JP2020165026A - Spinneret for sea-island type conjugate fiber - Google Patents

Spinneret for sea-island type conjugate fiber Download PDF

Info

Publication number
JP2020165026A
JP2020165026A JP2019065903A JP2019065903A JP2020165026A JP 2020165026 A JP2020165026 A JP 2020165026A JP 2019065903 A JP2019065903 A JP 2019065903A JP 2019065903 A JP2019065903 A JP 2019065903A JP 2020165026 A JP2020165026 A JP 2020165026A
Authority
JP
Japan
Prior art keywords
sea
island
tubular body
spinneret
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019065903A
Other languages
Japanese (ja)
Inventor
泰之 米田
Yasuyuki Yoneda
泰之 米田
森島 一博
Kazuhiro Morishima
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2019065903A priority Critical patent/JP2020165026A/en
Publication of JP2020165026A publication Critical patent/JP2020165026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

To provide a spinneret for a sea-island type conjugate fiber suitable for manufacturing an ultrafine fiber.SOLUTION: In a spinneret for melt-spinning a sea-island type conjugate fiber group in which a large number of island component polymers in a mutually separated state are independently present in an extended state within a sea component polymer along a fiber axis direction in one single fiber, a composite flow formed of a core made of the island component polymer component and a sheath made of the sea component polymer is gradually made thin inside one extrusion hole as two or more single flows and spinned.SELECTED DRAWING: Figure 1

Description

本発明は、超極細繊維束の製造に適した海島型複合繊維用紡糸口金に関するものである。 The present invention relates to a spinneret for a sea-island type composite fiber suitable for producing an ultrafine fiber bundle.

従来から糸条を構成する一本の単繊維(フィラメント)を取り出してみた場合に、この単繊維を構成する海成分ポリマー中に、繊維軸方向に実質的に連続した複数条の島成分ポリマーを独立して存在させた「海島型複合繊維」が知られている。このような海島型複合繊維は、紡糸後に海成分だけを除去することにより島成分からなる極細繊維束が得られるために、不織布、織物の構成材料として広く利用されている。特に、人工皮革、人工皮革様織物などの皮革様シート素材として有用である。 Conventionally, when one single fiber (filament) constituting a thread is taken out, a plurality of island component polymers substantially continuous in the fiber axis direction are contained in the sea component polymer constituting this single fiber. The "sea-island type composite fiber" that has existed independently is known. Such sea-island type composite fibers are widely used as constituent materials for non-woven fabrics and woven fabrics because ultrafine fiber bundles composed of island components can be obtained by removing only the sea components after spinning. In particular, it is useful as a leather-like sheet material for artificial leather, artificial leather-like woven fabric, and the like.

さらに、上記極細繊維束は、上記素材に限らず新しい特性を有する有用な多くの製品を作ることができ、各種工業用途やファッション分野などでの合成繊維の用途をさらに広げるものである。そのため、これらの海島型複合繊維を溶融紡糸するために種々の紡糸口金が提案されている。 Further, the ultrafine fiber bundle can produce many useful products having new characteristics, not limited to the above materials, and further expands the use of synthetic fibers in various industrial applications and fashion fields. Therefore, various spinning caps have been proposed for melt-spinning these sea-island type composite fibers.

例えば、特許文献1には、島成分ポリマーを海成分ポリマー中に導入するためのパイプ(管状体)の数を増やした海島型複合単繊維群からなるマルチフィラメント糸の複合紡糸用口金が提案されている。確かに、この手法によれば、島成分ポリマーを導入するためのパイプの数を増やしていくことにより、1本の単繊維(フィラメント)中に100島、あるいは1000島を有する海島型複合単繊維でも紡糸可能である。 For example, Patent Document 1 proposes a mouthpiece for composite spinning of a multifilament yarn composed of a sea-island type composite single fiber group in which the number of pipes (tubular bodies) for introducing the island component polymer into the sea component polymer is increased. ing. Certainly, according to this method, by increasing the number of pipes for introducing the island component polymer, a sea-island type composite single fiber having 100 islands or 1000 islands in one single fiber (filament). But it can be spun.

しかしながら、特許文献1においては、島成分を導入するパイプの数を増やして超多島化を実現することによって、超極細繊維は得ることはできるが、多島化につれ海島複合繊維の断面形成が難しくなるという問題がある。一方、特に直径が数十〜400nmとなる島径の海島型複合繊維を作製しようとする際、海島型複合繊維1本あたりの繊維径が小さくなり、糸切れの原因となることから、連続的に安定して作製することは困難であった。 However, in Patent Document 1, although ultrafine fibers can be obtained by increasing the number of pipes into which the island component is introduced to realize ultra-multi-islandization, cross-sectional formation of sea-island composite fibers is carried out with the multi-islandization. There is a problem that it becomes difficult. On the other hand, especially when trying to produce a sea-island type composite fiber having an island diameter of several tens to 400 nm, the fiber diameter per sea-island type composite fiber becomes small, which causes thread breakage. It was difficult to make it stably.

また特許文献2には、各島成分ポリマー同士が互いに接合することのないよう海成分ポリマーの進入流路を形成した海島型複合繊維紡糸用口金が提案されている。しかしながら、特許文献2においては、海成分ポリマーの進入流路を形成させるために、島成分を流すパイプを密に配設することが機械的に困難になるという問題がある。 Further, Patent Document 2 proposes a sea-island type composite fiber spinning mouthpiece in which an entry flow path of the sea-component polymer is formed so that the island-component polymers do not bond to each other. However, in Patent Document 2, there is a problem that it becomes mechanically difficult to densely arrange the pipes through which the island components flow in order to form the ingress flow path of the sea component polymer.

一方、近年極細繊維においても、ナノオーダーの糸径を持つ超極細繊維がその独特の風合いや、糸表面積が多いことによる独自の機能性があるため需要が大きくなり、それに伴って特に直径が数十〜400nmとなる島径の海島型複合単繊維を安定的に工業生産をする上でこれらの問題の解決が望まれている。 On the other hand, in recent years, even in ultrafine fibers, the demand for ultrafine fibers having nano-order yarn diameters has increased due to their unique texture and unique functionality due to the large surface area of yarns. It is desired to solve these problems in order to stably industrially produce sea-island type composite single fibers having an island diameter of 10 to 400 nm.

特開2010−203003号公報JP-A-2010-203003 特開2009−91680号公報JP-A-2009-911680

本発明は上記の背景に鑑みなされたものであり、その目的は超極細繊維(特に繊維径400nm以下)の製造に適した海島型複合繊維紡糸用口金、それから作製される海島型複合繊維、及び扁平断面形状極細繊維を提供することにある。 The present invention has been made in view of the above background, and an object of the present invention is a sea-island type composite fiber spinning base suitable for producing ultrafine fibers (particularly, a fiber diameter of 400 nm or less), a sea-island type composite fiber produced from the mouthpiece, and a sea-island type composite fiber. It is an object of the present invention to provide ultrafine fibers having a flat cross-sectional shape.

本発明者は、上記の課題を解決するために鋭意検討をおこなった結果、従来の海島型複合繊維用紡糸口金において、1つの吐出孔内で2つ以上の芯鞘複合流群を一体流として徐々に細化させながら紡出するとき、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has made two or more core-sheath composite flow groups into one integrated flow in one discharge hole in the conventional spinneret for sea-island type composite fibers. We have found that the above problems can be solved when spinning while gradually reducing the size, and have completed the present invention.

すなわち本発明によれば、
1.一本の単繊維中に多数の島成分ポリマーが互いに分離した状態でその繊維軸方向に沿って海成分ポリマー中にそれぞれ独立して延在する海島型複合繊維群を溶融紡糸するための紡糸口金であって、
該紡糸口金は、
(a)島成分ポリマーを複数条のポリマー細流にそれぞれ分流する管状体群(4)と、
(b)前記管状体群(4)が内部に突設され、かつ各管状体群(4)のそれぞれを囲繞するように海成分ポリマーを内部に分配する分配室(10)と、
(c)前記管状体群(4)のそれぞれに一対一に対応して前記分配室(10)の直下に穿設され、かつ前記管状体群(4)からそれぞれ供給された各島成分ポリマーが、前記分配室(10)に供給された海成分ポリマーと合流して管状体群(4)の数に対応する芯鞘複合流群を形成しながら流下する合流孔群(6)と、
(d)前記、合流孔群(6)の各下端部から流入する前記芯鞘複合流群を2つ以上集合させて一体流とする、漏斗状の形状を有する導入孔が上方に形成され、前記の一体流を徐々に細化させながら下方へ導いた後に紡出する吐出孔、
とを有することを特徴とする海島型複合繊維用紡糸口金、
が提供される。
That is, according to the present invention
1. 1. A spinneret for melt-spinning a group of sea-island type composite fibers in which a large number of island-component polymers are separated from each other in one single fiber and extend independently in the sea-component polymer along the fiber axis direction. And
The spinneret is
(A) A tubular body group (4) that divides the island component polymer into a plurality of polymer trickles, respectively.
(B) A distribution chamber (10) in which the tubular body group (4) is projected inside and the sea component polymer is internally distributed so as to surround each of the tubular body groups (4).
(C) Each island component polymer is bored directly under the distribution chamber (10) in a one-to-one correspondence with each of the tubular body groups (4) and supplied from the tubular body group (4). , A confluence hole group (6) that flows down while forming a core-sheath complex flow group corresponding to the number of tubular body groups (4) by merging with the sea component polymer supplied to the distribution chamber (10).
(D) An introduction hole having a funnel shape is formed above, in which two or more core-sheath composite flow groups flowing in from each lower end of the confluence hole group (6) are aggregated to form an integrated flow. A discharge hole that is spun after guiding the integrated flow downward while gradually reducing it.
Spinning caps for Kaijima-type composite fibers, characterized by having
Is provided.

そして、本発明においては、
2.前記管状体の内径Diと、その肉厚tとが下記式(イ)を満足する上記1に記載の海島型複合繊維用紡糸口金、
0.05≦(t/Di)≦0.35 (イ)
が好ましい。
And in the present invention
2. The spinneret for a sea-island type composite fiber according to 1 above, wherein the inner diameter Di of the tubular body and its wall thickness t satisfy the following formula (a).
0.05 ≦ (t / Di) ≦ 0.35 (a)
Is preferable.

また、本発明においては、
3.前記管状体の外径Doと、前記合流孔の導入部直径dとが下記式(ロ)を満足する上記1又は2に記載の海島型複合繊維用紡糸口金、
0.85≦(d/Do)≦2.0 (ロ)
が好ましい。
Further, in the present invention,
3. 3. The spinneret for a sea-island type composite fiber according to 1 or 2 above, wherein the outer diameter Do of the tubular body and the diameter d of the introduction portion of the confluence hole satisfy the following formula (b).
0.85 ≤ (d / Do) ≤ 2.0 (b)
Is preferable.

また、本発明においては、
4.前記管状体の外径Doと、前記芯鞘複合流群を2つ以上集合させて一体流とする、漏斗状の形状を有する導入孔の外縁と、前記芯鞘流群との間隔のうち最も小さい距離をDrとが下記式(ハ)を満足する上記1〜3のいずれかに記載の海島型複合繊維用紡糸口金、
Do≦Dr≦5Do (ハ)
が好ましい。
Further, in the present invention,
4. The most distance between the outer diameter Do of the tubular body and the outer edge of the funnel-shaped introduction hole, which is a combination of two or more core-sheath composite flow groups to form an integrated flow, and the core-sheath flow group. The spinneret for a sea-island type composite fiber according to any one of 1 to 3 above, wherein a small distance satisfies the following formula (c) with Dr.
Do ≤ Dr ≤ 5 Do (c)
Is preferable.

本発明によれば、芯鞘複合流を2つ以上集合させて一体流とし紡出することにより、超多島海島型複合繊維を製造できることから、繊度が超極細、かつ均一で、島成分の接合もない極めて品質に優れた扁平断面超極細繊維を得ることができる。 According to the present invention, an ultra-multi-island sea-island type composite fiber can be produced by aggregating two or more core-sheath composite flows and spinning them as an integrated flow. Therefore, the fineness is ultra-fine and uniform, and the island components It is possible to obtain ultrafine fibers having a flat cross section and having extremely high quality without joining.

また上記口金を用いた海島型複合繊維は芯鞘複合流群を2つ以上集合させているため、島形状が扁平断面となる。その後海ポリマーを減量加工することによって扁平断面形状の極細繊維を作製することができる。 Further, since the sea-island type composite fiber using the above-mentioned mouthpiece has two or more core-sheath composite flow groups assembled, the island shape has a flat cross section. After that, by reducing the weight of the sea polymer, ultrafine fibers having a flat cross-sectional shape can be produced.

本発明の海島型複合繊維紡糸用口金の1例を例示した断面図である。It is sectional drawing which illustrates an example of the mouthpiece for sea island type composite fiber spinning of this invention.

以下、本発明について詳細を説明する。 Hereinafter, the present invention will be described in detail.

本発明においては、島成分ポリマーAとして特に限定をする必要はないが、例えば、ポリエチレンテレフタレートおよびその共重合物、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレン、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアミド、ポリ乳酸等の溶融成形可能なポリマーが好ましく例示できる。 In the present invention, the island component polymer A is not particularly limited, but for example, polyethylene terephthalate and its copolymer, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate. , Polyamide, polylactic acid and other melt-moldable polymers can be preferably exemplified.

その際、酸化チタン、シリカ、酸化バリウム等の無機質、カーボンブラック、染料や顔料等の着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤等の各種添加剤を上記ポリマー中に含んでいてもよい。 At that time, various additives such as titanium oxide, silica, inorganic substances such as barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent whitening agents, antioxidants, and ultraviolet absorbers are added to the polymer. May be included in.

また、海成分ポリマーBとしては、例えば、共重合ポリエチレンテレフタレート、ポリアミド、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニルアルコール等の溶融成形が可能で、紡糸後、溶解抽出が可能なポリマーが挙げられる。 Examples of the sea component polymer B include polymers capable of melt molding of copolymerized polyethylene terephthalate, polyamide, polystyrene and its copolymers, polyethylene, polyvinyl alcohol and the like, and which can be dissolved and extracted after spinning.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
ここで、図1は、本発明の海島型複合繊維紡糸用口金の1例を例示した断面図である。なお、図1には、一本のフィラメントである海島型複合単繊維を紡糸するための、口金に設けられる一つの吐出孔ユニットしか例示していないが、一般に、これらのユニットが口金に多数個設けられて多数本の海島型複合単繊維群からなるマルチフィラメント糸が紡糸されることは周知の事実である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Here, FIG. 1 is a cross-sectional view illustrating an example of the sea-island type composite fiber spinning base of the present invention. Note that FIG. 1 exemplifies only one discharge hole unit provided in the base for spinning a sea-island type composite single fiber which is one filament, but in general, a large number of these units are provided in the base. It is a well-known fact that multifilament yarns provided and composed of a large number of sea-island type composite single fiber groups are spun.

また、図1では、図示した3枚の口金板よりも上流側にもポリマーの分配流路が設けられるが、これらの分配流路に関しては、適宜容易に実施可能な設計事項であり、また、本発明の特徴事項でもないので図示省略した。 Further, in FIG. 1, polymer distribution channels are provided on the upstream side of the three illustrated base plates, but these distribution channels are design items that can be easily implemented as appropriate. Since it is not a feature of the present invention, the illustration is omitted.

図1に例示した本発明に係る紡糸口金の実施形態において、図中の参照符号AとBとは、それぞれ島成分ポリマーと海成分ポリマーとを表わし、これら島成分ポリマーAと海成分ポリマーBは、それぞれ図中の矢印方向から口金板に流入する。当然のことながら、紡糸口金パック内を流れる前記島成分ポリマーA及び海成分ポリマーB、或いはこれらの複合流は、極めて安定した層流状態を維持している。 In the embodiment of the spinneret according to the present invention illustrated in FIG. 1, reference numerals A and B in the drawings represent island component polymers and sea component polymers, respectively, and these island component polymers A and sea component polymers B are , Each flow into the base plate from the direction of the arrow in the figure. As a matter of course, the island component polymer A and the sea component polymer B flowing in the spinneret pack, or a composite flow thereof, maintains an extremely stable laminar flow state.

それ故、これらのポリマー流が形成する流線は、乱流とは異なって互いに交差したり入れ違ったりすることはない。このため、海島型複合繊維、芯鞘型複合繊維、サイド・バイ・サイド型複合繊維といった複合繊維が安定に形成され、複合繊維の溶融紡糸を実施することができることはいうまでもない。 Therefore, the streamlines formed by these polymer streams do not intersect or cross each other, unlike turbulence. Therefore, it goes without saying that composite fibers such as sea-island type composite fibers, core-sheath type composite fibers, and side-by-side type composite fibers are stably formed, and melt spinning of the composite fibers can be carried out.

次に、図1の参照符号1,2及び3は、この実施形態例においては3枚の口金板を形成しており、それぞれ上口金板1、中口金板2、そして、下口金板3から構成されている。 Next, reference numerals 1, 2 and 3 in FIG. 1 form three base plates in this embodiment, from the upper base plate 1, the middle base plate 2, and the lower base plate 3, respectively. It is configured.

しかしながら、口金板群を本例のように3枚で構成することに限定する特別な理由はなく、必要に応じて、その数を増やすこともできる。更に、参照符号4は管状体群、参照符号5は海成分導入孔、参照符号6は合流孔群、参照符号7は吐出孔、参照符号8は島成分ポリマーAの分配室、参照符号9は海成分ポリマーBの導入流路、そして参照符号10は海成分ポリマーBの分配室をそれぞれ示す。 However, there is no particular reason to limit the group of base plates to three as in this example, and the number can be increased if necessary. Further, reference numeral 4 is a tubular body group, reference numeral 5 is a sea component introduction hole, reference numeral 6 is a merging hole group, reference numeral 7 is a discharge hole, reference numeral 8 is a distribution chamber of island component polymer A, and reference numeral 9 is. The introduction channel of the sea component polymer B and the reference numeral 10 indicate the distribution chamber of the sea component polymer B, respectively.

ここで、前記上口金板1に穿設された前記1ユニット分のポリマー流路について説明する。先ず、前記ユニットの中央部上方には、島成分ポリマーAの分配室8がその上端から下流側にかけて図1に例示したように設けられ、そして、多数の管状体群4が前記分配室8の底部から上口金板1の下端近傍に達するまで間にわたって植設されている。なお、前記管状体群4は、上口金板1の下端から上流側に向って形成された海成分ポリマーBの分配室10の中に突設されており、そして、この海成分ポリマーBの分配室10へは、海ポリマーBが導入流路9を介して供給される構造となっている。 Here, the polymer flow path for the one unit bored in the upper metal plate 1 will be described. First, a distribution chamber 8 of the island component polymer A is provided above the central portion of the unit from the upper end to the downstream side thereof as illustrated in FIG. 1, and a large number of tubular body groups 4 are provided in the distribution chamber 8. It is planted from the bottom to near the lower end of the upper metal plate 1. The tubular body group 4 is projected into the distribution chamber 10 of the sea component polymer B formed from the lower end of the upper mouthpiece plate 1 toward the upstream side, and the sea component polymer B is distributed. The structure is such that the sea polymer B is supplied to the chamber 10 via the introduction flow path 9.

次に、前記中口金板2に穿設された前記1ユニット分のポリマー流路について説明する。この前記中口金板2には、上口金板1に植設された多数の管状体群4のそれぞれに一対一に対応して合流孔群6からなる貫通孔群が設けられており、分配室10へ供給された海成分ポリマーBと、この分配室10に突設された管状体群4から供給された島成分ポリマーAとが芯鞘複合流を形成して通過するようにされている。なお、この芯鞘複合流について簡単に補足説明すると、分配室10へ供給された海成分ポリマーBが鞘部を形成して、前記管状体群4を取囲むように流れるので、各管状体群4のそれぞれから供給される島成分ポリマーAは芯鞘複合流の芯部を形成することになる。 Next, the polymer flow path for the one unit bored in the middle metal plate 2 will be described. The middle metal plate 2 is provided with a through hole group composed of a merging hole group 6 in a one-to-one correspondence with each of a large number of tubular body groups 4 planted in the upper metal plate 1. The sea component polymer B supplied to 10 and the island component polymer A supplied from the tubular body group 4 projecting into the distribution chamber 10 form a core-sheath composite flow and pass through. To briefly supplement this core-sheath composite flow, the sea component polymer B supplied to the distribution chamber 10 forms a sheath portion and flows so as to surround the tubular body group 4, so that each tubular body group The island component polymer A supplied from each of No. 4 forms the core portion of the core-sheath composite flow.

そして、最後に下口金板3に穿設された前記1ユニット分のポリマー流路について説明する。この下口金板3には、図1に例示したように、漏斗状の導入部を有する吐出孔7が穿設されており、前記芯鞘複合流の2つ以上がこの吐出孔7へ合流・流入して、互いに合体することでする超多島海島複合単繊維が紡出されることとなる。 Finally, the polymer flow path for the one unit bored in the lower cap plate 3 will be described. As illustrated in FIG. 1, the lower mouthpiece 3 is provided with a discharge hole 7 having a funnel-shaped introduction portion, and two or more of the core-sheath composite flows merge into the discharge hole 7. The ultra-multi-island sea-island composite monofibers that flow in and coalesce with each other will be spun out.

本願は、このような島成分と、海成分の流路がユニット中に2つ以上あり、ひとつの吐出孔7に芯鞘複合流を合流させて吐出されるのが特徴である。 The present application is characterized in that there are two or more flow paths of such island components and sea components in the unit, and the core-sheath composite flow is merged into one discharge hole 7 and discharged.

以上に説明したのは2つ以上のユニットから超多島海島複合単繊維が1本のフィラメントとして紡出する紡糸口金構造の説明であった。しかしながら、本発明は、以上に説明した多数のユニットが同時に設けられた紡糸口金を用いて、超多島海島複合単繊維群からなるマルチフィラメント糸を溶融紡糸することを大きな特徴とするものである。 What has been described above is the description of the spinneret structure in which the super-multi-island sea-island composite single fiber is spun as one filament from two or more units. However, a major feature of the present invention is that a multifilament yarn composed of a super-multi-island sea-island composite single fiber group is melt-spun using a spinneret provided with a large number of units described above at the same time. ..

以上の説明からも容易に分かるように、前記芯鞘複合流は管状体群4の数(合流孔群6の数でもある)分だけ形成されることは容易に理解できるものと考える。したがって、管状体群の4の数を増やせば増やすほど、超多島化を実現可能なことも容易に理解できるものと考える。ところが、管状体群の4の数を増やしすぎた場合は、島ポリマー同士の融着により良好な海島複合繊維が得られない。 As can be easily understood from the above description, it can be easily understood that the core-sheath composite flow is formed by the number of tubular body groups 4 (which is also the number of confluence hole groups 6). Therefore, it can be easily understood that the more the number of 4 in the tubular body group is increased, the more multi-island can be realized. However, when the number of 4 in the tubular body group is increased too much, good sea-island composite fibers cannot be obtained due to fusion between the island polymers.

そこで1つの管状体群4の数は1500以下までが好ましく、さらに好ましくは1000以下とすることが好ましい。一方、直径400nm以下の超極細繊維を作る場合、1つの管状体群を1本の複合繊維にしようとした場合、単糸繊度が糸の直径とともに細くなり、糸の巻取が困難になる。そこで2つ以上のユニットから超多島海島複合単繊維が1本のフィラメントとして紡出する紡糸口金構造が必要不可欠となる。 Therefore, the number of one tubular body group 4 is preferably 1500 or less, and more preferably 1000 or less. On the other hand, when making ultrafine fibers having a diameter of 400 nm or less and trying to make one tubular body group into one composite fiber, the single yarn fineness becomes thinner with the diameter of the yarn, and it becomes difficult to wind the yarn. Therefore, a spinneret structure in which ultra-multi-island sea-island composite single fibers are spun as one filament from two or more units is indispensable.

以上に説明したような様々な手段を講じることによって、超多島化された海島型複合単繊維群からなるマルチフィラメントを安定して紡糸できる口金を設計できる。しかしながら、このような特徴を有する紡糸口金であっても、島成分ポリマーAと海成分ポリマーBの選定によっては、ポリマーの粘度、粘度比、ポリマーの界面特性、紡糸温度、乾燥の程度による粘度変化が影響し、安定した海島型複合繊維を得ることが難しい場合が生じることが分かった。 By taking various measures as described above, it is possible to design a base capable of stably spinning a multifilament composed of an ultra-multi-island sea-island type composite single fiber group. However, even with a spinneret having such characteristics, depending on the selection of the island component polymer A and the sea component polymer B, the viscosity changes depending on the viscosity, viscosity ratio, interface characteristics of the polymer, spinning temperature, and degree of drying. It was found that it may be difficult to obtain a stable sea-island type composite fiber.

そこで、本発明者は更に鋭意検討を進めた結果、管状体群4、合流孔群6、吐出孔7についての条件を最適化すれば、より良い結果が得られ、更にコンパクトな紡糸口金を設計できることが判明した。以下、この点について、詳細に説明する。 Therefore, as a result of further diligent studies, the present inventor can obtain better results by optimizing the conditions for the tubular body group 4, the confluence hole group 6, and the discharge hole 7, and design a more compact spinneret. It turned out that it could be done. This point will be described in detail below.

先ず、管状体4の管内径Diとその管長Lについて検討したところ、島成分ポリマーAが各管状体4間へ均等に分配されるようにするためには、合流孔6の上部に適当な背圧が得られるように設計する必要がある。しかしながら、その値に関しては海成分ポリマーBと島成分ポリマーAの性状によるところが多く、その意味からこれらは実際に使用するポリマーを用いて実験により決定することが好ましい。ただし、紡糸後に残留ポリマーによって生じる目詰まりを防止する意味から、管状体4の管内径Diとしては、0.1mm以上とすることが好ましい。ただし、管内径Diが大きすぎると、管状体4の配列可能な数が少なくなるため、管状体4の肉厚tにもよるが、その上限値は、好ましくは0.5mmである。 First, the tube inner diameter Di of the tubular body 4 and its tube length L were examined. In order to ensure that the island component polymer A is evenly distributed between the tubular bodies 4, a suitable back pressure is provided on the upper part of the confluence hole 6. It needs to be designed so that pressure can be obtained. However, the values largely depend on the properties of the sea component polymer B and the island component polymer A, and in that sense, it is preferable to determine these values experimentally using the polymer actually used. However, the inner diameter Di of the tubular body 4 is preferably 0.1 mm or more from the viewpoint of preventing clogging caused by the residual polymer after spinning. However, if the inner diameter Di of the tube is too large, the number of tubular bodies 4 that can be arranged is reduced, so the upper limit thereof is preferably 0.5 mm, although it depends on the wall thickness t of the tubular body 4.

なお、本発明者の実験によれば、管状体4の肉厚tに関しては、前述の管内径Diをもとに、0.05≦(t/Di)≦0.35 (イ)
という関係式を満足するようにすることが望ましい。なお、当然のことながら、管状体4の管外径をDoとすると、管状体4の肉厚tは「t=(Do−Di)/2」と表せる。
According to the experiment of the present inventor, the wall thickness t of the tubular body 4 is 0.05 ≦ (t / Di) ≦ 0.35 (a) based on the above-mentioned pipe inner diameter Di.
It is desirable to satisfy the relational expression. As a matter of course, assuming that the outer diameter of the tube of the tubular body 4 is Do, the wall thickness t of the tubular body 4 can be expressed as "t = (Do-Di) / 2".

その理由は、もし、(t/Di)<0.05とした場合は、内径対比で管状体4の肉厚tが小さくなってしまうため、管状体4の成形が難しいだけでなく、その後の紡糸口金に管状体4を組み込む場合などにおいて、変形や屈曲が生じやすくなって取り扱いいが難しくなり、紡糸口金としての耐久性に関しても問題が生じることが挙げられる。 The reason is that if (t / Di) <0.05, the wall thickness t of the tubular body 4 becomes smaller than the inner diameter, which makes it difficult to form the tubular body 4 and thereafter. When the tubular body 4 is incorporated into the spinneret, it is easily deformed or bent, which makes it difficult to handle, and there is a problem in terms of durability as the spinneret.

また、(t/Di)>0.35の場合は、管状体4の肉厚tが大きくなって必然的にその外径Doも大きくなるので、その下部に穿設される合流孔6の径が大きくなる。したがって、これにより合流孔6に流入する前後の海成分ポリマーBの流速が大きく変動して、ポリマー流れが不安定となる。その結果、合流孔6内で島成分ポリマーAが偏芯した状態で芯鞘型海島複合流れが形成される可能性が高まり、安定な繊維断面の形成性が阻害される。また、1島当りの合流孔6の必要開口面積が大きくなり、超多島化を実現するには望ましくない。 Further, when (t / Di)> 0.35, the wall thickness t of the tubular body 4 becomes large and its outer diameter Do also inevitably becomes large, so that the diameter of the merging hole 6 formed in the lower portion thereof is large. Becomes larger. Therefore, this causes the flow velocity of the sea component polymer B before and after flowing into the merging hole 6 to fluctuate greatly, and the polymer flow becomes unstable. As a result, the possibility that the core-sheath type sea-island composite flow is formed in the state where the island component polymer A is eccentric in the confluence hole 6 is increased, and the formability of a stable fiber cross section is hindered. In addition, the required opening area of the merging hole 6 per island becomes large, which is not desirable for realizing ultra-multi-islandization.

次に、管状体4の外径Doと合流孔6のポリマー導入部の孔径dとの間の関係は、
0.85≦(d/Do)≦2.0 (ロ)
という関係式を満たしているのが望ましい。何故ならば、「(d/Do)<0.85」の場合は、上口金板1と中口金板2とを組合わせる時に、上口金板1に設けられる管状体4と中口金板2に設けられる導入孔との間の位置決め精度の影響が敏感に作用するからである。そして、島成分ポリマーAが海成分ポリマーBの中で偏芯した状態で芯鞘複合繊維流れが形成される確率が高まり、島成分ポリマーAが最初に狙った位置とは異なる位置にずれたりして島同士が接合したりするために、繊維横断面内での島形成性が悪くなる。なお、(d/Do)>2.0の場合は、前述の(t/Di)>0.35にした場合と同様の理由で望ましくない。
Next, the relationship between the outer diameter Do of the tubular body 4 and the pore diameter d of the polymer introduction portion of the merging hole 6 is
0.85 ≤ (d / Do) ≤ 2.0 (b)
It is desirable that the relational expression is satisfied. This is because, in the case of "(d / Do) <0.85", when the upper mouthpiece plate 1 and the middle mouthpiece plate 2 are combined, the tubular body 4 and the middle mouthpiece plate 2 provided on the upper mouthpiece plate 1 are attached. This is because the influence of the positioning accuracy with the provided introduction hole acts sensitively. Then, the probability that the core-sheath composite fiber flow is formed in the state where the island component polymer A is eccentric in the sea component polymer B increases, and the island component polymer A shifts to a position different from the initially targeted position. Since the islands are joined to each other, the island formation property in the cross section of the fiber is deteriorated. The case of (d / Do)> 2.0 is not desirable for the same reason as the case of (t / Di)> 0.35 described above.

最後に、前記島成分ポリマーを複数条のポリマー細流にそれぞれ分流する管状体群の外径Doと、前記芯鞘流群を2つ以上集合させて一体流とする、漏斗状の形状を有する導入孔の外縁と、前記芯鞘複合流群との間隔のうち最も小さい距離Drとが
Do≦Dr≦5Do (ハ)
とすることが好ましい。Do<Dr」とした場合、2つ以上の芯鞘複合流を合流させた場合、最外層の島成分同士の密着が生じるため好ましくない。またD>5Doとした場合は、前述の(t/Di)>0.35にした場合と同様の理由で望ましくない。
Finally, an introduction having a funnel-like shape, in which the outer diameter Do of the tubular body group that divides the island component polymer into a plurality of polymer trickles and two or more of the core-sheath flow groups are aggregated into an integrated flow. The smallest distance Dr between the outer edge of the hole and the core-sheath composite flow group is Do ≤ Dr ≤ 5 Do (c).
Is preferable. When Do <Dr, it is not preferable that two or more core-sheath composite streams are merged because the island components of the outermost layer are brought into close contact with each other. Further, when D> 5Do, it is not desirable for the same reason as when (t / Di)> 0.35 described above.

本発明においては、上記のような海島複合繊維口金を用いることで島成分の直径が数十〜400nmとなる海島型複合繊維を作製することができる。また2つ以上の管状体群を1本の複合繊維にすることで、合流孔6〜吐出孔7の間のポリマー細化段階で不均一な圧力が加わり、得られる海島型複合繊維の島成分が楕円形に変形する。この楕円形の長径と短径の比は1.2≦(長径)/(短径)≦6とすることが好ましい。この値を1.2より小さくすることは難しく、一方、6より大きくした場合、隣接する島成分と合流してしまい、減量加工できない部分が生じてしまうので、極細繊維を製造することが難しくなる。また楕円の長径と短径の比の変動係数は10%以上50%以下とすることが好ましい。変動係数を10%よりも小さくすることは難しく、一方、50%よりも大きい場合、隣接島成分と合流してしまい減量加工できない部分が生じてしまい、極細繊維を製造することが難しくなる。 In the present invention, a sea-island type composite fiber having an island component having a diameter of several tens to 400 nm can be produced by using the sea-island composite fiber base as described above. Further, by forming two or more tubular body groups into one composite fiber, a non-uniform pressure is applied at the polymer thinning step between the merging hole 6 and the discharge hole 7, and the island component of the sea-island type composite fiber obtained is obtained. Transforms into an ellipse. The ratio of the major axis to the minor axis of this elliptical shape is preferably 1.2 ≦ (major axis) / (minor axis) ≦ 6. It is difficult to make this value smaller than 1.2, while if it is made larger than 6, it will merge with the adjacent island components and there will be parts that cannot be weight-reduced, making it difficult to produce ultrafine fibers. .. The coefficient of variation of the ratio of the major axis to the minor axis of the ellipse is preferably 10% or more and 50% or less. It is difficult to make the coefficient of variation smaller than 10%, while if it is larger than 50%, it merges with the components of the adjacent islands, resulting in a portion that cannot be weight-reduced, making it difficult to produce ultrafine fibers.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。 Next, examples and comparative examples of the present invention will be described in detail, but the present invention is not limited thereto. In addition, each measurement item in an Example was measured by the following method.

(1)海島型複合繊維の島成分長径
透過型電子顕微鏡(TEM)を用いて、倍率30000倍で、繊維軸方向に対して垂直の繊維断面写真を撮影し、海島型複合繊維の島成分の外接円を算出し、その平均値(n数=100)から海島型複合繊維の島成分長径を算出した。
(1) Island component of sea-island type composite fiber Using a long-diameter transmission electron microscope (TEM), a cross-sectional photograph of the fiber perpendicular to the fiber axis direction was taken at a magnification of 30,000 times, and the island component of the sea-island type composite fiber was taken. The circumscribing circle was calculated, and the island component major axis of the sea-island type composite fiber was calculated from the average value (n number = 100).

(2)海島型複合繊維の島成分短径
透過型電子顕微鏡(TEM)を用いて、倍率30000倍で、繊維軸方向に対して垂直の繊維断面写真を撮影し、海島型複合繊維の島成分の内接円を算出し、その平均値(n数=100)から海島型複合繊維の島成分短径を算出した。
(2) Island component of sea-island type composite fiber Using a short-diameter transmission electron microscope (TEM), a cross-sectional photograph of the fiber perpendicular to the fiber axis direction was taken at a magnification of 30,000 times, and the island component of the sea-island type composite fiber was taken. The inscribed circle was calculated, and the island component minor axis of the sea-island type composite fiber was calculated from the average value (n number = 100).

(3)島成分の長径と短径の比の変動係数
(1)および(2)の方法で求めた島成分毎の長径と短径から長径/短径の比(f)を求め(n数=100)、その平均値(f1)と標準偏差(σ1)を求めて、下記の式をもって変動係数とした。
変動係数(cv%)=σ1/f1×100
(3) Coefficient of variation of the ratio of major axis to minor axis of island component Obtain the major axis / minor axis ratio (f) from the major axis and minor axis of each island component obtained by the methods (1) and (2) (n number). = 100), the average value (f1) and the standard deviation (σ1) were obtained, and the coefficient of variation was calculated using the following formula.
Coefficient of variation (cv%) = σ1 / f1 × 100

(4)極細繊維の繊維径の均一性
海島型複合繊維の海成分を溶解除去して得られた極細繊維における繊維径の均一性として、繊維直径のばらつき(cv%)を算出し、評価した。倍率30000倍で繊維断面写真を撮影し、極細繊維の各単一糸の外接円を算出し、その外接円長径を求め、ランダムに選択した100個の極細繊維の各単一糸の外接円直径データから平均繊維径(r2)と標準偏差(σ2)を算出し、以下に定義する繊維径変動係数(cv)を算出した。
繊維径変動係数(cv%)=σ2/r2×100
(4) Uniformity of Fiber Diameter of Ultrafine Fiber As the uniformity of fiber diameter in the ultrafine fiber obtained by dissolving and removing the sea component of the sea-island type composite fiber, the variation in fiber diameter (cv%) was calculated and evaluated. .. A cross-sectional photograph of the fiber was taken at a magnification of 30,000, the circumscribed circle of each single thread of the ultrafine fibers was calculated, the major axis of the circumscribed circle was obtained, and the circumscribed circle diameter data of each single thread of 100 randomly selected ultrafine fibers was used. The average fiber diameter (r2) and standard deviation (σ2) were calculated, and the coefficient of variation (cv) defined below was calculated.
Fiber diameter coefficient of variation (cv%) = σ2 / r2 × 100

[実施例1]
島成分に溶融粘度が100Pa・sec、のポリエチレンエテレフタレート(帝人社製)、海成分に270℃における溶融粘度が150Pa・secであり、分子量4000のポリエチレングリコール(PEG)を3重量%、5−ナトリウムスルホイソフタル酸(SIP)を9mol%、ジアルコール成分としてエチレングリコール(EG)を用いて共重合したポリエステル(改質PET1)を使用し、海:島=50:50の海島比率で720島32本の芯鞘複合流を吐出までに2本を1本へ合流し、1440島16フィラメントの海島複合繊維として紡糸し、紡糸速度1000m/minで引き取り、未延伸糸を得た。
[Example 1]
Polyethylene etherephthalate (manufactured by Teijin Co., Ltd.) having a melt viscosity of 100 Pa · sec for the island component, and polyethylene glycol (PEG) having a melt viscosity at 270 ° C. of 150 Pa · sec for the sea component at 270 ° C. Using polyester (modified PET1) copolymerized with 9 mol% of sodium sulfoisophthalic acid (SIP) and ethylene glycol (EG) as a dialcohol component, 720 islands 32 with a sea-island ratio of sea: island = 50:50. The core-sheath composite flow of the book was merged into one by the time of discharge, spun as a sea-island composite fiber of 1440 islands and 16 filaments, and taken up at a spinning speed of 1000 m / min to obtain an undrawn yarn.

続いて上記未延伸糸をホットロール−ホットロール系延伸機を用いて、延伸温度90℃、熱セット温度180℃で延伸倍率4倍にて延伸を行い、28dtexの海島型複合マルチフィラメントを得た。得られた海島複合繊維は島成分が楕円形状を有しており、島成分の長径は250nmであった。短径は200nmであった。 Subsequently, the undrawn yarn was drawn using a hot roll-hot roll type drawing machine at a drawing temperature of 90 ° C. and a heat setting temperature of 180 ° C. at a draw ratio of 4 times to obtain a 28 dtex sea-island type composite multifilament. .. The sea-island composite fiber obtained had an elliptical island component, and the major axis of the island component was 250 nm. The minor axis was 200 nm.

上記海島型複合繊維を束ねて4%NaOH水溶液80℃にて30分間浸漬し、得られたポリエステルからなる極細繊維束を得た。この繊維径変動係数は20%であった。 The sea-island type composite fibers were bundled and immersed in a 4% NaOH aqueous solution at 80 ° C. for 30 minutes to obtain an ultrafine fiber bundle made of the obtained polyester. The coefficient of variation of the fiber diameter was 20%.

[比較例1]
島成分に溶融粘度が100Pa・sec、のポリエチレンエテレフタレート(帝人社製)、海成分に270℃における溶融粘度が150Pa・secであり、分子量4000のポリエチレングリコール(PEG)を3重量%、5−ナトリウムスルホイソフタル酸(SIP)を9mol%、ジアルコール成分としてエチレングリコール(EG)を用いて共重合したポリエステル(改質PET1)を使用し、海:島=50:50の海島比率で1440島16本の芯鞘複合流を合流させることなく1440島16フィラメントの海島複合繊維として紡糸し、紡糸速度1000m/minで引き取り、未延伸糸を得た。
[Comparative Example 1]
Polyethylene etherephthalate (manufactured by Teijin Co., Ltd.) having a melt viscosity of 100 Pa · sec for the island component, and polyethylene glycol (PEG) having a melt viscosity at 270 ° C. of 150 Pa · sec for the sea component at 270 ° C. Using polyester (modified PET1) copolymerized with 9 mol% of sodium sulfoisophthalic acid (SIP) and ethylene glycol (EG) as a dialcohol component, 1440 islands 16 with a sea-island ratio of sea: island = 50:50. The core-sheath composite flow of the book was spun as a sea-island composite fiber of 1440 islands and 16 filaments without merging, and the fiber was taken up at a spinning speed of 1000 m / min to obtain an undrawn yarn.

続いて上記未延伸糸をホットロール−ホットロール系延伸機を用いて、延伸温度90℃、熱セット温度180℃で延伸倍率4倍にて延伸を行い、28dtexの海島型マルチフィラメントを得た。海島型複合繊維の断面形状を確認したところ、島成分の融着がみられた。得られたポリマーをNaOH水溶液80℃にて30分間浸漬しても繊維間の融着が起こり、極細繊維を得ることはできなかった。 Subsequently, the undrawn yarn was drawn using a hot roll-hot roll type drawing machine at a drawing temperature of 90 ° C. and a heat setting temperature of 180 ° C. at a draw ratio of 4 times to obtain a 28 dtex sea-island type multifilament. When the cross-sectional shape of the sea-island type composite fiber was confirmed, fusion of the island components was observed. Even if the obtained polymer was immersed in an aqueous NaOH solution at 80 ° C. for 30 minutes, fusion between the fibers occurred, and ultrafine fibers could not be obtained.

本発明の海島型複合繊維用口金を用いることで、直径400nmよりもさらに細繊度の超極細繊維長繊維束を製造することができる。 By using the sea-island type composite fiber cap of the present invention, it is possible to produce an ultrafine long fiber bundle having a finer fineness than 400 nm in diameter.

1 上口金板
2 中口金板
3 下口金板
4 管状体
5 海成分導入孔
6 合流孔
7 吐出孔
8 島成分ポリマーの分配室
9 海成分ポリマーの導入流路
10 海成分ポリマーの分配室
1 Upper base plate 2 Middle base plate 3 Lower base plate 4 Tubular body 5 Sea component introduction hole 6 Confluence hole 7 Discharge hole 8 Island component polymer distribution chamber 9 Sea component polymer introduction flow path 10 Sea component polymer distribution chamber

Claims (4)

一本の単繊維中に多数の島成分ポリマーが互いに分離した状態でその繊維軸方向に沿って海成分ポリマー中にそれぞれ独立して延在する海島型複合繊維群を溶融紡糸するための紡糸口金であって、
該紡糸口金は、
(a)島成分ポリマーを複数条のポリマー細流にそれぞれ分流する管状体群(4)と、
(b)前記管状体群(4)が内部に突設され、かつ各管状体群(4)のそれぞれを囲繞するように海成分ポリマーを内部に分配する分配室(10)と、
(c)前記管状体群(4)のそれぞれに一対一に対応して前記分配室(10)の直下に穿設され、かつ前記管状体群(4)からそれぞれ供給された各島成分ポリマーが、前記分配室(10)に供給された海成分ポリマーと合流して管状体群(4)の数に対応する芯鞘複合流群を形成しながら流下する合流孔群(6)と、
(d)前記、合流孔群(6)の各下端部から流入する前記芯鞘複合流群を2つ以上集合させて一体流とする、漏斗状の形状を有する導入孔が上方に形成され、前記の一体流を徐々に細化させながら下方へ導いた後に紡出する吐出孔、
とを有することを特徴とする海島型複合繊維用紡糸口金。
A spinneret for melt-spinning a group of sea-island type composite fibers in which a large number of island-component polymers are separated from each other in one single fiber and extend independently in the sea-component polymer along the fiber axis direction. And
The spinneret is
(A) A tubular body group (4) that divides the island component polymer into a plurality of polymer trickles, respectively.
(B) A distribution chamber (10) in which the tubular body group (4) is projected inside and the sea component polymer is internally distributed so as to surround each of the tubular body groups (4).
(C) Each island component polymer is bored directly under the distribution chamber (10) in a one-to-one correspondence with each of the tubular body groups (4) and supplied from the tubular body group (4). , A confluence hole group (6) that flows down while forming a core-sheath complex flow group corresponding to the number of tubular body groups (4) by merging with the sea component polymer supplied to the distribution chamber (10).
(D) An introduction hole having a funnel shape is formed above, in which two or more core-sheath composite flow groups flowing in from each lower end of the confluence hole group (6) are aggregated to form an integrated flow. A discharge hole that is spun after guiding the integrated flow downward while gradually reducing it.
A spinneret for Kaijima-type composite fibers, which is characterized by having and.
前記管状体の内径Diと、その肉厚tとが下記式(イ)を満足する請求項1に記載の海島型複合繊維用紡糸口金。
0.05≦(t/Di)≦0.35 (イ)
The spinneret for a sea-island type composite fiber according to claim 1, wherein the inner diameter Di of the tubular body and the wall thickness t thereof satisfy the following formula (a).
0.05 ≦ (t / Di) ≦ 0.35 (a)
前記管状体の外径Doと、前記合流孔の導入部直径dとが下記式(ロ)を満足する請求項1又は2に記載の海島型複合繊維用紡糸口金。
0.85≦(d/Do)≦2.0 (ロ)
The spinneret for a sea-island type composite fiber according to claim 1 or 2, wherein the outer diameter Do of the tubular body and the diameter d of the introduction portion of the confluence hole satisfy the following formula (b).
0.85 ≤ (d / Do) ≤ 2.0 (b)
前記管状体の外径Doと、前記芯鞘複合流群を2つ以上集合させて一体流とする、漏斗状の形状を有する導入孔の外縁と、前記芯鞘流群との間隔のうち最も小さい距離をDrとが下記式(ハ)を満足する請求項1〜3のいずれか1項に記載の海島型複合繊維用紡糸口金。
Do≦Dr≦5Do (ハ)
The most distance between the outer diameter Do of the tubular body and the outer edge of the funnel-shaped introduction hole, which is a combination of two or more core-sheath composite flow groups to form an integrated flow, and the core-sheath flow group. The spinneret for a sea-island type composite fiber according to any one of claims 1 to 3, wherein a small distance is satisfied by Dr and the following formula (c).
Do ≤ Dr ≤ 5 Do (c)
JP2019065903A 2019-03-29 2019-03-29 Spinneret for sea-island type conjugate fiber Pending JP2020165026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065903A JP2020165026A (en) 2019-03-29 2019-03-29 Spinneret for sea-island type conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065903A JP2020165026A (en) 2019-03-29 2019-03-29 Spinneret for sea-island type conjugate fiber

Publications (1)

Publication Number Publication Date
JP2020165026A true JP2020165026A (en) 2020-10-08

Family

ID=72714797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065903A Pending JP2020165026A (en) 2019-03-29 2019-03-29 Spinneret for sea-island type conjugate fiber

Country Status (1)

Country Link
JP (1) JP2020165026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005124T5 (en) 2020-09-30 2023-07-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat exchanger and air conditioner for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812367B2 (en) * 1980-08-21 1983-03-08 東レ株式会社 Spinning method and device for super multi-island composite fiber
JP2005015926A (en) * 2003-06-23 2005-01-20 Toray Ind Inc Method for spinning multi-island conjugated fiber and spinneret device
JP2007039858A (en) * 2005-08-03 2007-02-15 Hiroshi Tabata Method for forming extremely fine structural fiber with regularity
JP2008144289A (en) * 2006-12-07 2008-06-26 Teijin Fibers Ltd Spinneret for conjugated fiber
JP2009091680A (en) * 2007-10-05 2009-04-30 Teijin Fibers Ltd Spinneret for sea-island-type conjugate fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812367B2 (en) * 1980-08-21 1983-03-08 東レ株式会社 Spinning method and device for super multi-island composite fiber
JP2005015926A (en) * 2003-06-23 2005-01-20 Toray Ind Inc Method for spinning multi-island conjugated fiber and spinneret device
JP2007039858A (en) * 2005-08-03 2007-02-15 Hiroshi Tabata Method for forming extremely fine structural fiber with regularity
JP2008144289A (en) * 2006-12-07 2008-06-26 Teijin Fibers Ltd Spinneret for conjugated fiber
JP2009091680A (en) * 2007-10-05 2009-04-30 Teijin Fibers Ltd Spinneret for sea-island-type conjugate fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005124T5 (en) 2020-09-30 2023-07-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat exchanger and air conditioner for vehicle

Similar Documents

Publication Publication Date Title
US10604866B2 (en) Sea-island composite fiber, composite ultra-fine fiber, and fiber product
KR101250683B1 (en) Composite fabric of island-in-sea type and process for producing the same
JP5821714B2 (en) Composite base and composite fiber manufacturing method
TWI541399B (en) Composite fiber
JP5505030B2 (en) Composite base and composite fiber manufacturing method
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
US20090253329A1 (en) Heat-resistant nonwoven fabric
WO2012090538A1 (en) Composite spinneret and method of manufacturing composite fiber
CN107849753A (en) Composit false twisting yarn based on nanofiber and preparation method thereof
JP2020165026A (en) Spinneret for sea-island type conjugate fiber
JP5740877B2 (en) Extra fine fiber
TWI428484B (en) Split-type composite fiber containing polyacetal, fiber formed body using the same, and product
JP5145004B2 (en) Kaishima type composite fiber spinneret
JP5728936B2 (en) Composite base and composite fiber manufacturing method
JP2007100253A (en) Method for producing sea-island type conjugate fiber
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JPH10266011A (en) Spinneret plate for spinning core-sheath conjugated fiber and spinneret device
WO2023171363A1 (en) Method for manufacturing bicomponent fiber, and bicomponent spinneret
JP2006265788A (en) Method for producing conjugated fiber
JP2005002522A (en) Multi-island conjugate fiber and spinneret for producing the same
JPH1150329A (en) Melt spinning of eccentric conjugate fiber
JPH04222203A (en) Spinneret for combined filament yarn having different fineness
JPH02446B2 (en)
JP2023079358A (en) Composite spinneret and method for producing sea-island composite fiber using the same
JP2005015926A (en) Method for spinning multi-island conjugated fiber and spinneret device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725