に高く、高速で巻取を試みると繊維が破断するため、巻取速度を極端に下げて紡糸を行う必要があった。また、ピッチから発生するガスの影響で実験中に頻繁に糸切れを起こした。得られた未延伸糸の総繊度は1200dTexで単糸繊度は76dTexであった。また、未延伸糸の断面観察を行ったところ、繊維内部に均一に島成分が観測され、その直径は5.8μmであった。この繊維を120本引き揃えて熱収縮チューブに充填し、真空乾燥機内部で120℃、3時間処理して繊維同士を融着させた後、整形して直径10mmのロッドを作製した。得られたロッドを340℃に加熱された入口側の直径が10mm、出口側の直径が1mmのテーパー状ダイに押し込み、吐出された繊維を引き取ることで直径0.86mmのモノフィラメントを得た。延伸前後の直径から算出される理論延伸倍率は164倍である。
Comparative Example 1
Sea-island type composite fibers were produced under the following conditions.
Island component: Mesophase pitch (Mitsubishi Gas Chemical AR resin, softening point 270 ° C, quinoline infusible 21%)
Sea component: polyethylene terephthalate ([η] = 0.63, melting point 260 ° C., melt viscosity at 310 ° C. 92 Pa · sec)
Spinneret: 36 islands × 16 filaments Sea-island ratio: island / sea = 20/80 (weight ratio)
Total discharge amount: 12 g / min
Spinning temperature: 310 ° C
Winding speed: 100m / min
At the time of spinning, the viscosity of the extruded fiber is very high, and if the winding is attempted at a high speed, the fiber breaks. Therefore, it is necessary to perform spinning at a very low winding speed. In addition, yarn breakage frequently occurred during the experiment due to the gas generated from the pitch. The obtained undrawn yarn had a total fineness of 1200 dTex and a single yarn fineness of 76 dTex. Further, when the cross section of the undrawn yarn was observed, an island component was observed uniformly inside the fiber and the diameter was 5.8 μm. 120 fibers were drawn and filled in a heat-shrinkable tube, treated in a vacuum dryer at 120 ° C. for 3 hours to fuse the fibers, and then shaped to produce a rod having a diameter of 10 mm. The obtained rod was pushed into a tapered die heated to 340 ° C. having a diameter of 10 mm on the inlet side and a diameter of 1 mm on the outlet side, and the discharged fiber was taken out to obtain a monofilament having a diameter of 0.86 mm. The theoretical stretching ratio calculated from the diameter before and after stretching is 164 times.

得られたモノフィラメントの断面観察を行った結果、内部にメソフェーズピッチからなる島成分を無数に含んだ海島型複合繊維であったが、島成分の形状は不定形であり、円形からは大きく外れていた。画像処理により算出された島成分の平均直径は529nmであるが、円形度が0.9以上の島の割合は3.3%であった。     As a result of cross-sectional observation of the obtained monofilament, it was a sea-island type composite fiber containing countless island components consisting of mesophase pitch inside, but the shape of the island component was indeterminate, and it was greatly out of the circle. It was. The average diameter of island components calculated by image processing was 529 nm, but the proportion of islands with a circularity of 0.9 or more was 3.3%.

この海島型ブレンド繊維を空気雰囲気下において、1.5℃/分で室温から250℃まで昇温し、そのまま2時間保持して不融化を行った。その後、窒素雰囲気下において、600℃、1時間の熱処理を行い炭素繊維を作製した。作製した炭素繊維を電子顕微鏡で観察したところ、炭素繊維同士が互いに融着した炭素の塊が観測され、炭素繊維を分離することはできなかった。   This sea-island type blended fiber was heated from room temperature to 250 ° C. at 1.5 ° C./min in an air atmosphere, and kept for 2 hours to be infusibilized. Thereafter, a carbon fiber was produced by heat treatment at 600 ° C. for 1 hour in a nitrogen atmosphere. When the produced carbon fiber was observed with an electron microscope, a carbon lump in which the carbon fibers were fused to each other was observed, and the carbon fibers could not be separated.

比較例2
まず、以下の条件で島成分樹脂と海成分樹脂を混合し、ブレンド樹脂を作製した。
島成分:熱可塑性ポリアクリロニトリル樹脂(三井化学(株)製、バレックス(登録商標)#3000)
海成分:ポリラクチド(Cargill Dow Polymer LLC製、6250D、融点170℃、220℃における溶融粘度83Pa・sec)
海島比:島/海=20/80(重量割合)
混練温度:190℃
スクリュー回転数:250rpm
処理速度:4kg/hour
次に、得られたブレンド樹脂を以下の条件で溶融紡糸を行い、海島型ブレンド繊維を作製した。
Comparative Example 2
First, an island component resin and a sea component resin were mixed under the following conditions to prepare a blend resin.
Island component: Thermoplastic polyacrylonitrile resin (Mitsui Chemicals, Barex (registered trademark) # 3000)
Sea component: Polylactide (Cargill Dow Polymer LLC, 6250D, melting point 170 ° C., melt viscosity at 220 ° C. 83 Pa · sec)
Sea-island ratio: island / sea = 20/80 (weight ratio)
Kneading temperature: 190 ° C
Screw rotation speed: 250rpm
Processing speed: 4kg / hour
Next, the obtained blended resin was melt-spun under the following conditions to produce a sea-island blend fiber.

紡糸口金:6フィラメント
総吐出量:7.2g/min
紡糸温度:195℃
巻取速度:1200m/min
得られた未延伸糸の総繊度は60dTexで単糸繊度は10dTexであった。この繊維をローラー型延伸機を用いて2.6倍の延伸を行った。
Spinneret: 6 filaments Total discharge: 7.2 g / min
Spinning temperature: 195 ° C
Winding speed: 1200m / min
The obtained undrawn yarn had a total fineness of 60 dTex and a single yarn fineness of 10 dTex. This fiber was stretched 2.6 times using a roller-type stretching machine.

得られた繊維の断面観察を行ったところ、内部に熱可塑性ポリアクリロニトリルからなる島成分を無数に含んだ海島型複合繊維で、島成分のほとんどは独立しているが、一部の島成分は融着しているのが観測された。ここで、島成分の平均直径は140nmであり、円形度が0.9以上の島の割合は87.2%であった。     When the cross section of the obtained fiber was observed, it was a sea-island type composite fiber containing countless island components made of thermoplastic polyacrylonitrile inside, and most of the island components were independent, but some island components were Fusing was observed. Here, the average diameter of the island component was 140 nm, and the ratio of islands having a circularity of 0.9 or more was 87.2%.

この海島型ブレンド繊維を実施例1と同様に焼成し炭素繊維を作製した。作製した炭素繊維を電子顕微鏡で観察したところ、直径80〜150nmの炭素繊維が観測されたが、数μmの長さの短繊維が凝集した紡績糸状であり、連続した極細炭素繊維は得られなかった。   This sea-island type blend fiber was fired in the same manner as in Example 1 to produce a carbon fiber. When the produced carbon fiber was observed with an electron microscope, a carbon fiber having a diameter of 80 to 150 nm was observed, but it was a spun yarn in which short fibers having a length of several μm were aggregated, and a continuous ultrafine carbon fiber was not obtained. It was.

繊維の超延伸に使用できるテーパー状のダイの模式図である。It is a schematic diagram of the taper-shaped die | dye which can be used for the super drawing of a fiber.

符号の説明Explanation of symbols

1:ダイ本体
2:繊維入口
3:繊維出口
1: Die body 2: Fiber inlet 3: Fiber outlet

Claims (5)

溶融賦形性を有する炭素原料樹脂を島成分、熱分解性樹脂を海成分とした海島複合繊維を、繊維全体に占める島成分樹脂の比率が10〜50重量%で、かつ島成分の直径が1〜10μmとなるように溶融紡糸で作製し、さらに得られた繊維を超延伸することを特徴とする複合繊維の製造方法。   A sea-island composite fiber having an island component of a carbon raw material resin having melt shapeability and a sea component of a thermally decomposable resin, the ratio of the island component resin in the entire fiber is 10 to 50% by weight, and the diameter of the island component is A method for producing a composite fiber, which is produced by melt spinning so as to have a thickness of 1 to 10 μm, and the obtained fiber is super-stretched. 島成分樹脂と海成分樹脂が、それぞれの樹脂の高い方の融点より50℃高い温度で、かつ剪断速度1216sec―1において測定した樹脂の粘度が下記式を満たすことを特徴とする請求項1記載の複合繊維の製造方法。
Figure 2006265788
ηs:海成分(熱分解性樹脂)の粘度
ηi:島成分(炭素原料樹脂)の粘度
The island component resin and the sea component resin are characterized in that the resin viscosity measured at a temperature higher by 50 ° C. than the higher melting point of each resin and at a shear rate of 1216 sec -1 satisfies the following formula. Manufacturing method of composite fiber.
Figure 2006265788
η s : Viscosity of sea component (thermally decomposable resin) η i : Viscosity of island component (carbon raw material resin)
島成分樹脂が溶融賦形可能なアクリロニトリル系樹脂であることを特徴とする請求項1または2に記載の複合繊維の製造方法。   The method for producing a composite fiber according to claim 1 or 2, wherein the island component resin is an acrylonitrile-based resin capable of being melt-shaped. 海成分樹脂が脂肪族ポリエステルであることを特徴とする請求項1〜3のいずれか1項に記載の複合繊維の製造方法。   The method for producing a composite fiber according to any one of claims 1 to 3, wherein the sea component resin is an aliphatic polyester. 複合繊維を複数本束ねた後、加熱したテーパー状のダイを通過させることにより超延伸することを特徴とする請求項1〜4のいずれか1項に記載の複合繊維の製造方法。   The method for producing a composite fiber according to any one of claims 1 to 4, wherein the composite fiber is super-stretched by passing a heated tapered die after a plurality of composite fibers are bundled.
JP2005087902A 2005-03-25 2005-03-25 Method for producing conjugated fiber Pending JP2006265788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087902A JP2006265788A (en) 2005-03-25 2005-03-25 Method for producing conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087902A JP2006265788A (en) 2005-03-25 2005-03-25 Method for producing conjugated fiber

Publications (1)

Publication Number Publication Date
JP2006265788A true JP2006265788A (en) 2006-10-05

Family

ID=37202037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087902A Pending JP2006265788A (en) 2005-03-25 2005-03-25 Method for producing conjugated fiber

Country Status (1)

Country Link
JP (1) JP2006265788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138776A (en) 2015-05-26 2016-12-06 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
JP7376230B2 (en) 2017-11-24 2023-11-08 帝人株式会社 Mesophase pitch-containing fiber bundle, stabilized mesophase pitch-containing fiber bundle, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160138776A (en) 2015-05-26 2016-12-06 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
KR101726822B1 (en) * 2015-05-26 2017-04-13 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
JP7376230B2 (en) 2017-11-24 2023-11-08 帝人株式会社 Mesophase pitch-containing fiber bundle, stabilized mesophase pitch-containing fiber bundle, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8642167B2 (en) Continuous carbon-nanotube-reinforced polymer precursors and carbon fibers
KR20080050450A (en) Process for producing sea-island-type composite spun fiber
JP2007092235A (en) Staple fiber, method for producing the same and precursor for forming the fiber
US20130157052A1 (en) Continuous, hollow polymer precursors and carbon fibers produced therefrom
TW201546341A (en) Polyester binder fiber
JP4677919B2 (en) Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP4185748B2 (en) Nonwoven fabric and separator for lithium ion secondary battery
JP4960908B2 (en) Polyethylene naphthalate fiber and short fiber nonwoven fabric comprising the same
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JP2006265788A (en) Method for producing conjugated fiber
WO2020090597A1 (en) Methods for producing carbon fiber precursor fiber and carbon fiber
KR101031924B1 (en) Process Of Producing Nano Size Meta-Aramid Fibrils
JP2007321294A (en) Sheath-core type polymer alloy fiber and hollow fiber and method for producing them
JP5565971B2 (en) Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JP2006244804A (en) Separator for battery
JPH08113829A (en) New polymer blend fiber and its production
JP2020165026A (en) Spinneret for sea-island type conjugate fiber
JP2001348725A (en) Water-repellent fiber and water-repellent fiber sheet prepared by using the same
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JP2006063265A (en) Resin composition and blend fiber
JP2009179908A (en) Method for producing sea-island structure fiber and ultrafine short fiber
JP6829134B2 (en) Porous hollow fiber
JP2022117559A (en) polyphenylene sulfide fiber