WO2012090538A1 - Composite spinneret and method of manufacturing composite fiber - Google Patents
Composite spinneret and method of manufacturing composite fiber Download PDFInfo
- Publication number
- WO2012090538A1 WO2012090538A1 PCT/JP2011/066697 JP2011066697W WO2012090538A1 WO 2012090538 A1 WO2012090538 A1 WO 2012090538A1 JP 2011066697 W JP2011066697 W JP 2011066697W WO 2012090538 A1 WO2012090538 A1 WO 2012090538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- island component
- component discharge
- discharge holes
- hole
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/36—Matrix structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/06—Distributing spinning solution or melt to spinning nozzles
Definitions
- the present invention relates to a composite die and a method for producing a composite fiber.
- thermoplastic polymers such as polyester and polyamide are excellent in mechanical properties and dimensional stability, so their uses have diversified and many fibers with various functionalities have been developed.
- the composite fiber includes a core-sheath type, a side-by-side type, and a sea-island type fiber obtained by using a composite die, and an alloy type obtained by melt-kneading polymers.
- the sheath component coats the core component, so that it is possible to impart sensibility effects such as texture and bulkiness that cannot be achieved with a single fiber, and mechanical properties such as strength, elastic modulus, and wear resistance. Become.
- the side-by-side type it is possible to express crimpability, which is impossible with a single fiber, and to impart stretchability and the like.
- the core-sheath type has a core component covered with a sheath component, so that it can provide a sensory effect such as a texture and bulkiness that cannot be achieved with a single fiber, and mechanical properties such as strength, elastic modulus, and wear resistance. It becomes possible. Further, in the side-by-side type, it is possible to express crimpability, which is impossible with a single fiber, and to impart stretchability and the like.
- the method of manufacturing a composite fiber with a composite die is generally called a composite spinning method, and the method of manufacturing by melt-kneading polymers is called a polymer alloy method.
- the polymer alloy method can be used to produce the ultrafine fibers as described above, the control of the fiber diameter is limited, and it is difficult to obtain uniform and homogeneous ultrafine fibers.
- the composite spinning method precisely controls the composite polymer flow with a composite die, and in particular, it can form a highly accurate yarn cross-sectional form uniformly and homogeneously in the running direction of the yarn, compared with the polymer alloy method. The superiority is considered high.
- the composite die technique in this composite spinning method is extremely important for stably determining the cross-sectional shape of the yarn, and various proposals have been made conventionally.
- FIG. 12 a composite base as shown in FIG. 12 is disclosed.
- (B) of FIG. 12 is a plan view of the composite base of Patent Document 1
- (a) of FIG. 12 is a partially enlarged plan view of (b).
- black circle 1 indicates an island component discharge hole for discharging an island component polymer
- white circle 4 indicates a sea component discharge hole for discharging a sea component polymer
- 5 indicates a lowermost layer distribution plate
- 8 indicates a distribution groove.
- Patent Document 1 a plurality of distribution plates are stacked, and a lowermost layer distribution plate 5 provided with distribution grooves 8, island component discharge holes 1, and sea component discharge holes 4 is disposed in the lowermost layer of the distribution plate.
- a sea-island type composite fiber can be manufactured by combining immediately after discharge. Further, it is described that by using this composite die, 61 uniformly distributed composite fibers having an island shape of a hexagonal cross section (honeycomb shape) can be manufactured.
- This composite base is generally called a distribution plate type base.
- the obtained fiber is 0.06 denier (trial calculation of fiber diameter: about ⁇ 2.5 ⁇ m), the fiber diameter is micron size, and it has not reached the nano order.
- the composite die becomes large, and there are cases where productivity and operability are unfavorable in a multi-spindle spinning facility in the fiber field.
- the sea component discharge holes 4 so as to form hexagons around the island component discharge holes 1 as a hole group arrangement pattern, the island shape is six. Although it has a square cross section, no other hole group arrangement pattern is presented, and there may be cases where sea-island type composite fibers having various island shapes cannot be obtained.
- FIG. 9, FIG. 10, and FIG. 23 are disclosed as hole arrangement patterns different from Patent Document 1.
- 9 and 10 are partially enlarged plan views of the composite base of Patent Document 5 and FIG.
- the lowermost layer distribution plate 5 shown in FIGS. 9 and 10 and the upper layer plate 29 of FIG. 23 have the same role, although the names are different.
- Patent Document 5 and Patent Document 8 are patterns in which sea component discharge holes 4 are arranged in three or four equal arrangements (staggered arrangement) around the island component discharge holes 1.
- sea-island type composite fiber in which the island components are polygonal is likely to be obtained, but according to the knowledge of the present inventors, the island component polymers may actually merge.
- the polymer discharge rate ratio is preferably less sea component polymer to be eluted and more island component polymers.
- the confluence of the island component polymers becomes more prominent.
- the problem may not be resolved even if the spinning conditions such as the discharge amount of each component polymer and the discharge amount ratio are changed. If the value is not changed, production becomes impossible and productivity may deteriorate.
- a staggered arrangement is adopted as an arrangement pattern, and a polymer is supplied to the island component discharge holes 1 and the sea component discharge holes 4 in order to arrange the island component discharge holes 1 and the sea component discharge holes 4 on the same surface of the upper layer plate 29. Due to the relationship between the distances between the wall surfaces of the distribution grooves 8 of the distribution plate 6, there are cases where many island component discharge holes 1 cannot be arranged and the hole filling density cannot be increased. Thus, when the hole packing density cannot be increased, the composite die becomes large, and there may be a problem that productivity and operability are not preferable in a multi-spindle type spinning facility in the fiber field.
- FIG. 13 is a schematic cross-sectional view of the composite base of Patent Document 2.
- 10 is a discharge plate
- 11 is a discharge introduction hole
- 43 is a multilayer plate
- 44 is a divided plate
- 45 is an array plate.
- Patent Document 2 is configured by laminating a multilayer plate 43, a division plate 44, an array plate 45, and a discharge plate 10 in order.
- the sea component polymer and the island component polymer that flowed in from the upstream side are multilayered and partially divided.
- the island shape of the ultrafine fiber obtained by using the composite die of Patent Document 2 is limited to a circular shape or an elliptical shape similar to the circular shape, an ultrafine fiber having a complex shape, for example, a polygonal island shape, is used. You may not get it. Further, in Patent Document 2, the actual number of islands ((maximum number of islands ⁇ minimum number of islands) / average number of islands ⁇ 100 [%]) is within ⁇ 20% of the theoretical number of islands. In some cases, it is not possible to control the number of islands with high precision.
- sea component polymers that can be used are limited to polyethylene and polystyrene, and there are cases where a wide variety of polymers (polymers having different molecular structures such as polyester, polyamide, polyphenylene sulfide, and polyolefin) cannot be used.
- FIG. 14 is a schematic cross-sectional view of the composite die of Patent Document 3 and Patent Document 7.
- 30 is a pipe
- 31 is a sea component polymer introduction flow path
- 32 is an island component polymer introduction flow path
- 33 is an upper base plate
- 34 is a middle base plate
- 35 is a lower base plate
- 40 is a sea component polymer distribution chamber.
- 41 is a pipe insertion hole
- 42 is a base discharge hole.
- Patent Document 3 is generally known as a pipe-type base, and includes an upper base plate 33 provided with a sea component polymer introduction channel 31, an island component polymer introduction channel 32, and a pipe 30, and an outer diameter of the pipe 30. And a lower base plate 35 provided with a base discharge hole 42 and a middle base plate 34 provided with a pipe insertion hole 41 having the same or larger diameter.
- the easily eluted component sea component polymer is guided from the ocean component polymer introduction channel 31 to the ocean component polymer distribution chamber 40 and fills the outer periphery of the pipe 30, whereas the hardly eluted component island component polymer is:
- the polymers of both components merge to form a sea-island composite cross section, and then through the pipe insertion hole 41 and from the die discharge hole 42. It is described that a composite polymer can be discharged to produce a sea-island type composite fiber.
- the major problem of the pipe-type base of Patent Document 3 is that the pipe thickness is added to produce one island, so that the area per pipe increases.
- the pipe 30 is press-fitted into the upper base plate 33 and fixed by welding for manufacturing the base, a welding allowance is required, and further, a hole for inserting the pipe 30 is provided.
- the gap between pipes cannot be reduced due to problems. Therefore, the pipes 30 cannot be densely arranged per unit area, the hole filling density cannot be increased, and it may be difficult to manufacture ultrafine fibers having a fiber diameter of nano-order.
- the cylindrical pipe 30 is used, the island shape obtained is limited to a circular shape or an elliptical shape similar to the circular shape.
- a sea-island type composite fiber having a complex shape for example, a polygonal island shape. May not be able to get. This is because the degree of freedom of arrangement of the pipes 30 is low, and there is a limit to the cross-sectional shape of the fiber that can be controlled, and it may be difficult to manufacture a fiber having a complex cross-section in multiple layers.
- FIG. 18 is a schematic cross-sectional view of the composite die of Patent Document 6.
- 25 is a discharge hole
- 55 is an upper plate
- 56 is a protrusion.
- the discharge holes 25 and the island component discharge holes 1 have protrusions 56 around the periphery, the lower surface of the upper base plate 33, and the discharge
- the gap between the upper surface of the protrusion 56 formed around the hole 25 and the gap between the lower surface of the upper plate 29 and the upper surface of the protrusion 56 formed around the island component discharge hole 1 are narrowed to reduce pressure loss.
- the flow path pressure loss becomes large and the uniform distribution of both component polymers is possible, but the composite die of the present invention is targeted.
- the channel pressure loss cannot be increased, and thus the above-described effects may not be obtained.
- FIG. 15 is a schematic cross-sectional view of the composite die of Patent Document 4.
- 27 is a radial groove and 28 is a concentric groove.
- Patent Document 4 discloses that the distribution of the sea component polymer is improved by forming the radial grooves 27 around the island component discharge holes 1 and the concentric grooves 28 around the discharge holes 25, and the sea component polymer ratio is small. Even so, it is described that a sea-island type composite fiber that suppresses merging of island components can be obtained.
- the grooves are formed around the island component discharge holes 1 and the discharge holes 25, the pitch between the holes is increased, the hole filling density cannot be sufficiently increased, and the fiber diameter is ultrafine with nano order. It may be difficult to produce the fiber. As described in the examples, the minimum diameter of the obtained fiber is 1 ⁇ m, so that it cannot reach the nano-order.
- complicated grooving is performed on the base, it takes time, labor, and expense to manufacture the base, and there is a problem that the equipment cost is excessive in this respect as well.
- JP-A-7-26420 JP 2000-110028 A Japanese Patent Laid-Open No. 2007-100343 JP 2006-183153 A JP 2008-38275 A JP-A-7-118913 JP 2009-91680 A International Publication No. 1989-02938 Pamphlet
- the purpose of the present invention is to prevent the island component polymer from joining together while expanding the hole packing density of the discharge holes of the island component polymer in the distribution plate type die for producing the sea-island type composite fiber.
- Various fiber cross-sectional forms in particular, irregular shaped cross-sections can be formed with high accuracy, and a composite base capable of maintaining high dimensional stability of the cross-sectional form, and a composite fiber manufacturing method for performing melt spinning by a composite spinning machine using the composite base Is to provide.
- the composite base of the present invention has the following configuration. That is, according to the present invention, a composite base for discharging a composite polymer flow composed of an island component polymer and a sea component polymer, wherein distribution holes and distribution grooves for distributing each polymer component are formed. Consists of one or more distribution plates and a lowermost layer distribution plate that is located downstream of the distribution plate in the polymer spinning path direction and has a plurality of island component discharge holes and a plurality of sea component discharge holes The sea component discharge hole disposed on a virtual circumference line C1 having a radius R1 centered on the island component discharge hole, and the sea component discharge hole disposed on a virtual circumference line C2 having a radius R2.
- C1 Three sea component discharge holes equally divided at a central angle of 120 degrees
- C2 Three sea component discharge holes equally divided at a central angle of 120 degrees
- C4 Three island component discharge holes at a central angle of 120 degrees
- ⁇ 3 The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees.
- ⁇ 5 The phase angle between the discharge holes arranged in C1 and C4 is 0 degrees.
- C1 Six sea component discharge holes equally divided at a central angle of 60 degrees
- C2 Six sea component discharge holes equally divided at a central angle of 60 degrees
- C4 Six island component discharge holes at a central angle of 60 degrees ⁇ 3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree.
- ⁇ 5 The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees.
- C1 Four sea component discharge holes are equally divided at a central angle of 90 degrees
- C2 Eight sea component discharge holes are equally distributed at a central angle of 90 degrees
- C4 Four sea component discharge holes are equally divided at a central angle of 90 degrees
- the phase angle between the discharge holes arranged in C2 is 26.6 degrees.
- ⁇ 5 The phase angle between the discharge holes arranged in C1 and C4 is 0 degree. According to a preferred embodiment of the present invention, a plurality of the distribution plates are provided.
- the distribution plate has an increased number of holes in the distribution hole toward the downstream side in the spinning path direction of the polymer, and the distribution hole located on the upstream side in the spinning path direction of the polymer;
- the distribution groove is formed so as to communicate with the distribution hole located on the downstream side in the spinning path direction, and there is provided a composite base that constitutes a plurality of distribution holes communicating with the end of the distribution groove. .
- a composite base in which the diameter of the distribution hole in the path having a relatively long polymer flow path is larger than the diameter of the distribution hole in the relatively short path.
- a composite base in which at least a part of the sea component discharge hole is present in a region surrounded by two common circumscribed lines of two adjacent island component discharge holes. Is provided.
- At least a part of each of the at least two sea component discharge holes in a region surrounded by two common outer tangent lines of the two adjacent island component discharge holes.
- a composite base in which the two sea component discharge holes are arranged across a line segment connecting the centers of the two island component discharge holes.
- a composite die having a thicker distribution plate constituting the distribution groove toward the upstream side in the polymer spinning path direction.
- the diameter DMIN of the minimum hole formed in the distribution plate or the lowermost layer distribution plate and the plate thickness BT where the minimum hole is formed are expressed by the following equations: A composite base to fill is provided. BT / DMIN ⁇ 2 DMIN: diameter of the smallest hole formed in the distribution plate or the lowermost layer distribution plate (mm), BT: thickness of the distribution plate in which the smallest hole is formed, or the lowermost layer distribution plate (mm).
- a composite base in which the thickness of the distribution plate or the lowermost distribution plate is in the range of 0.1 to 0.5 mm.
- a composite die having a hole filling density of the island component discharge holes of 0.5 holes / mm 2 or more.
- flow path pressure loss in each flow path from the distribution plate to the island component discharge hole of the lowermost layer distribution plate is equal
- the distribution plate Provided is a method for producing a composite fiber, in which melt spinning is performed by a composite spinning machine using a composite base in which the flow path pressure loss in each flow path to the sea component discharge hole of the lowermost layer distribution plate is equal.
- a method for producing a composite fiber in which melt spinning is performed with an island component polymer ratio of 50% or more by a composite spinning machine using the composite base.
- the “distribution hole” means a hole that is formed by a combination of a plurality of distribution plates and plays a role of distributing the polymer in the direction of the polymer spinning path.
- the “distribution groove” means a groove in which a groove is formed by a combination of a plurality of distribution plates and plays a role of distributing the polymer in a direction perpendicular to the polymer spinning path direction.
- the distribution groove may be an elongated hole (slit), or an elongated groove may be dug.
- the “polymer spinning path direction” refers to the main direction in which each polymer component flows from the measuring plate to the die discharge hole of the discharge plate.
- the “direction perpendicular to the direction of polymer spinning path” refers to the direction perpendicular to the main direction in which each polymer component flows from the metering plate to the die discharge hole of the discharge plate.
- the “virtual circumferential line C1 having a radius R1” refers to a virtual circumferential line C1 having a radius R1 as the distance between the center points of the sea component discharge hole closest to the reference island component discharge hole. .
- the “virtual circumferential line C2 having a radius R2” means a virtual circumferential line C2 having a radius R2 as the distance between the center points of the sea component ejection hole that is second closest to the reference island component ejection hole.
- the “virtual circumferential line C4 having a radius R4” refers to a virtual circumferential line C4 having a radius R4 as the distance between the center points of the island component ejection holes closest to the reference island component ejection hole. .
- the “center angle” means the center point of the reference island component discharge hole and the center point of two sea component discharge holes adjacent to each other in the circumferential direction arranged on the virtual circumferential lines C1 and C2. Or the angle which the line segment which connects the center point of two island component discharge holes adjacent to the circumferential direction arrange
- the “phase angle” means a line segment connecting the center point of the reference island component discharge hole and the center point of the sea component discharge hole arranged on the virtual circumferential line C1, and the reference island component.
- the angle at which the line connecting the center point of the discharge hole and the center point of the sea component discharge hole arranged on the virtual circumference C2 intersects, or the center point of the reference island component discharge hole and the virtual circumference C1 A line segment connecting the center point of the sea component discharge hole disposed above, and a line segment connecting the center point of the reference island component discharge hole and the center point of the sea component discharge hole disposed on the virtual circumferential line C2. The angle at which crosses.
- the “polymer flow path” refers to a path formed by communication between a distribution hole and a distribution groove formed inside the distribution plate.
- the “hole filling density” refers to a value obtained by dividing the number of island component discharge holes for discharging the island component polymer by the cross-sectional area of the discharge introduction holes. The larger the pore packing density, the more the composite fiber is composed of a larger number of island component polymer components.
- the island component polymers are uniformly distributed, and the island component polymers are prevented from merging with each other.
- the irregular cross section can be formed with high accuracy, and the dimensional stability of the cross section can be maintained high.
- FIG. 6 is a view taken in the direction of arrows XX in FIG. 5.
- FIG. 27 is a view on arrow XX in FIG. 26.
- FIG. 25 is a view on arrow YY in FIG. 24. It is a ZZ arrow line view of FIG.
- FIG. 5 is a schematic cross-sectional view of a composite base used in the embodiment of the present invention
- FIG. 7 is a view taken along the line XX of FIG. 5
- FIG. 1 is a partially enlarged plan view of FIG. 2, 3, 4, and 16 are partially enlarged plan views of a lowermost layer distribution plate used in another embodiment of the present invention
- FIG. 6 is a composite die and a spin pack used in the embodiment of the present invention
- FIG. 17, FIG. 20, FIG. 21, FIG. 22, FIG. 31, and FIG. 38 are schematic partial sectional views of the distribution plate and the lowermost layer distribution plate used in the embodiment of the present invention.
- These are conceptual diagrams for accurately transmitting the main points of the present invention, which are simplified, and the composite base of the present invention is not particularly limited, and the number of holes and grooves and the size ratio thereof are not limited. These can be changed according to the embodiment.
- the composite base 18 used in the embodiment of the present invention is mounted on the spinning pack 15 and fixed in the spin block 16, and a cooling device 17 is configured immediately below the composite base 18. Therefore, after the polymer of two or more components led to the composite base 18 passes through the measuring plate 9, the distribution plate 6, and the lowermost layer distribution plate 5 and is discharged from the base discharge hole 42 of the discharge plate 10, After being cooled by the air flow blown out by the cooling device 17 and given an oil agent, it is wound up as a sea-island type composite fiber.
- adopted you may use the cooling device which blows off airflow from one direction.
- the composite base 18 used in the embodiment of the present invention is configured by laminating a measuring plate 9, at least one distribution plate 6, a lowermost layer distribution plate 5, and a discharge plate 10 in order.
- the distribution plate 6 and the lowermost layer distribution plate 5 are preferably formed of thin plates.
- the measuring plate 9 and the distribution plate 6, and the lowermost layer distribution plate 5 and the discharge plate 10 are positioned by the positioning pins so that the center position (core) of the spinning pack 18 is aligned, You may fix with a volt
- the distribution plates 6 and the distribution plate 6 and the lowermost layer distribution plate 5 use thin plates, it is preferable to perform metal bonding (diffusion bonding) by thermocompression bonding.
- the thickness of the thin plate is preferably in the range of 0.01 to 1 mm, and more preferably in the range of 0.1 to 0.5 mm.
- the thickness of the distribution plate 6 and the lowermost distribution plate 5 is too thin, the strength of the thin plate is reduced and bending is likely to occur, so that the types of polymers that can be used may be limited (high viscosity) The pressure loss increases with the polymer, and bending occurs.)
- a plurality of thin plates may be stacked and metal-bonded to increase the overall thickness and improve the strength.
- the strength per sheet is improved, so that there is an advantage that the types of polymers that can be used increase.
- the thickness of the distribution plate having a large number of holes may be reduced, and the thickness may be increased as the number of holes is reduced.
- the polymer of each component supplied from the measuring plate 9 passes through the distribution groove 8 and the distribution hole 7 of the distribution plate 6 laminated at least one, and then discharges the island component polymer of the lowermost distribution plate 5.
- the polymers of the respective components merge to form a composite polymer flow.
- the composite polymer flow passes through the discharge introduction hole 11 and the reduction hole 12 of the discharge plate 10 and is discharged from the base discharge hole 42.
- the hole diameters of the island component discharge holes 1 provided in the lowermost layer distribution plate 5 are preferably all equal, and the hole diameters of the sea component discharge holes 4 are preferably all equal.
- the hole diameters of the island component discharge hole 1 and the sea component discharge hole 4 are preferably in the range of 0.03 to 0.8 mm, and more preferably in the range of 0.05 to 0.5 mm. .
- the hole packing density of the composite die 18 which is the most important point of the present invention, it is possible to prevent merging of polymers of island components with each other and to form various fiber cross-sectional forms, particularly deformed cross-sections with high accuracy.
- the principle will be described.
- the interval between the island component discharge holes 1 must be as close as possible, but in this case, the island component polymers merge between adjacent island component discharge holes. . Therefore, in order to prevent the island component polymers from joining each other, for example, as shown in FIG. 12, the island component discharge hole 1 is surrounded by a sea component discharge hole 4 for discharging the sea component polymer.
- the merging of the island component polymers when the cross-sectional shape of the island component is round is mainly generated on the line connecting the centers of the adjacent island component discharge holes 1, but the irregular shape having a plurality of edge (corner) portions. In some cases, it occurs not only on the line connecting the gravity centers of the island component discharge holes 1 but also between adjacent edge portions.
- the sea component polymer since the sea component polymer is eluted after melt spinning, it is preferable to increase the island component polymer ratio as much as possible and reduce the sea component polymer ratio. Occurrence becomes more prominent.
- the lowermost layer distribution plate 5 has a sea component discharge hole 4 and a virtual circumference C2 having a radius R2 on a virtual circumference C1 having a radius R1 with the island component discharge hole 1 as a center.
- the sea component discharge hole 4 and the island component discharge hole 1 are arranged on a virtual circumferential line C4 having a radius R4, satisfying the formula (1) and any one of the conditions (1) to (2) in (2) It is arranged to be.
- conditions (a) and (b) are the arrangement patterns of the island component discharge holes 1 and the sea component discharge holes 4 in which the island component is a triangular cross section, the condition c is a hexagonal cross section, and the condition D is a quadrilateral cross section. Show.
- a virtual circumferential line having a radius R1 as a line segment connecting the reference island component discharge hole 1 and the center point of the sea component discharge hole 4a is defined as C1, and the sea component discharge hole 4 is disposed on the virtual circumferential line C1.
- a virtual circumferential line having a radius R2 as a line segment connecting the reference island component discharge hole 1 and the center of the sea component discharge hole 4b is used.
- a virtual circumferential line C4 is arranged in a region sandwiched between the virtual circumferential line C1 and the virtual circumferential line C2, and satisfies the formula (1), and each virtual circumferential line C1, C2, and On C4, it arrange
- Equation (1) is calculated by rounding off the fourth decimal place.
- C1 Three sea component discharge holes equally divided at a central angle of 120 degrees
- C2 Three sea component discharge holes equally divided at a central angle of 120 degrees
- C4 Three island component discharge holes at a central angle of 120 degrees
- ⁇ 3 The phase angle between the discharge holes arranged at C1 and C2 is 60 degrees.
- ⁇ 5 The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees.
- C1 Six sea component discharge holes equally divided at a central angle of 60 degrees
- C2 Six sea component discharge holes equally divided at a central angle of 60 degrees
- C4 Six island component discharge holes at a central angle of 60 degrees ⁇ 3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree.
- ⁇ 5 The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees.
- C1 Four sea component discharge holes are equally divided at a central angle of 90 degrees
- C2 Eight sea component discharge holes are equally distributed at a central angle of 90 degrees
- C4 Four sea component discharge holes are equally divided at a central angle of 90 degrees
- the phase angle between the discharge holes arranged at C2 is 26.6 degrees.
- ⁇ 5 The phase angle between the discharge holes arranged at C1 and C4 is 0 degree. 1 and the island component discharge hole 1a are prevented from joining each other, and the sea part discharge hole 4a on the virtual circumferential line C1 is arranged to form a straight section having an irregular cross section (triangular cross section). Then, by forming the edge portion by the arrangement of the sea component discharge holes 4b on the virtual circumferential line C2, it is possible to obtain a fiber having a uniform island component and a highly accurate cross section (triangular cross section).
- both the island component polymer and the sea component polymer are simultaneously discharged toward the discharge introduction hole 11 on the downstream side of the lowermost layer distribution plate 5, As each polymer widens in a direction perpendicular to the direction of the polymer spinning path, the polymer flows along the direction of the polymer spinning path, and the two polymers merge to form a composite polymer stream. At that time, in order to prevent the island component polymers discharged from the reference island component discharge hole 1 and the island component discharge hole 1a from joining together, a sea component polymer that physically divides the island component polymer is interposed. The sea component polymer discharged from the sea component discharge hole 4a on the virtual circumference C1 plays this role.
- the sea component discharge hole 4a on the virtual circumferential line C1 is to form a form in which the island component has an irregular cross section. This partially suppresses the widening of the island component polymer discharged from the reference island component discharge hole 1, that is, in order to obtain a form in which the island component has a triangular cross section, the three sea component discharge holes 4a are provided. By equally dividing at a central angle of 120 degrees, widening of the island component polymer is suppressed from three locations. And the island component which flows out from between the holes of the sea component discharge hole 4a by arranging the sea component discharge holes 4b on the virtual circumference C2 equally at a central angle of 120 degrees with a phase angle of 60 degrees.
- the polymer is suppressed by the sea component polymer discharged from the sea component discharge hole 4b. Since the sea component discharge hole 4a and the sea component discharge hole 4b have a phase difference and are disposed on the virtual circumferential line C1 and the virtual circumferential line C2 having different radii, the sea disposed on the inner peripheral side
- the component discharge hole 4a forms a side of a triangular cross section
- the sea component discharge hole 4b arranged on the outer peripheral side has a role of forming an edge (corner) portion of the triangular cross section.
- the island component polymer discharged from the reference island component discharge hole 1 and the island component polymer discharged from the island component discharge hole 1a on the virtual circumferential line C4 also have a role of suppressing merging. ing.
- the radius R4 of the virtual circumferential line C4 is decreased, and the reference island component discharge hole 1 and the island component discharge hole 1a are formed.
- the present inventors have found that there is a distance at which the island component polymers discharged from the respective holes widen and the island component polymers join together. This is because the space between the virtual circumference line C1 and the virtual circumference line C2 forms a space that sufficiently widens the island component polymer discharged from the island component discharge hole 1, and allows the island component polymers to merge.
- the key is the arrangement of holes that can be suppressed. That is, it suffices to determine that the radius R4 that is the distance between the center points of the island component discharge holes 1a adjacent to the reference island component discharge hole 1 satisfies Expression (1).
- the island component discharge hole 1 serving as a reference and the island component discharge holes 1a arranged on the virtual circumferential line C4 cannot be brought close to each other. As a result, the island packing density cannot be increased.
- the feature of this arrangement is that the number of islands can be increased and the island packing density can be increased, but the island component polymer ratio cannot be increased to 50% or more. It is suitable to obtain a composite fiber.
- the island component has a triangular cross section
- three sea component discharge holes 4 are equally arranged at a central angle of 120 degrees on the virtual circumference C1 around the reference island component discharge hole 1, and on the outer circumference of the virtual circumference C4.
- Three island component discharge holes 1 are equally divided at a central angle of 120 degrees with a phase angle of 0 degrees, and a phase angle of 60 degrees on a virtual circumferential line C2 on the outer periphery of the three island component discharge holes 1
- the component discharge holes 4 are equally arranged at a central angle of 120 degrees.
- the arrangement pattern in which the island component has a hexagonal cross section is arranged under the condition (2).
- six sea component discharge holes 4 are equally arranged at a central angle of 60 degrees on a virtual circumferential line C1 around the reference island component discharge hole 1, and the outer periphery of the sea component discharge hole 1 is virtual.
- Six island component discharge holes 1 are equally distributed at a central angle of 60 degrees with a phase angle of 30 degrees on the circumferential line C4, and a phase angle of 30 degrees on the virtual circumferential line C2 on the outer periphery thereof. Then, the six sea component discharge holes 4 are equally arranged at a central angle of 60 degrees.
- the four sea component discharge holes 4 are equally divided at a central angle of 90 degrees on the virtual circumference C1 around the reference island component discharge hole 1, and Four island component discharge holes 1 are equally arranged at a central angle of 90 degrees on the virtual circumferential line C4 with a phase angle of 0 degree, and a phase angle of 22.5 is placed on the virtual circumferential line C2 on the outer periphery thereof.
- the eight sea component discharge holes 4 are arranged at a certain degree.
- a plurality of distribution plates 6 are provided.
- the number of distribution holes 7 formed in the distribution plate 6 is in the direction of the polymer spinning path.
- a distribution plate 6 configured to increase toward the downstream side and formed with distribution holes 7 for guiding the polymer in the direction of the polymer spinning path, and a distribution groove 8 for guiding the polymer in a direction perpendicular to the direction of the polymer spinning path.
- the distribution holes 6 are alternately stacked, and the distribution holes 7 located on the upstream side in the direction of the polymer spinning path communicate with the distribution holes 7 located on the downstream side in the direction of the polymer spinning path.
- a distribution groove 8 is formed.
- a distribution hole 7 may be formed on one surface of one distribution plate 6 and a distribution groove 8 may be formed on the other surface, and the distribution hole 7 and the distribution groove 8 may communicate with each other. Further, as described above, the distribution hole 7 may be formed through the distribution plate 6, and the distribution groove 8 may be formed through the distribution plate 7.
- a single distribution groove 8 that communicates with a single distribution hole 7 at a position downstream in the polymer spinning path direction is formed, and a plurality of distribution grooves 8 that communicate with the end of the distribution groove 8 (in FIG. 17).
- a flow path for a tournament-type polymer constituting the two distribution holes 7 is formed.
- the path length from the distribution hole 7 of the distribution plate 6 located at the uppermost end in the polymer spinning path direction or from the distribution groove 8 to the island component discharge hole 1 of the lowermost distribution plate 5 Are equal.
- each distribution plate 6 has a structure in which the hole diameter of the distribution hole 7, the groove width, the groove depth, and the groove length of the distribution groove 8 are equal.
- the distribution groove 8 communicates with two or more distribution holes 7 (in the case of a tournament type flow path having two or more branches), the distribution holes 7 on the downstream side are distributed from the distribution holes 7 on the upstream side in the polymer spinning path direction. It is preferable that the flow path pressure loss of the flow path of each polymer is equalized by equalizing the groove length, groove width, and groove depth of the distribution groove 8 that reaches the center. Further, disposing the distribution hole 7 at the end of the distribution groove 8 eliminates the abnormal retention of the polymer, has the advantage of high polymer distribution and precise control.
- a plurality of polymer flow paths inside the distribution plate 6 formed by the distribution holes 7 and the distribution grooves 8 can be used. It is mentioned that the diameter of the distribution hole 6 in the path having a relatively long polymer flow path from the upper end to the lowermost layer distribution plate 5 is larger than the diameter of the distribution hole 6 in the relatively short path. This makes it possible to equalize the flow path pressure loss.
- the hole diameter of the island component discharge hole 1 of the lowermost layer distribution plate 5 is set to the flow path in each flow path of the distribution plate 6 on the upstream side.
- a structure for adjusting the pressure loss difference to be equal can be mentioned. Specifically, by increasing the diameter of the island component discharge hole 1 communicating with the flow path having a large flow path pressure loss and reducing the island component discharge hole 1 communicating with the upstream flow path having a small flow path pressure loss, It is possible to equalize the flow path pressure loss.
- one distribution groove 8 communicates with the plurality of distribution holes 7 with respect to the downstream side in the polymer spinning path direction, and also with respect to the upstream side in the polymer spinning path direction.
- the structure in which the flow path pressure loss of each polymer flow path is made equal is the distribution hole 7 communicating with the central portion of the distribution groove 8 and the end portion.
- the diameter of the distribution hole 7 located at the end portion is made larger than that of the central portion, so that the flow path pressure loss can be made uniform. It becomes possible.
- the distribution holes 7 provided in the distribution plate 6 distribute the polymer mainly in the direction of the polymer spinning path
- the distribution groove 8 distributes the polymer mainly in the direction perpendicular to the direction of the polymer spinning path.
- the polymer can be distributed freely and easily in the fiber cross-sectional direction, and by using this, the sea component discharge holes 4 can be arranged in a very narrow area between the adjacent island component discharge holes 1.
- a distribution hole 6 and a distribution groove 8 are provided in the distribution plate 6 immediately above the lowermost layer distribution plate 5.
- the island component discharge hole 1 is communicated with the distribution hole 7, and the sea component discharge hole 4 is communicated with the distribution groove 8.
- the distribution groove 8 can be disposed at a position closer to the distribution hole 7, and the sea component discharge hole 4 communicating therewith can be disposed closer to the island component discharge hole 1.
- the hole packing density can be increased.
- the distribution plate 6 immediately above the lowermost layer distribution plate 5 may have a distribution hole 7 communicating with the downstream side of the distribution groove 8 in the polymer spinning path direction.
- the distribution groove 8 communicates with the distribution hole 7 on the downstream side in the polymer spinning path direction, the same effect as described above can be obtained. Furthermore, the hole packing density of the island component discharge holes 1 of the lowermost layer distribution plate 5 is increased, that is, the sea component discharge holes 4 on the reference island component discharge holes 1 and the virtual circumferential line C1, or the virtual circumferential line.
- the distribution plate 6 and the lowermost layer distribution plate 5 of the present invention have a laminated structure of thin plates. It has become.
- the composite base 18 in the present invention is not limited to a circular shape, and may be a square or a polygon. Further, the arrangement of the base discharge holes 42 in the composite base 18 may be appropriately determined according to the number of sea-island composite fibers, the number of yarns, and the cooling device 17. As the cooling device 17, in the case of an annular cooling device, the base discharge holes 42 may be arranged in a ring or in a row over a plurality of rows. In the case of a one-way cooling device, the base discharge holes 42 are arranged in a staggered manner. Is good.
- the cross section in the direction perpendicular to the polymer spinning path direction of the nozzle discharge hole 42 is not limited to a round shape, and may be a cross section other than a round shape or a hollow cross section. However, in the case of a cross-sectional shape other than a round shape, it is preferable to increase the length of the die discharge hole 42 in order to ensure the meterability of the polymer.
- the island component discharge hole 1 in the present invention is not limited to a round shape in a cross section perpendicular to the polymer spinning path direction, and may have an irregular cross section other than a round shape or a hollow cross section.
- the shape of the island component discharge holes 1 arranged in the lowermost layer distribution plate 5 is the same.
- a shape other than the round cross section it is easy to obtain a fiber having a deformed cross section by making the island component discharge holes 1 similar in advance so that the island component has a desired shape.
- the irregular cross-section fiber of the island component it becomes easier to form corners more sharply.
- the island component discharge hole 1 has a cross-sectional shape other than a round shape
- a round cross-sectional distribution hole 7 is arranged in communication with the island component discharge hole 1 to provide a round top right. It is preferable to discharge the polymer through the island component discharge holes 1 having a cross-sectional shape other than the round shape after ensuring the polymer meterability through the cross-sectional distribution holes 7.
- the sea component discharge hole 4 in the present invention is not limited to a round shape in the direction perpendicular to the polymer spinning path direction, like the island component discharge hole 1, and has a cross-sectional shape other than a round shape. Also good. In this case, it is preferable that all the sea component discharge holes 4 arranged in the lowermost layer distribution plate 5 have the same shape.
- the discharge introduction hole 11 in the present invention is provided with a constant running section from the lower surface of the lowermost layer distribution plate 5 in the polymer spinning path direction, so that the flow velocity difference immediately after the island component polymer and the sea component polymer merge. Can be relaxed and the composite polymer stream can be stabilized.
- the hole diameter of the discharge introduction hole 11 is larger than the outer diameter of the virtual circle 52 of each discharge hole group of the island component discharge hole 1 and the sea component discharge hole 4 disposed in the lowermost layer distribution plate 5 and is virtual. It is preferable that the cross-sectional area ratio of the circle 52 and the cross-sectional area ratio of the discharge introduction hole 11 be as small as possible. Thereby, the widening of each polymer discharged from the lowermost layer distribution plate 5 is suppressed, and the composite polymer flow can be stabilized.
- the reduction hole 12 in the present invention is unstable such as draw resonance of the composite polymer flow by setting the reduction angle ⁇ of the flow path from the discharge introduction hole 11 to the die discharge hole 42 in the range of 50 to 90 °. It is possible to suppress the phenomenon and supply the composite polymer stream stably.
- the reduction angle ⁇ is smaller than 50 °, the instability phenomenon of the composite polymer flow can be suppressed, but the composite base 18 itself is enlarged, and when the reduction angle ⁇ is larger than 90 °, the composite polymer flow is reduced. Instability phenomenon may become more prominent.
- the island component discharge hole 1, sea component discharge hole 4 and distribution hole 7 in the present invention preferably have a constant hole cross-sectional area in the polymer spinning path direction, but the cross-sectional area gradually decreases or increases, Alternatively, it may be gradually decreased and gradually increased. This is because, in the distribution plate 6 and the lowermost layer distribution plate 5 in the present invention, holes are cut mainly using an etching process, so that when the minute holes are processed, the holes are cut in the direction of the polymer spinning path. This is because the area may not be constant. In that case, the processing conditions and the like may be appropriately optimized.
- the lowermost layer distribution plate 5 in the present invention may be one, or a plurality of layers may be laminated.
- the single lowermost layer distribution plate 5 when the polymer meterability of the island component discharge hole 1 and the sea component discharge hole 4 cannot be obtained and the fiber form changes with time, a plurality of sheets are laminated. Thus, the meterability of the polymer can be ensured.
- one distribution plate 6 of the present invention may be provided with a distribution hole 7 on the upstream side of the distribution plate 6 and a distribution groove 8 (downstream side) in communication therewith.
- the distribution groove 8 may be disposed on the upstream side of the distribution plate 6, and the distribution hole 7 (downstream side) may be disposed in communication therewith. In this way, the polymer can be distributed by communicating the distribution hole 7 and the distribution groove 8 and repeating this one or more times.
- the tournament method is most preferable as a method for distributing the polymer of one component on the distribution plate 6, but as shown in FIG. 38, one distribution groove 8 or a plurality of distribution holes 7 is provided.
- a slit method in which a plurality of distribution grooves 8 are formed for a plurality of distribution holes 7 may be used, or a combined method in which a tournament method and a slit method are combined.
- the polymer of the other components also adopts the same distribution method as described above, but only one component polymer will be described for the sake of simplicity.
- the tournament method has the advantage that the distribution hole 7 is disposed at the end of the distribution groove 8 to eliminate abnormal retention of the polymer, the polymer distribution property is high, and the control can be precisely performed.
- the polymer is not distributed downstream, and as a result, a desired composite cross-section fiber may not be obtained. is there.
- the slit method has a plurality of distribution holes 7 for one distribution groove 8, it is highly compatible with problems such as blockage of the holes and grooves, and one distribution plate. 6 allows a large amount of polymer to be distributed in a direction perpendicular to the direction of the polymer spinning path. Therefore, the number of distribution plates 6 can be reduced, which has the advantage of reducing the manufacturing cost of the composite die 18. However, on the other hand, abnormal retention of the polymer is likely to occur, and the precise control of the polymer distribution may be inferior to the tournament method.
- the polymer is uniformly distributed on the downstream side by improving the meterability of the polymer.
- the distribution on the inflow side is performed.
- the diameter of the distribution hole 7 on the outflow side is smaller than the diameter of the distribution hole 7 on the inflow side with respect to the hole 7, and the diameter of the far side is increased.
- the hole diameter is adjusted so that the flow path pressure loss is equal between the distribution hole 7 (outflow side) closer to the inflow side distribution hole 7 and the distant distribution hole 7 (outflow side).
- the flow path pressure loss may be adjusted by the groove width of the flow path groove 8.
- the dimensions of the distribution holes 7 and the distribution grooves 8 may be adjusted, but the distribution plate in contact with the lowermost layer distribution plate 5. Only the six distribution holes 7 may be adjusted in diameter so that all the flow path pressure losses on the upstream side are equal.
- the tournament method as a method for suppressing the blockage of the holes and grooves, it is preferable to increase the hole diameter of the distribution holes 7, the groove width and the groove depth of the distribution grooves 8, and particularly in the direction of the polymer spinning path. It is better to increase the thickness of the distribution plate 6 constituting the distribution groove 8 and to increase the depth of the distribution groove 8 on the upstream side (the measuring plate 9 side), and to the upstream side in the polymer spinning path direction. It is better to increase the groove width of the distribution groove 8 and to increase the hole diameter of the distribution hole 7 toward the measuring plate 9 side. Further, regarding the polymer distribution method on the distribution plate 6, the distribution groove 8 and the distribution hole 7 of the distribution plate 6 may be appropriately arranged according to the desired fiber cross-sectional shape, and the method is not particularly limited to the above method. Absent.
- the method for producing the composite fiber of the present invention may be a known composite spinning machine using the composite base 18 of the present invention.
- the spinning temperature is set to a temperature at which a high melting point or high viscosity polymer mainly exhibits fluidity among two or more types of polymers.
- the temperature indicating the fluidity varies depending on the molecular weight, but the melting point of the polymer is a guideline and may be set at a melting point + 60 ° C. or lower. If it is less than this, the polymer is not thermally decomposed in the spinning head or the spinning pack, and the molecular weight reduction is suppressed, which is preferable.
- the spinning speed varies depending on the physical properties of the polymer and the purpose of the composite fiber, but can be about 500 to 6000 m / min.
- a high molecular weight polymer set to 500 to 2000 m / min, and then stretch at a high magnification.
- the upper limit of the preheating temperature is preferably a temperature at which yarn path disturbance does not occur due to spontaneous elongation of the fiber during the preheating process. For example, in the case of PET having a glass transition temperature around 70 ° C., this preheating temperature is usually set at about 80 to 95 ° C.
- the discharge rate ratio of the polymer of each component discharged from the island component discharge hole 1 and the sea component discharge hole 4 of the present invention is controlled by the discharge amount, the hole diameter, and the number of holes.
- the discharge speed is a value obtained by dividing the discharge flow rate by the cross-sectional area of the island component discharge hole 1 or the sea component discharge hole 4.
- the discharge speed range is the discharge speed of the island component polymer per single hole.
- the ratio (Va / Vb or Vb / Va) is preferably 0.05 to 20, more preferably 0.1 to 10. In this range, since the polymer discharged from the lowermost distribution plate 5 is led as a laminar flow through the discharge introduction hole 11 to the reduction hole 12, the cross-sectional shape is remarkably stabilized and the shape is maintained with high accuracy. be able to.
- the composite polymer flow can be stably formed by setting the melt viscosity ratio of the polymer used in the present invention to less than 2.0.
- the melt viscosity ratio is 2.0 or more, the island component polymer and the sea component polymer become unstable when they merge, and there are cases where uneven thickness of the yarn occurs in the traveling direction of the obtained fiber cross section.
- a pattern is transferred to a thin plate, which is usually used for processing of electric / electronic parts, and fine processing is performed by chemical processing.
- Etching is preferred.
- etching is a processing method that applies a chemical reaction and corrosive action of chemicals such as an etchant to etch a thin plate (dissolution processing / chemical cutting), and masks the required processing shape (necessary)
- the target processed shape can be obtained with very high accuracy by removing the unnecessary portion with a corrosive agent such as an etching solution.
- this processing method does not require consideration to the thermal strain of the workpiece, there is no restriction on the lower limit of the thickness of the workpiece compared to the other processing methods described above, and the present invention can be applied to an extremely thin metal plate.
- the junction grooves 8, the distribution holes 7, and the island component discharge holes 1 can be formed.
- the distribution plate 6 and the lowermost layer distribution plate 5 manufactured by etching can be reduced in thickness per sheet, the effect on the total thickness of the composite base 18 even if a plurality of sheets are stacked. There is almost no need to newly install another pack member in accordance with the composite fiber having a desired cross-sectional shape. In other words, if only the distribution plate 6 and the lowermost layer distribution plate 5 are exchanged, the cross-sectional shape can be changed. Further, as another manufacturing method, it is possible to use a lathe, machining, press, laser processing, or the like, which is a drill processing or metal precision processing used in conventional base manufacturing.
- the thickness of the distribution plate 6 is applicable to the composite die of the present invention in which a plurality of distribution plates are laminated. Need to be considered.
- the fiber obtained by the composite base of the present invention means a fiber in which two or more kinds of polymers are combined, and two or more kinds of polymers are present in the form of a sea island or the like in the fiber cross section.
- the two or more types of polymers referred to in the present invention include the use of two or more types of polymers having different molecular structures such as polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, and polypropylene.
- matting agents such as titanium dioxide, silicon oxide, kaolin, anti-coloring agents, stabilizers, antioxidants, deodorants, flame retardants, yarn friction reducing agents, coloring, as long as the yarn-making stability is not impaired.
- examples include various functional particles such as pigments and surface modifiers, additives such as organic compounds, and different amounts of particles added, different molecular weights, and copolymerization.
- the cross section of the single yarn of the fiber obtained by the composite base 18 of the present invention may be not only a round shape but also a shape other than a round shape such as a triangle or a flat shape or a hollow shape.
- the present invention is an extremely versatile invention, and is not particularly limited by the single yarn fineness of the composite fiber, is not particularly limited by the number of single yarns of the composite fiber, and further, the number of yarns of the composite fiber Is not particularly limited, and may be a single yarn or a multi-yarn of two or more yarns.
- sea-island type composite fibers obtained by the composite die of the present invention are shown in (a), (b), (c) of FIG. 8 and (a), (b), (c), (d) of FIG.
- a sea-island structure (the sea-island structure referred to here is an island portion composed of the island component polymer 13 is composed of the sea component polymer 20).
- the cross-sectional shape of the island portion is not limited, and the cross-sectional shape of the island portion may be configured by one island component discharge hole 1 as shown in FIG. 1 or FIG.
- the cross-sectional shape may be configured by an island component discharge portion 21 in which a plurality of island component discharge holes 1 are gathered.
- a sea-island type composite fiber having a triangular cross section as shown in FIG. 8A can be obtained.
- a hexagonal cross section as shown in FIG. 8 (b) is obtained, and as shown in FIG.
- a sea-island type composite fiber having a square cross section as shown in FIG. 8C can be obtained.
- a sea-island structure (the sea-island structure referred to here is an island portion composed of the island component polymer 13).
- the cross-sectional shape of the island portion is not limited, the cross-sectional shape of the island portion is controlled by the cross-sectional shape of the island component discharge hole 1, and the island portion is determined by the combination of the cross-sectional shapes of the island component discharge hole 1 and the discharge hole 25. The cross-sectional shape is controlled.
- the island component discharge hole 1 has a round shape and the discharge hole 25 has a star shape, or the island component discharge hole 1 has a star shape and the discharge hole 25 has a round shape.
- the shape of the island portion can be changed to a star shape.
- a core-sheath composite fiber is obtained by comprising the island part of sea-island composite fiber by two types of island component polymer 13 (c) and island component polymer 13 (d). Can do.
- the core-sheath composite fiber is configured such that the sheath component covers the core component in a cross section perpendicular to the fiber axis direction of two or more different polymers.
- a third component polymer surrounding the composite core-sheath component polymer flow obtained at the discharge hole 25 of the lower layer plate 37 is used.
- a multi-core sheath fiber can be formed by laminating the distribution plates to be discharged.
- this core-sheath composite fiber is not limited to being excellent in quality and sensitivity when used for clothing, but also from the standpoint of mechanical properties, chemical resistance, and heat resistance. Since it becomes the fiber which has the characteristic which cannot be taken out with a polymer, it can be used effectively also for an industrial material use. In particular, bending fatigue and wear characteristics are improved as compared with conventional products, and it can be suitably used not only for rubber reinforcement applications such as tire cords and tire cap layer materials, but also for fishing nets and agricultural materials, as well as screen rods.
- side-by-side composite fibers can be obtained by configuring the island portion of the sea-island composite fibers with two types of island component polymers.
- a side-by-side composite fiber is a structure in which two or more different polymers are bonded to each other in a cross section perpendicular to the fiber axis direction, and the cross-sectional form is regularly arranged with one or two kinds of intervals. Say fiber.
- the island component discharge hole 1 for discharging the island component polymer (A) 13 and the island component polymer (A) 13 different from the island component polymer (A) 13 in the upper layer plate 29 of the composite base 18 are used.
- the island component discharge holes 4 for discharging 14 may be collected as discharge hole groups, and the discharge hole groups may be arranged adjacent to each other and arranged symmetrically or asymmetrically.
- a side-by-side composite fiber can be obtained by eluting the sea component polymer.
- two or more types of polymers may be laminated together, and it is also preferable to impart three or more types of properties by bonding three or more types of polymers.
- this side-by-side composite fiber a fiber having shrinkage characteristics and dyeing characteristics changed in the cross-sectional direction in the fiber cross-sectional direction can be obtained.
- a polymer that exhibits shrinkage due to moisture absorption is placed on one side, the mesh of the fabric changes due to moisture absorption, so that the fabric has a breathable self-adjusting function and a moisture-permeable waterproof function for clothing.
- the number of islands obtained using the composite base of the present invention it is theoretically possible to make an infinite range from two islands within the space allowed, but as a practically feasible range, 2 to 10,000 islands is a preferred range. As a range for obtaining the superiority of the composite die of the present invention, 100 to 10,000 islands is a more preferable range.
- a hole filling density is 0.5 hole / mm ⁇ 2 > or more. If the hole filling density is 0.5 hole / mm 2 or more, the difference from the conventional composite die technology becomes more clear. In the range examined by the present inventors, the hole packing density was 0.5 to 20 holes / mm 2 . From the viewpoint of the hole packing density, the range in which the superiority of the composite die of the present invention is obtained is preferably 1 to 20 holes / mm 2 .
- the sea-island type composite fiber according to the present invention is a very fine deformed fiber that cannot be obtained by single spinning by eluting the sea component polymer 20, and has a circumscribed fiber diameter of 10 to 1000 nm and a fiber diameter variation. It is possible to produce a long-fiber nanofiber having excellent uniformity with a fiber diameter CV% representing 0 to 30%.
- the long fiber type nanofibers can be suitably used for finishing the aluminum alloy substrate or the glass substrate used for a magnetic recording disk or the like with ultrahigh precision.
- the composite form that can be manufactured by the composite base 18 of the present invention has been described by exemplifying a conventionally known cross-sectional form.
- the cross-sectional form can be arbitrarily controlled. Therefore, a free form can be produced without being restricted by the above form.
- the strength of the composite fiber of the present invention is preferably 2 cN / dtex or more, and is preferably 5 cN / dtex or more in view of mechanical properties required for industrial materials.
- a practical upper limit is 20 cN / dtex.
- the elongation is preferably 2 to 60% for drawn yarn, particularly 2 to 25% in the industrial material field where high strength is required, and 25 to 60% for clothing.
- the conjugate fiber of the present invention can be used in various fiber products such as fiber winding packages, tows, cut fibers, cotton, fiber balls, cords, piles, woven and knitted fabrics, non-woven fabrics, paper, and liquid dispersions.
- FIG. 33 is a schematic cross-sectional view of the composite base used in the first embodiment
- FIG. 34 is a schematic cross-sectional view around the composite base used in the first embodiment, the spin pack, and the cooling device.
- 24 is a partial enlarged cross-sectional view of FIG. 33
- FIG. 29 is a view taken in the direction of arrows YY of FIG. 24
- FIG. 27 is a partial enlarged cross-sectional view of the composite base used in the first embodiment.
- FIG. 25 is a partially enlarged cross-sectional view of the composite base used in the second embodiment
- FIG. 26 is a partially enlarged cross-sectional view of the composite base used in the third embodiment
- FIG. FIG. 30 is a view taken along the line XX
- FIG. 30 is a view taken along the line ZZ in FIG.
- 36 is an intermediate layer plate
- 37 is a lower layer plate
- 38 is an upper layer protruding portion
- 39 is a virtual circumscribed circle
- 46 is a lower surface of the upper layer protruding portion
- 47 is an upper surface of the lower layer plate
- 48 is a merge chamber
- 49 is a virtual inscribed plate.
- Circles and 50 indicate outer peripheral end holes, respectively.
- the composite base 18 used in the first embodiment is mounted on the spin pack 15, is fixed in the spin block 16, and a cooling device 17 is configured immediately below the composite base 18. Therefore, the two or more polymers introduced to the composite base 18 pass through the measuring plate 9, the distribution plate 6, the upper layer plate 29, the middle layer plate 36, and the lower layer plate 37, respectively, and then the base discharge hole 42 of the discharge plate 10. After being discharged from the air, it is cooled by an air flow blown out by the cooling device 17 and applied with an oil agent, and then wound as a multifilament yarn.
- the composite base 18 used in the first embodiment includes a measuring plate 9, a plurality of distribution plates 6, an upper layer plate 29, an intermediate layer plate 36, a lower layer plate 37, and a discharge plate 10 that are sequentially stacked.
- the distribution plate 6, the upper layer plate 29, the middle layer plate 36, and the lower layer plate 37 are preferably formed of thin plates.
- the measuring plate 9 and the distribution plate 6, the upper layer plate 29, the middle layer plate 36, the lower layer plate 37, and the discharge plate 10 are positioned by the positioning pins so that the center position (core) of the spinning pack 18 is aligned, After the lamination, it may be fixed with screws, bolts, etc., or may be metal bonded (diffusion bonded) by thermocompression bonding.
- the distribution plates 6, the distribution plate 6 and the upper layer plate 29, the upper layer plate 29 and the middle layer plate 36, and the middle layer plate 36 and the lower layer plate 37 use thin plates, metal bonding (diffusion bonding) is performed by thermocompression bonding. Is preferred.
- the polymer of each component supplied from the measuring plate 9 passes through the distribution grooves 8 and the distribution holes 7 of the plurality of stacked distribution plates 6, and then is the upper layer plate.
- the outer periphery of the island component polymer is discharged from the island component discharge hole 1 for discharging 29 island component polymers and the sea component discharge hole 4 for discharging the sea component polymer into the joining chamber 48 of the intermediate layer plate 36.
- the sea component polymer surrounds, and a core-sheath sea-island composite polymer flow is formed. Thereafter, the core-sheath sea-island composite polymer flow passes through the discharge holes 25 of the lower layer plate 37, passes through the discharge introduction holes 11 and the reduction holes 12 of the discharge plate 10, and is discharged from the base discharge holes 42.
- the sea component discharge holes 4 are necessary. For example, as shown in FIG. 41, an array that surrounds the six sea component discharge holes 4 from six directions on the basis of one island component discharge hole 1 In this case, three times as many sea component discharge holes 4 as island component discharge holes 1 are required.
- the island component polymers are merged with each other.
- the hole filling density cannot be increased. There is a trade-off between the packing density and the merging of the island component polymers.
- the island component polymer in order to uniformly discharge the island component polymer from all the island component discharge holes 1 arranged in the upper layer plate 29, the island component polymer is formed at the island component discharge hole 1 or upstream thereof. It is necessary to provide a mechanism for uniformly supplying, distributing, and weighing the liquid. Therefore, for example, as shown in FIG. 18, as the measuring mechanism, there is a protrusion 43 around the island component discharge hole 1, and by narrowing the gap, the flow path pressure loss is increased. In this case, the island component discharge holes 1 cannot be disposed closely, and the number of island component discharge holes 1 that can be disposed in the upper layer plate 29 is restricted, so that the hole filling density cannot be increased.
- a radial groove 27 is disposed around the discharge hole 1 and a concentric groove 28 is disposed around the discharge hole 25.
- the island component discharge hole 1 and the discharge hole 25 opposed thereto are provided. Cannot be disposed closely, and the number of island component discharge holes 1 that can be disposed on the upper layer plate 29 is limited, and the hole filling density cannot be increased.
- the plurality of stacked distribution plates 6 have distribution holes 7 and / or for distributing the island component polymer and the sea component polymer, respectively.
- the distribution groove 8 is formed, and the upper layer plate 29 is arranged with one or more sea component discharge holes 4 communicating with the distribution holes 7 or the distribution grooves 8 and more islands than the number of the sea component discharge holes 4.
- the component discharge hole 1 is formed, the middle plate 36 is formed with a merge chamber 48 communicating with the island component discharge hole 1 and the sea component discharge hole 4, and the lower layer plate 37 is discharged with the merge chamber 48.
- a hole 25 is formed at a position facing the island component discharge hole 1.
- the island component polymer is discharged into the merge chamber 48 where the sea component polymer is filled around all the island component discharge holes 1, so that the outer periphery of the island component polymer is immediately after the discharge.
- the sea component polymer surrounds and forms a core-sheath type sea-island composite polymer flow, it is guided to the discharge hole 25, so that it is difficult for the island component polymers to merge.
- the flow path pressure loss of a plurality of polymer flow paths from the distribution plate 6 at the upper end in the polymer spinning path direction to the island component discharge holes 1 of the upper layer board 29 is made equal to be arranged on the upper layer board 29. It is possible to uniformly discharge the island component polymer from all the island component discharge holes 1 and suppress the merging of the island component polymers. As a result, a uniform core-sheath sea-island composite polymer flow can be formed, and a highly accurate fiber cross-sectional form can be formed.
- an etching process that is usually used for processing electric / electronic parts is suitable.
- the distance between the adjacent island component discharge holes 1 can be made closer, and also in the lower layer plate 37, the distance between the adjacent discharge holes 25 can be made closer. It is possible to increase the packing density.
- the upper layer plate 29 is provided with sea component discharge holes 4 around the island component discharge holes 1 in which hole groups are formed.
- the island component discharge holes 1 can be arranged densely, and the hole filling density can be increased.
- the island component discharge holes 1 forming the hole group are preferably arranged with periodicity, but may be arranged non-periodically.
- the sea component discharge holes 4 disposed around the island component discharge holes 1 are preferably disposed so as to surround the entire circumference of the hole group, but this is not a limitation.
- the sea component discharge holes 4 may be provided only on two opposing side surfaces.
- the sea component discharge is performed in the region where the island component discharge holes 1 arranged in the upper layer plate 29 form a hole group (in FIG. 30, a hole group region of 5 rows ⁇ 4 columns).
- the holes 4 may be provided.
- the hole filling density is slightly lower than the hole arrangement of the island component discharge holes 1 as shown in FIG. 29, but the sea component discharge holes 4 are provided, so that the sea area is formed in the center of the hole group region.
- the distribution hole 6 and the distribution plate 6 in which the distribution groove 8 is formed are provided. This is possible by stacking and forming a flow path communicating with the sea component discharge hole 4 in the region of the island component discharge hole 1. Since the composite base uses a plurality of distribution plates 6 to form the flow path, the degree of freedom of the flow path is high, and the necessary number of island component discharge holes 1 and sea component discharge holes 4 are arranged at necessary positions. Can be set. Therefore, as described above, the arrangement of the island component discharge holes 1 and the sea component discharge holes 4 may be appropriately determined according to the polymer physical properties, the spinning conditions, and the like.
- the upper layer plate 29 and the middle layer plate 36 are formed of the same thin plate. Therefore, by previously forming the merge chamber 48, the island component discharge holes 1, and the sea component discharge holes 4 in one thin plate by etching, the number of thin plates to be stacked is reduced, and as a result, the composite base is manufactured. Costs can be reduced. However, since the processing accuracy of the holes and grooves formed in the thin plate may deteriorate during the etching processing, it is preferable to confirm the processing accuracy in advance and determine the plate thickness, hole diameter, groove width, and the like. Although omitted in the specification, the middle layer plate 36 and the lower layer plate 37 may be composed of the same thin plate, and in this case, has the same characteristics as described above.
- the third embodiment shown in FIGS. 26 and 28 will be described.
- the third embodiment has an upper layer protruding portion 38 that protrudes downstream from the lower surface of the upper layer plate 29 in the polymer spinning path direction around the island component discharge hole 1.
- a discharge hole 25 having a virtual circumscribed circle 39 larger than the outer peripheral shape of the portion 38 and a virtual inscribed circle 49 smaller than the outer peripheral shape of the upper layer protruding portion 38 is formed, and the lower surface 46 of the upper layer protruding portion 38 is formed as a lower layer plate
- An outer end hole 50 is formed around the end of the upper layer protrusion 38 and is disposed on the same surface as or below the upper surface 47 of 37 and in the direction of the polymer spinning path.
- the island component polymer is discharged from the discharge hole 25 toward the downstream side in the polymer spinning path direction, and the sea component polymer is spun from the outer end hole 50 around the end of the upper layer protruding portion 38. It is discharged toward the downstream side in the exit path direction, and then merges so that the sea component polymer surrounds the outer periphery of the island component polymer, forming a core-sheath composite polymer stream, and downstream in the polymer spinning path direction. Led.
- a highly accurate cross-sectional shape of the island component polymer can be formed, but further, by adopting the third embodiment, the island component polymer, the sea component polymer, and the core-sheath composite polymer flow Forming all in the same direction, avoiding unnecessary collision of polymer flow and suppressing polymer turbulence, form a more accurate island component polymer cross-sectional shape and maintain this cross-sectional shape with high dimensional stability can do.
- the strength of the distribution plate can be improved by configuring the thin plate in multiple layers and crimping.
- the lower surface 46 of the upper layer protrusion 38 and the lower layer plate By joining the upper surface 47 of 37 on the same surface, the strength of the thin plate can be further improved, bending and the like can be suppressed, and poor polymer distribution due to bending can be suppressed.
- the cross section of the island component discharge hole 1 in the direction perpendicular to the polymer spinning path direction is round, and the cross section in the direction perpendicular to the polymer spinning path direction of the discharge hole 25 is different.
- An island component cross section can be made into an irregular shape. For example, as shown in FIG.
- the obtained island component cross section has a cross shape.
- the cross-sectional shapes of the island component discharge holes 1 and the discharge holes 25 may be appropriately determined in accordance with the desired island component cross-sectional shape. Although omitted in the specification, the island component discharge holes 1 may be formed in a cross shape and the discharge holes 25 may be formed in a round shape. In this case, the same features as described above are provided.
- the manufacturing method of the conjugate fiber in the first, second, and third embodiments includes the measuring plate 9, the distribution plate 6, the upper layer plate 29, the middle layer plate 36, the lower layer plate 37, and the discharge.
- a core-sheath composite fiber can be obtained by performing melt spinning using the composite base 18 composed of the plate 10.
- FIG. 19 is a partially enlarged plan view of a composite base used in another embodiment of the present invention.
- the composite base 18 used in another embodiment of the present invention is configured by laminating a measuring plate 9, at least one distribution plate 6, a lowermost layer distribution plate 5, and a discharge plate 10 in order.
- the distribution plate 6 and the lowermost layer distribution plate 5 are preferably formed of thin plates. Therefore, as shown in FIG. 19, the polymer of each component supplied from the measuring plate 9 passes through the distribution groove 8 and the distribution hole 7 of the distribution plate 6 laminated at least one, and then the lowermost layer distribution plate.
- the polymers of the respective components merge to form a composite polymer flow.
- the composite polymer flow passes through the discharge introduction hole 11 and the reduction hole 12 of the discharge plate 10 and is discharged from the base discharge hole 42.
- the interval between the island component discharge holes 1 must be as close as possible, but in this case, the island component polymers merge between adjacent island component discharge holes. .
- the island component discharge hole 1 is surrounded by the sea component discharge hole 4 for discharging the sea component polymer.
- the distance between the island component discharge holes becomes too large to increase the hole filling density. In other words, there is a trade-off relationship between the hole packing density and the prevention of merging of the island component polymers.
- the lowermost layer distribution plate 5 includes two island component discharge holes that are adjacent to each other at the shortest center point distance, and two common outer tangent lines of the two island component discharge holes.
- Each discharge hole is arranged so that at least a part of the sea component discharge hole exists in the enclosed region.
- the island component discharge hole 1 adjacent to the reference island component discharge hole 1 at the shortest center distance is referred to as an island component discharge hole 53a.
- the sea component discharge hole 1 is located in a region surrounded by the reference island component discharge hole 1, the island component discharge hole 53a, and the two common circumscribed lines 54 of the two island component discharge holes 1 and 53a.
- Each discharge hole is arranged so that at least a part of 4 is present.
- both the island component polymer and the sea component polymer are simultaneously discharged toward the discharge introduction hole 11 on the downstream side of the lowermost layer distribution plate 5, As each polymer widens in a direction perpendicular to the direction of the polymer spinning path, the polymer flows along the direction of the polymer spinning path, and the two polymers merge to form a composite polymer stream. At that time, in order to prevent the island component polymer discharged from the reference island component discharge hole 1 and the island component discharge hole 53a from joining, a sea component polymer that physically divides the island component polymer is interposed. Is effective.
- a channel space connecting the reference island component discharge hole 1 and the island component discharge hole 53a (in this case, the reference island component discharge hole 1, the island component discharge hole 53a, and the two island component discharge holes 1, 53a).
- the reference island component discharge hole 1 and the island component discharge hole 53a in this case, the reference island component discharge hole 1, the island component discharge hole 53a, and the two island component discharge holes 1, 53a.
- the island component discharge holes 1 are often formed with one or two periods.
- the island component discharge holes 1 are formed in two types of cycles. One is the distance between the center points of the reference island component discharge hole 1 and the island component discharge hole 53a, which is the shorter cycle. This shorter cycle is the aforementioned “shortest distance between center points”. The other is the distance between the center points of the reference island component discharge hole 1 and the island component discharge hole 53b, which is the longer cycle.
- the distance between the center points of the reference island component discharge holes 1 and the island component discharge holes 53a, the reference island component discharge holes 1 and the island component discharge holes is the same.
- the repetition directions of the two types of cycles are orthogonal, but they may not be orthogonal.
- the island component discharge holes 1 are formed with two types of cycles, (i) a reference island component discharge hole 1 and an island component discharge hole 53a adjacent to each other with a shorter cycle, and the two island component discharge holes 1 , 53a and at least a part of the sea component discharge hole 4 in the region surrounded by the two common outer tangent lines 54, and (ii) a reference island component discharge hole adjacent in a longer cycle 1. Arranged so that at least a part of the sea component discharge hole 4 exists in a region surrounded by the island component discharge holes 53b and the two common outer tangent lines 54 of the two island component discharge holes 1 and 53b. It is preferable to do.
- the shortest distance between the center points that is, the shortest distance between the center points, that is, the longer one, so that the island component polymers discharged from the two adjacent island component discharge holes 1 and 53a in the shorter cycle can be easily merged.
- the island component polymers discharged from the two adjacent island component discharge holes 1 and 53b with a period of are easily joined together. Therefore, the island component is arranged by disposing at least part of the sea component discharge hole 4 for supplying the sea component polymer also in the channel space connecting the reference island component discharge hole 1 and the island component discharge hole 53b. Merge of polymers can be prevented.
- the lowermost layer distribution plate 5 has at least a region surrounded by two adjacent island component discharge holes and two common circumscribing lines of the two island component discharge holes. It is preferable that at least a part of each of the two sea component discharge holes is present, and the two sea component discharge holes are arranged across a line segment connecting the centers of the two adjacent island component discharge holes. Specifically, as shown in FIG. 19, two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, or reference island component discharge hole 1 and island component discharge hole 53b).
- each of the at least two sea component discharge holes 4 and two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, and The two sea component discharge holes 4 are arranged across a line segment A connecting the centers of the reference island component discharge hole 1 and the island component discharge hole 53b).
- the two sea component discharge holes 4 can be arranged at the closest positions, so that the hole filling density is increased to the limit.
- positioning of the two sea component discharge holes 4 is not specifically limited, It is preferable to arrange
- the island component polymer discharged and widened from the island component discharge hole 1 is rejected to widen by the sea component polymer discharged from the two sea component discharge holes 4 and has a certain shape. It is preferable that the discharge holes 4 are arranged so that the line segment A is an axis of line symmetry, because the shape of the island component polymer after widening becomes a clean target shape having the line segment A as an axis of line symmetry.
- the lowermost layer distribution plate 5 according to another embodiment of the present invention shown in FIG. 40 has a plurality of island component discharge holes 1 for discharging the island component polymers to be merged in order to intentionally merge the island component polymers. May be collected to form a hole group (aggregate). Further, in order to intentionally join the sea component polymers, a plurality of sea component discharge holes 4 for discharging the sea component polymers to be joined may be collected to form a hole group (aggregate). In this case, among the island component discharge holes 1 constituting one hole group, an area surrounded by a line connecting the outermost island component discharge holes 1 so as to be in contact with each other in sequence is an island component discharge unit.
- sea component discharge holes 4 constituting one hole group
- a region surrounded by a line connecting the outermost sea component discharge holes 4 so as to be in contact with each other sequentially is defined as a sea component discharge portion.
- the hole group of the island component discharge holes 1 is the island component discharge hole portion 21
- the hole group of the island component discharge holes 53 a is the island component discharge hole portion 22 a
- the hole group of the island component discharge holes 53 b is the island component discharge hole portion 22 b
- a group of sea component discharge holes 4 is defined as a sea component discharge hole portion 24.
- the island component discharge hole 1, the island component discharge hole 53a, the island component discharge hole 53b, and the sea component discharge hole 4 in the description so far are designated as islands. What is necessary is just to read as the component discharge part 21, the island component discharge part 22a, the island component discharge part 22b, and the sea component discharge part 24.
- the island component discharge part is constituted by one island component discharge hole, and the inside of the sea component discharge part is one sea component discharge. It is a lowermost layer distribution plate composed of holes.
- FIG. 19 the island component discharge part is constituted by one island component discharge hole, and the inside of the sea component discharge part is one sea component discharge. It is a lowermost layer distribution plate composed of holes.
- the island component polymer discharged from the island component discharge hole 1 (2a, 2b) in the island component discharge portion 21 (22a, 22b) or the sea component discharge hole in the sea component discharge portion 24 is used.
- the sea component polymers discharged from No. 4 are merged immediately after the discharge, but are originally intended to be merged, so there is no problem even if they merge.
- the minimum gap DA between the two adjacent island component discharge holes 1 and the minimum gap DB between the two sea component discharge holes 4 are DB / DA ⁇ 0.7.
- the merging of the island component polymers can be stably prevented.
- DB / DA> 0.7 merging of island component polymers may occur.
- the lower limit of DB / DA is not particularly defined, and the smaller the smaller, the more the island component polymers can be prevented from joining, but the minimum gap DA becomes larger and the hole filling density becomes smaller. And the lower limit can be set.
- the island component discharge holes 1 and the sea component discharge holes 4 may be disposed on the entire surface, or as shown in FIG.
- the discharge holes 1 and the sea component discharge holes 4 may be densely arranged (portion surrounded by a virtual circle 52 in FIG. 39).
- the island component discharge in the virtual circle 52 is performed.
- the arrangement of the holes 1 and the sea component discharge holes 4 may be the same for all virtual circles 52 or may be different for each virtual circle 52. Furthermore, as shown in FIG.
- the arrangement of the island component discharge holes 1 and the sea component discharge holes 4 may be partially different in one virtual circle 52 (the right side in the virtual circle 52 in FIG. 39). Half and left half). Also in this case, the island component discharge holes 1 and the sea component discharge holes 4 in the individual portions may be arranged as described so far.
- the composite base 18 of another embodiment of the present invention can easily distribute the sea component polymer in the fiber cross-sectional direction by using the lowermost distribution plate 5 and the distribution groove 8 of the distribution plate 6 immediately above the lower distribution plate 5. Therefore, the sea component discharge part 24 or the sea component discharge hole 4 can be easily arranged in a very narrow region between the two adjacent island component discharge parts 21 or the island component discharge holes 1. As a result, the hole filling density can be increased by bringing two adjacent island component discharge portions 21 or island component discharge holes 1 close to each other. Moreover, since the arrangement pattern of the island component discharge holes 1 can be easily changed by adding and overlapping the distribution plate 6 directly below the lowermost layer distribution plate 5, the time and cost associated with the design change are reduced. There are also advantages.
- FIG. 35 is a fifth embodiment
- FIG. 36 is a partially enlarged plan view of a composite base used in the sixth embodiment
- FIG. 37 is a schematic partial sectional view of the lowermost layer distribution plate. .
- the fifth embodiment shown in FIG. 35 includes two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, and reference island component discharge hole 1 and island component discharge hole 53b).
- the sea component discharge hole 4 is disposed so as to completely block the flow path space connected by the.
- the sea component polymer since the sea component polymer is present in a path space where the island component polymers are expected to merge with each other, the island component polymers can be further prevented from joining.
- the distance between the adjacent island component discharge holes 1 cannot be made smaller than the size of the sea component discharge holes 4.
- the cross-sectional shape of the sea component discharge hole 4 is different from the round shape.
- the sea component discharge hole 4 can be arranged even in a place where the hole shape cannot be arranged unless the hole diameter is reduced in the round shape, the sea component polymer can be locally discharged, and the merging of the island component polymers can be further prevented.
- the adjacent island component discharge holes 1 can be brought close to the limit, and the hole filling density can be increased.
- a distribution hole 7 having a round cross-sectional shape is connected to the upstream side of the sea component discharge hole 4 so as to communicate with the distribution hole 7 directly above.
- the sea component polymer It is preferable to discharge the sea component polymer through the sea component discharge hole 4 after ensuring the meterability of the sea component polymer. Moreover, by controlling the cross-sectional shape of the sea component discharge hole 4, the island component polymer discharged from the island component discharge hole 1 and widened can be controlled to have an arbitrary cross-sectional shape.
- the sea component discharge hole 4 is a circumferential slit surrounding the island component discharge hole 1.
- the sea component polymers can be further prevented from joining.
- a distribution hole 7 having a round cross-sectional shape is arranged in communication with the upstream side of the sea component discharge hole 4 so that the sea component polymer is disposed in the distribution hole 7 directly above. It is preferable to discharge the sea component polymer through the sea component discharge hole 4 after securing the measurement property.
- the island-component composite fiber is formed by using the lowermost layer distribution plate in which the island component discharge portion is composed of one island component discharge hole and the sea component discharge portion is composed of one sea component discharge hole. Spinning was performed, and whether or not the island component polymers were merged was determined as described below.
- the fiber diameter CV% coefficient of variation
- Fiber diameter variation (CV%) (fiber diameter standard deviation / average fiber diameter) ⁇ 100 (3) Deformity and irregularity variation (CV%) The cross section of the multifilament is photographed by the same method as the fiber diameter and fiber diameter variation described above, and the diameter of the perfect circle circumscribing the cut surface is defined as the circumscribed circle diameter (fiber diameter) from the image.
- the degree of irregularity the circumscribed circle diameter ⁇ the inscribed circle diameter was obtained up to the third decimal point, and the figure rounded to the third decimal place was obtained as the irregularity.
- the inscribed circle refers to the broken line 19 in FIG.
- Variation in irregularities (standard deviation of irregularities / average value of irregularities) x 100 (%) (4) Evaluation of cross-sectional shape of ultrafine fiber Using the same method as the fiber diameter and fiber diameter variation described above, a cross section of a multifilament is photographed, and a line segment having two end points in the cross-sectional outline is straight from the image. The number of parts that are The cross section of 150 multifilaments randomly extracted from the target image in the same image was evaluated. About 150 multifilaments, the number of straight portions was counted, and the total sum was divided by the number of multifilaments to calculate the number of straight portions per multifilament, and rounded off to the second decimal place. Further, a line extended as 22 in FIG.
- 8A is drawn from the straight line portion existing in the outline of the cross section.
- the number of intersections of two adjacent lines is counted, the angle is measured, the total of the angles is calculated by dividing by the number of intersections, and the value rounded to the nearest decimal point is 1
- the angle of book intersection was performed on 150 multifilaments, and the simple number average was taken as the angle of intersection.
- Fineness Sea-island type composite fibers are made into a circular knitting, and 99% or more of the readily soluble components are dissolved and removed by immersing them in a 3% by weight aqueous solution of sodium hydroxide (80 ° C. bath ratio 1: 100), and then the knitting is unwound. Then, a multifilament made of ultrafine fibers was extracted, the weight of 1 m was measured, and the fineness was calculated by multiplying by 10,000. This was repeated 10 times, and the value obtained by rounding off the second decimal place of the simple average value was defined as the fineness.
- Insulation of polymer of island component Multifilament made of ultrafine fiber is embedded in epoxy resin, frozen with Reichert FC-4E cryosectioning system, and Reichert-Nissei ultracut N equipped with diamond knife (ultramicrotome) Then, the cut surface was photographed with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation at a magnification of 5000 times.
- SEM scanning electron microscope
- WINROOF image processing software
- a sea-island composite polymer stream was discharged from the hole.
- 1000 island component discharge holes are perforated at regular intervals for one discharge introduction hole for the island component polymer.
- the sea-island ratio was 50/50, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and unstretched with 150 dtex-15 filament (single hole discharge rate 2.25 g / min) Fiber was collected.
- the wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C and 130 ° C to form a sea-island composite fiber of 50 dtex-15 filaments, and 99% or more of sea components are dissolved by the method described above. 15,000 multifilaments were collected.
- the distribution plate in which the distribution holes are perforated and the distribution plate in which the distribution grooves are perforated are alternately laminated, and the lowermost layer as shown in FIG. Distribution plates are stacked.
- the distribution plate is perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum hole pitch of 0.4 mm.
- the radius R2 is 0.8 mm
- the radius R4 of the virtual circumference C4 is 0.693 mm
- the holes are drilled so as to satisfy the condition (2).
- the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 4.6%, the degree of deformity is 1.9, and the shape is irregular. The variation was 4.5%, and the fiber diameter of this multifilament was 537 nm.
- Example 2 As shown in FIG. 2, the island component polymer is formed using the same composite die as in Example 1 except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate is changed to the condition (2). The ratio was larger than that of Example 1 (sea / island ratio was 20/80). Otherwise, spinning was performed under the same polymer, equivalent fineness and spinning conditions as in Example 1, and 13,500 multifilaments were collected.
- the composite base used in Example 2 has an island component discharge hole and a sea component discharge hole having a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line.
- a hole is drilled with a radius R2 of C2 of 0.8 mm and a radius R4 of the virtual circumferential line C4 of 0.8 mm.
- the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 5.9%, the degree of deformity is 1.84, and the shape is irregular.
- Example 3 As shown in FIG. 3, the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed to the condition (2), and the sea island ratio 15000 multifilaments were collected by spinning under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was 20/80.
- the composite base used in Example 3 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line.
- the C2 radius R2 is 0.8 mm
- the virtual circumference C4 has a radius R4 of 0.693 mm.
- the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.23, The irregularity variation was 3.9%, and the fiber diameter of this multifilament was 488 nm.
- Example 4 As shown in FIG.
- Example 4 the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed to the condition (2).
- the sample was spun under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was changed to 30/70, and 13,000 multifilaments were collected.
- the composite base used in Example 4 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line.
- the C2 has a radius R2 of 0.894 mm
- the imaginary circumferential line C4 has a radius R4 of 0.8 mm.
- the island component has a square cross section (angle of 90 ° at the four straight portions), there is no merging of the island component polymers, the fiber diameter variation is 5.3%, the degree of deformity is 1.71, and the shape is irregular. The degree of variation was 5.6%, and the fiber diameter of this multifilament was 868 nm.
- Example 1 As shown in FIG. 9, except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed, the same composite base as in Example 1 was used, and the same polymer, sea island ratio, Multifilaments were collected by spinning at the same fineness and spinning conditions.
- three sea component discharge holes are equally arranged at a central angle of 120 degrees on the virtual circumferential line C1, and three sea component discharges are performed on the virtual circumferential line C2.
- the holes are equally divided at a central angle of 120 degrees
- the three island component discharge holes are equally divided at a central angle of 120 degrees on the virtual circumference C4
- the phase angle between the discharge holes disposed at C1 and C2 Is arranged at 60 degrees and the phase angle between the discharge holes arranged at C1 and C4 is 30 degrees.
- the diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm
- the radius R1 of the virtual circumferential line C1 is 0.4 mm
- the radius R2 of the virtual circumferential line C2 is 0.8 mm
- the radius R4 of C4 is perforated at 0.4 mm
- R4 is out of the range of the formula (1).
- Table 1 the island component polymer merged, and a multifilament having a triangular cross section could not be obtained.
- Example 10 the same composite base as in Example 2 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 2 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
- each sea component discharge hole is equally arranged at a central angle of 90 degrees on the virtual circumferential line C1, and eight sea component discharges are performed on the virtual circumferential line C2.
- the four island component discharge holes are equally divided at a central angle of 90 degrees on the virtual circumferential line C4, and the phase angle between the discharge holes arranged at C1 and C2 is 26.6 degrees.
- the phase angle between the ejection holes arranged at C4 is arranged at 45 degrees.
- the diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm
- the radius R1 of the virtual circumferential line C1 is 0.4 mm
- the radius R2 of the virtual circumferential line C2 is 0.894 mm
- the virtual circumferential line C4 has a radius R4 of 0.566 mm
- R4 is out of the range of equation (1).
- Table 1 the island component polymer was merged, the fiber diameter variation was 26%, and the irregularity variation was 27%, and a multifilament having a uniform square cross section could not be obtained.
- the hole arrangement in FIG. 11 is devised by the present inventors so that the island component has a parallelogram-shaped cross section as a deformation pattern of a square cross section.
- the diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm
- the radius R1 of the virtual circumferential line C1 is 0.4 mm
- the radius R2 of the virtual circumferential line C2 is 0.566 mm
- the virtual circumferential line C4 A radius R4 is drilled at 0.8 mm, and R4 is out of the range of the formula (1).
- Table 1 the island component polymer merged, and a multifilament having a parallelogram cross section could not be obtained.
- [Comparative Example 4] As shown in FIG. 12, the same composite base as in Example 3 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 3 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
- the diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm
- the radius R1 of the virtual circumferential line C1 is 0.4 mm
- the radius R2 of the virtual circumferential line C2 is 0.693 mm
- the virtual circumferential line C4 has a radius R4 of 0.8 mm
- R4 is out of the range of equation (1).
- the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.22, Although the irregularity variation was 4.2%, the fiber diameter was 1.4 ⁇ m, and nano-order multifilaments could not be obtained.
- PET Polyethylene terephthalate
- PET copolymerized as 5.0 mol% 5-sodium sulfoisophthalic acid having an intrinsic viscosity [ ⁇ ] 0.58 as a sea component polymer
- Copolymerized PET was melted separately at 285 ° C., weighed, and poured into a spin pack incorporating the composite die shown in FIG. 33, and a core-sheath sea-island composite polymer flow was discharged from the die discharge hole.
- 1800 island component discharge holes are formed at equal intervals for one discharge introduction hole for the island component polymer.
- the composite ratio of the sea / island component was 30/70, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and 150 dtex-15 filament (single hole discharge amount 2.25 g / min) undrawn fiber was collected.
- the wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 50 dtex-15 filaments. Multifilaments made of ultrafine fibers were collected.
- the composite base used in Reference Example 1 is bifurcated by alternately stacking a distribution plate with a distribution hole and a distribution plate with a distribution groove.
- a tournament type flow path is formed, and an upper layer plate, a middle layer plate, and a lower layer plate are sequentially laminated on the downstream side thereof.
- These plates are perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum inter-hole pitch of 0.4 mm.
- the distribution groove perforated in one distribution plate is made equal in length so that the pressure loss of the polymer flow path from the distribution hole at the upper end to the island component discharge hole becomes uniform. .
- an upper layer protrusion is formed on the upper layer plate, and a composite base having an outer end hole for supplying a sea component polymer around the end of the upper layer protrusion is used.
- Sea-island type composite fibers were produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions.
- the composite base used in Reference Example 3 has the island component discharge holes drilled in a round shape and the discharge holes in a cross shape.
- a part of the upper surface of the plate is crimped and fixed by diffusion bonding, and the sea component polymer is supplied from the outer end hole of the non-crimped part.
- Table 2 at the start of spinning and after 72 hours had passed, there was no merging of island component polymers, and the resulting island component cross-section became a cross shape.
- the fiber diameter variation was 7.2% at the start of spinning and 7.3% after 72 hours.
- the lowermost layer distribution plate of the composite base was configured as shown in FIG.
- the island component discharge holes 1 had 1200 holes, a hole packing density of 2.0 holes / mm 2 , a diameter of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.45 mm.
- Two adjacent island component discharge holes 1 reference island component discharge hole 1 and island component discharge hole 53a in FIG.
- the island component polymer did not merge at the start of spinning and after 72 hours had passed.
- the lowermost distribution plate of the composite base was configured as shown in FIG.
- the island component discharge holes 1 had 1020 holes, a hole filling density of 1.7 holes / mm 2 , a diameter ⁇ of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.5 mm.
- Two adjacent island component discharge holes 1 reference island component discharge hole 1 and island component discharge hole 53a, reference island component discharge hole 1 and island component discharge hole 53b in FIG. 35
- One sea component discharge hole 4 is provided so as to completely block the region surrounded by the two common outer tangents 54 of the hole 1.
- the diameter of the sea component discharge hole was ⁇ 0.2 mm.
- the lowermost distribution plate of the composite base was configured as shown in FIG.
- the island component discharge holes 1 had 900 holes, a hole filling density of 1.5 holes / mm 2 , a diameter of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.55 mm.
- the diameter of the sea component discharge hole was ⁇ 0.2 mm. A part of the sea component discharge hole 4 did not exist in a region surrounded by the two adjacent island component discharge holes 1 and the two common outer tangent lines 54 of the two island component discharge holes.
- the present invention is not limited to a composite die used for a general solution spinning method, but can be applied to a melt blow method and a spun bond method, and also to a die used for a wet spinning method and a dry and wet spinning method.
- the application range is not limited to these.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Multicomponent Fibers (AREA)
Abstract
Provided is a composite spinneret for the manufacture of islands-in-the-sea composite fibers, whereby the island component polymer streams can be prevented from converging while the hole packing density of the extrusion holes for the island component polymer is expanded, and whereby various fiber cross sections, and particularly heteromorphic cross sections, can be formed with high accuracy, while maintaining high dimensional stability of the cross section. The present invention provides a composite spinneret for extruding composite polymer streams composed of an island component polymer and a sea component polymer, the composite spinneret being characterized by being composed of one or more distribution plates in which are formed distribution holes and distribution grooves for distributing the polymer components; and a lowermost layer distribution plate positioned to the downstream side of the distribution plate in the direction of the polymer spinning path, and having formed therein a plurality of island component extrusion holes and a plurality of sea component extrusion holes. The present invention is also characterized in that some of the sea component extrusion holes are arranged on a virtual circular line (C1) of radius (R1) centered on the island component extrusion holes, some of the sea component extrusion holes are arranged on a virtual circular line (C2) of radius (R2), and some of the island component extrusion holes are arranged on a virtual circular line (C4) of radius (R4) according to a predetermined arrangement while satisfying the expression (1) R2≥R4≥√3×R1.
Description
本発明は、複合口金および複合繊維の製造方法に関する。
The present invention relates to a composite die and a method for producing a composite fiber.
ポリエステルやポリアミドなどの熱可塑性ポリマーを用いた繊維は、力学特性や寸法安定性に優れるため、用途が多様化し、様々な機能性を付与した繊維が数多く開発されるようになった。
Fibers using thermoplastic polymers such as polyester and polyamide are excellent in mechanical properties and dimensional stability, so their uses have diversified and many fibers with various functionalities have been developed.
例えば、衣料用途では、ソフトな風合い等を付与する狙いで単糸細繊度化・多フィラメント化や、吸水・速乾性の向上や光沢感を変更する等の狙いで単糸異形断面化、また、鮮明性に優れた染色の実現等の新たな機能性付与の狙いでポリマーを改質する等の改良が行われている。また、産業資材用途では、同様に単糸細繊度化・多フィラメント化や単糸異形断面化の他、高強度化、高弾性化や、耐候性、難燃性等の新たな機能性付与を狙ったポリマーの改質等の改良が行われている。さらに、上記改良に加えて、2種類以上のポリマーを組み合わせることによって、単一成分のポリマーでは不十分な性能を補完したり、また、全く新しい機能を付与する複合繊維の開発も盛んに行われている。
For example, in apparel applications, single yarn fine cross-section with the aim of giving fine texture, soft filament, etc., improving water absorption, quick drying, changing glossiness, etc. Improvements such as polymer modification have been made with the aim of imparting new functionality such as realization of dyeing with excellent sharpness. For industrial materials, in addition to making single yarn finer, multifilament, and single yarn irregular cross-section, new functionalities such as high strength, high elasticity, weather resistance, flame resistance, etc. Improvements such as targeted polymer modifications have been made. In addition to the above improvements, composite fibers that combine two or more polymers to complement performance that is insufficient with a single component polymer or that give a completely new function are being actively developed. ing.
この複合繊維には、複合口金を用いて得られる芯鞘型、サイドバイサイド型、海島型繊維と、ポリマー同士を溶融混練することで得られるアロイ型がある。芯鞘型は、芯成分を鞘成分が被覆することで、単独繊維では達成されない風合い、嵩高性などといった感性的効果、また、強度、弾性率、耐摩耗性などといった力学特性の付与が可能となる。また、サイドバイサイド型では、単独繊維では不可能であった捲縮性を発現させ、ストレッチ性等を付与することが可能となる。
The composite fiber includes a core-sheath type, a side-by-side type, and a sea-island type fiber obtained by using a composite die, and an alloy type obtained by melt-kneading polymers. In the core-sheath type, the sheath component coats the core component, so that it is possible to impart sensibility effects such as texture and bulkiness that cannot be achieved with a single fiber, and mechanical properties such as strength, elastic modulus, and wear resistance. Become. Further, in the side-by-side type, it is possible to express crimpability, which is impossible with a single fiber, and to impart stretchability and the like.
そして、海島型では、溶融紡糸した後に易溶出成分(海成分)を溶出することにより、難溶出成分(島成分)だけが残存し、単繊維の糸径がナノオーダーの極細繊維を得ることが可能となる。このような極細繊維になると、衣料用途では、一般の繊維では得ることができない柔軟なタッチやきめ細やかさが発現し、人工皮革や新感触テキスタイル等に適用でき、また、繊維間隔が緻密となることから、高密度織物として、防風性、撥水性が必要とされるスポーツ衣料用途にも展開できる。また、産業資材用途では、比表面積が増大し、塵埃捕集性が高まることによる高性能フィルタ等への適用や、また、極細繊維が微細な溝に入りこみ、汚れを拭き取ることによる精密機器などのワイピングクロスや、精密研磨布等にも適用が可能となる。また、芯鞘型は、芯成分を鞘成分が被覆することで、単独繊維では達成されない風合い、嵩高性などといった感性的効果、また、強度、弾性率、耐摩耗性などといった力学特性の付与が可能となる。また、サイドバイサイド型では、単独繊維では不可能であった捲縮性を発現させ、ストレッチ性等を付与することが可能となる。
And in the sea-island type, by eluting the easily-eluting component (sea component) after melt spinning, only the difficult-to-elute component (island component) remains, and it is possible to obtain ultrafine fibers with a single fiber diameter of nano-order. It becomes possible. When it becomes such an extra fine fiber, in the use for clothing, a soft touch and fineness that cannot be obtained with ordinary fibers are expressed, and it can be applied to artificial leather, new touch textiles, etc., and the fiber spacing becomes dense. Therefore, it can be developed as a high-density woven fabric for sports clothing that requires windproof and water repellency. In industrial material applications, it can be applied to high-performance filters, etc., because the specific surface area is increased and dust collection is improved, and precision equipment is used by wiping off dirt by inserting ultrafine fibers into fine grooves. It can also be applied to wiping cloths, precision polishing cloths, and the like. In addition, the core-sheath type has a core component covered with a sheath component, so that it can provide a sensory effect such as a texture and bulkiness that cannot be achieved with a single fiber, and mechanical properties such as strength, elastic modulus, and wear resistance. It becomes possible. Further, in the side-by-side type, it is possible to express crimpability, which is impossible with a single fiber, and to impart stretchability and the like.
なお、複合口金により複合繊維を製造する手法を、一般的に、複合紡糸法と言い、ポリマー同士の溶融混練にて製造する手法を、ポリマーアロイ法と言う。上述のような極細繊維を製造するには、ポリマーアロイ法でも可能であるが、繊維径の制御には限界があり、均一、均質な極細繊維を得るのが困難である。それに対して、複合紡糸法は、複合口金で複合ポリマー流を精密に制御し、特に、糸の走行方向において高精度な糸断面形態を均一、均質に形成できる点においては、ポリマーアロイ法よりも優位性が高いと考えられている。当然のことながら、この複合紡糸法における複合口金技術が、安定的に糸断面形態を決定する上で極めて重要であり、従来から、様々な提案が行われている。
In addition, the method of manufacturing a composite fiber with a composite die is generally called a composite spinning method, and the method of manufacturing by melt-kneading polymers is called a polymer alloy method. Although the polymer alloy method can be used to produce the ultrafine fibers as described above, the control of the fiber diameter is limited, and it is difficult to obtain uniform and homogeneous ultrafine fibers. On the other hand, the composite spinning method precisely controls the composite polymer flow with a composite die, and in particular, it can form a highly accurate yarn cross-sectional form uniformly and homogeneously in the running direction of the yarn, compared with the polymer alloy method. The superiority is considered high. As a matter of course, the composite die technique in this composite spinning method is extremely important for stably determining the cross-sectional shape of the yarn, and various proposals have been made conventionally.
例えば、特許文献1では、図12に示すような複合口金が開示されている。図12の(b)は特許文献1の複合口金の平面図であり、図12の(a)は(b)の部分拡大平面図である。図中、黒丸の1は島成分ポリマーを吐出する島成分吐出孔、白丸の4は海成分ポリマーを吐出する海成分吐出孔、5は最下層分配板、8は分配溝をそれぞれ示す。以下、各図面において、説明済みの図に対応する部材が存在する場合は、同じ参照符号を用いて説明を省略することがある。
For example, in Patent Document 1, a composite base as shown in FIG. 12 is disclosed. (B) of FIG. 12 is a plan view of the composite base of Patent Document 1, and (a) of FIG. 12 is a partially enlarged plan view of (b). In the figure, black circle 1 indicates an island component discharge hole for discharging an island component polymer, white circle 4 indicates a sea component discharge hole for discharging a sea component polymer, 5 indicates a lowermost layer distribution plate, and 8 indicates a distribution groove. Hereinafter, in each drawing, when a member corresponding to the already-explained drawing exists, the description may be omitted by using the same reference numerals.
特許文献1は、分配板を複数枚重ね、その分配板の最下層に、分配溝8、島成分吐出孔1、海成分吐出孔4を設けた最下層分配板5を配設し、分配板により難溶出成分の島成分ポリマーと、易溶出成分の海成分ポリマーを予め多数に分配した後、最下層分配板5の島成分吐出孔1と海成分吐出孔4より両成分のポリマーを各々吐出し、吐出直後に複合化させることで海島型の複合繊維を製造できることが記載されている。また、この複合口金を用いることで、島形状が六角形断面(ハニカム形状)となる、61個の均斉に分配された複合繊維を製造できることが記載されている。なお、この複合口金は、一般的には、分配板方式口金と呼ばれている。
In Patent Document 1, a plurality of distribution plates are stacked, and a lowermost layer distribution plate 5 provided with distribution grooves 8, island component discharge holes 1, and sea component discharge holes 4 is disposed in the lowermost layer of the distribution plate. After distributing the island component polymer, which is difficult to elute, and the sea component polymer, which is easy to elute, to a large number in advance, both polymers are discharged from the island component discharge hole 1 and the sea component discharge hole 4 of the lowermost layer distribution plate 5 respectively. In addition, it is described that a sea-island type composite fiber can be manufactured by combining immediately after discharge. Further, it is described that by using this composite die, 61 uniformly distributed composite fibers having an island shape of a hexagonal cross section (honeycomb shape) can be manufactured. This composite base is generally called a distribution plate type base.
しかしながら、特許文献1の複合口金では、島成分ポリマー同士の合流を防止するために、最下層分配板5には、一つの島成分吐出孔1の周囲に複数の海成分吐出孔4が配置されている。そのため、島成分吐出孔1を配置する箇所が限定されて、島成分吐出孔1の孔数を多く配置できず、孔充填密度(=単位面積当たりに配置できる島成分吐出孔1の数)が大きくできない場合がある。これは、実施例に記載されている通り、得られる繊維が0.06デニール(繊維径試算:約φ2.5μm)と、繊維径がミクロンサイズであり、ナノオーダーには至っていない。そこで、島成分吐出孔1を多く配置しようとすると、複合口金が大型化し、繊維分野の多錘型の紡糸設備では生産性、操業性が好ましくない問題が生じる場合がある。また、本発明者らの知見によると、孔群の配設パターンとして、島成分吐出孔1の周囲に六角形を形成するように海成分吐出孔4を配設することで、島形状は六角形断面となるが、それ以外の孔群の配設パターンは提示されておらず、多種な島形状を有する海島型の複合繊維を得ることができない場合がある。
However, in the composite base of Patent Document 1, a plurality of sea component discharge holes 4 are arranged around one island component discharge hole 1 in the lowermost layer distribution plate 5 in order to prevent the island component polymers from joining together. ing. Therefore, the places where the island component discharge holes 1 are arranged are limited, and the number of island component discharge holes 1 cannot be increased, and the hole filling density (= the number of island component discharge holes 1 that can be arranged per unit area) is reduced. There are cases where it cannot be increased. As described in the examples, the obtained fiber is 0.06 denier (trial calculation of fiber diameter: about φ2.5 μm), the fiber diameter is micron size, and it has not reached the nano order. Therefore, if a large number of island component discharge holes 1 are arranged, the composite die becomes large, and there are cases where productivity and operability are unfavorable in a multi-spindle spinning facility in the fiber field. Further, according to the knowledge of the present inventors, by arranging the sea component discharge holes 4 so as to form hexagons around the island component discharge holes 1 as a hole group arrangement pattern, the island shape is six. Although it has a square cross section, no other hole group arrangement pattern is presented, and there may be cases where sea-island type composite fibers having various island shapes cannot be obtained.
また、特許文献1と別の孔配設パターンとして、図9、図10、および図23が開示されている。図9、図10は特許文献5、図23は特許文献8の複合口金の部分拡大平面図である。ここで、図9、図10に記載の最下層分配板5と、図23の上層板29とは、名称は異なるが、同じ役割のものである。本発明者らの知見によると、特許文献5、特許文献8は、島成分吐出孔1の周囲に、海成分吐出孔4を3等配、もしくは4等配(千鳥配置)に配設したパターンであり、一見、島成分が多角形となる海島型の複合繊維が得られそうであるが、本発明者らの知見によると、実際は、島成分ポリマー同士の合流が発生する場合がある。特に、海成分ポリマーは溶融紡糸した後に溶出するため、生産性の観点からするとポリマー吐出量比は、溶出する海成分ポリマーを少なく、島成分ポリマーを多くすることが好ましいが、その場合には、島成分ポリマー同士の合流がより顕著となる。また、一度、島成分ポリマー同士の合流が発生すると、各成分ポリマーの吐出量、および吐出量比等の紡糸条件を変更しても、問題を解消できない場合があり、最悪の場合は、複合口金を変更しなければ、生産不可能となり、生産性が悪化する場合がある。
Further, FIG. 9, FIG. 10, and FIG. 23 are disclosed as hole arrangement patterns different from Patent Document 1. 9 and 10 are partially enlarged plan views of the composite base of Patent Document 5 and FIG. Here, the lowermost layer distribution plate 5 shown in FIGS. 9 and 10 and the upper layer plate 29 of FIG. 23 have the same role, although the names are different. According to the knowledge of the present inventors, Patent Document 5 and Patent Document 8 are patterns in which sea component discharge holes 4 are arranged in three or four equal arrangements (staggered arrangement) around the island component discharge holes 1. At first glance, it seems that a sea-island type composite fiber in which the island components are polygonal is likely to be obtained, but according to the knowledge of the present inventors, the island component polymers may actually merge. In particular, since the sea component polymer is eluted after being melt-spun, from the viewpoint of productivity, the polymer discharge rate ratio is preferably less sea component polymer to be eluted and more island component polymers. The confluence of the island component polymers becomes more prominent. In addition, once the island component polymers join together, the problem may not be resolved even if the spinning conditions such as the discharge amount of each component polymer and the discharge amount ratio are changed. If the value is not changed, production becomes impossible and productivity may deteriorate.
また、配置パターンとして千鳥配置を採用し、上層板29の同一面に島成分吐出孔1と海成分吐出孔4を配置するために、島成分吐出孔1、海成分吐出孔4にポリマーを供給する分配板6の分配溝8の壁面間距離の関係から、島成分吐出孔1を多く配置することができず、孔充填密度を大きくできない場合がある。このように、孔充填密度が大きくできない場合には、複合口金が大型化し、繊維分野の多錘型の紡糸設備では生産性、操業性が好ましくない問題が生じる場合がある。
Further, a staggered arrangement is adopted as an arrangement pattern, and a polymer is supplied to the island component discharge holes 1 and the sea component discharge holes 4 in order to arrange the island component discharge holes 1 and the sea component discharge holes 4 on the same surface of the upper layer plate 29. Due to the relationship between the distances between the wall surfaces of the distribution grooves 8 of the distribution plate 6, there are cases where many island component discharge holes 1 cannot be arranged and the hole filling density cannot be increased. Thus, when the hole packing density cannot be increased, the composite die becomes large, and there may be a problem that productivity and operability are not preferable in a multi-spindle type spinning facility in the fiber field.
また、特許文献2では、図13に示すような複合口金が開示されている。図13は、特許文献2の複合口金の概略断面図である。図中、10は吐出板、11は吐出導入孔、43は多層板、44は分割板、45は配列板をそれぞれ示す。特許文献2は、多層板43、分割板44、配列板45、吐出板10を順に積層して構成され、上流側から流入した海成分ポリマーと島成分ポリマーを多層化し、部分的に分割した上で、それを並べ替え、更に分割を繰り返すことで、多数の島成分を有する海島複合流へと変化させて、最終的に吐出導入孔11から吐出することで、海島型の複合繊維を製造できることが記載されている。そして、島成分ポリマーを溶解し、得られる極細繊維は、長時間の紡糸においても海島構造に乱れが無く、島形状は円形で太さが均一であり、繊維径がナノオーダーに到達可能であることが記載されている。
In Patent Document 2, a composite base as shown in FIG. 13 is disclosed. FIG. 13 is a schematic cross-sectional view of the composite base of Patent Document 2. In the figure, 10 is a discharge plate, 11 is a discharge introduction hole, 43 is a multilayer plate, 44 is a divided plate, and 45 is an array plate. Patent Document 2 is configured by laminating a multilayer plate 43, a division plate 44, an array plate 45, and a discharge plate 10 in order. The sea component polymer and the island component polymer that flowed in from the upstream side are multilayered and partially divided. By rearranging and repeating the division, it is possible to produce a sea-island type composite fiber by changing to a sea-island composite flow having a large number of island components and finally discharging from the discharge introduction hole 11 Is described. The ultrafine fiber obtained by dissolving the island component polymer is not disturbed in the sea-island structure even during long-time spinning, the island shape is circular and the thickness is uniform, and the fiber diameter can reach nano order. It is described.
しかしながら、特許文献2の複合口金を用いて得られる極細繊維の島形状は、円形か、それに類似した楕円形状に限定されるため、複雑な形状、例えば多角形となる島形状を有する極細繊維を得ることができない場合がある。また、特許文献2では、理論島数に対して、実際の島数のバラツキ((最大島数-最小島数)/平均島数×100[%])が±20%の範囲となることから、高精密な島数の制御ができない場合がある。また、使用できる海成分ポリマーの種類が、ポリエチレン、ポリスチレンに限定されており、多種多様なポリマー(ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン等々の分子構造が異なるポリマー)を使用できない場合がある。
However, since the island shape of the ultrafine fiber obtained by using the composite die of Patent Document 2 is limited to a circular shape or an elliptical shape similar to the circular shape, an ultrafine fiber having a complex shape, for example, a polygonal island shape, is used. You may not get it. Further, in Patent Document 2, the actual number of islands ((maximum number of islands−minimum number of islands) / average number of islands × 100 [%]) is within ± 20% of the theoretical number of islands. In some cases, it is not possible to control the number of islands with high precision. In addition, the types of sea component polymers that can be used are limited to polyethylene and polystyrene, and there are cases where a wide variety of polymers (polymers having different molecular structures such as polyester, polyamide, polyphenylene sulfide, and polyolefin) cannot be used.
また、特許文献3、特許文献7では、図14に示すように、一般的に海島型繊維を製造するパイプ方式口金として知られている複合口金が開示されている。図14は特許文献3、特許文献7の複合口金の概略断面図である。図中、30はパイプ、31は海成分ポリマー導入流路、32は島成分ポリマー導入流路、33は上口金板、34は中口金板、35は下口金板、40は海成分ポリマー分配室、41はパイプ挿入孔、42は口金吐出孔をそれぞれ示す。特許文献3は、一般的にパイプ方式口金として知られており、海成分ポリマー導入流路31、島成分ポリマー導入流路32、およびパイプ30を設けた上口金板33と、パイプ30の外径と同等、もしくは大きな口径のパイプ挿入孔41を設けた中口金板34と、口金吐出孔42を設けた下口金板35にて構成されている。そこで、易溶出成分の海成分ポリマーは、海成分ポリマー導入流路31から海成分ポリマー分配室40に導かれ、パイプ30の外周を充満するのに対して、難溶出成分の島成分ポリマーは、島成分ポリマー導入流路32からパイプ30に導かれ、パイプ30から吐出することで、両成分のポリマーが合流し、海島複合断面を形成した後、パイプ挿入孔41を経て、口金吐出孔42から複合ポリマー吐出し、海島型の複合繊維を製造することができると記載されている。
Further, in Patent Document 3 and Patent Document 7, as shown in FIG. 14, a composite base generally known as a pipe-type base for producing sea-island type fibers is disclosed. FIG. 14 is a schematic cross-sectional view of the composite die of Patent Document 3 and Patent Document 7. In the figure, 30 is a pipe, 31 is a sea component polymer introduction flow path, 32 is an island component polymer introduction flow path, 33 is an upper base plate, 34 is a middle base plate, 35 is a lower base plate, and 40 is a sea component polymer distribution chamber. , 41 is a pipe insertion hole, and 42 is a base discharge hole. Patent Document 3 is generally known as a pipe-type base, and includes an upper base plate 33 provided with a sea component polymer introduction channel 31, an island component polymer introduction channel 32, and a pipe 30, and an outer diameter of the pipe 30. And a lower base plate 35 provided with a base discharge hole 42 and a middle base plate 34 provided with a pipe insertion hole 41 having the same or larger diameter. Therefore, the easily eluted component sea component polymer is guided from the ocean component polymer introduction channel 31 to the ocean component polymer distribution chamber 40 and fills the outer periphery of the pipe 30, whereas the hardly eluted component island component polymer is: After being guided from the island component polymer introduction flow path 32 to the pipe 30 and discharged from the pipe 30, the polymers of both components merge to form a sea-island composite cross section, and then through the pipe insertion hole 41 and from the die discharge hole 42. It is described that a composite polymer can be discharged to produce a sea-island type composite fiber.
しかしながら、特許文献3のパイプ方式口金の大きな問題点は、1島を製作するのに、パイプ厚みが加算されることから、1つのパイプ当たりの面積が拡大する。また、口金の製作上、パイプ30を上口金板33に圧入し溶接固定していることから、溶接代が必要であり、さらに、パイプ30を挿入するための孔を設けることから、強度上の問題によりパイプ間同士の間隙を狭化できない。そのため、パイプ30を単位面積当たりに密に配置することができず、孔充填密度を大きくできず、繊維径がナノオーダーの超極細繊維を製造することが困難な場合がある。また、円筒状のパイプ30を使用するため、得られる島形状は、円形か、それに類似した楕円形状に限定されるため、複雑な形状、例えば多角形となる島形状を有する海島型の複合繊維を得ることができない場合がある。これは、パイプ30の配置に自由度が低く、制御できる繊維断面形態には限界があり、複雑な断面が多層になったような繊維を製造することが困難な場合がある。
However, the major problem of the pipe-type base of Patent Document 3 is that the pipe thickness is added to produce one island, so that the area per pipe increases. In addition, since the pipe 30 is press-fitted into the upper base plate 33 and fixed by welding for manufacturing the base, a welding allowance is required, and further, a hole for inserting the pipe 30 is provided. The gap between pipes cannot be reduced due to problems. Therefore, the pipes 30 cannot be densely arranged per unit area, the hole filling density cannot be increased, and it may be difficult to manufacture ultrafine fibers having a fiber diameter of nano-order. In addition, since the cylindrical pipe 30 is used, the island shape obtained is limited to a circular shape or an elliptical shape similar to the circular shape. Therefore, a sea-island type composite fiber having a complex shape, for example, a polygonal island shape. May not be able to get. This is because the degree of freedom of arrangement of the pipes 30 is low, and there is a limit to the cross-sectional shape of the fiber that can be controlled, and it may be difficult to manufacture a fiber having a complex cross-section in multiple layers.
また、所望の繊維形態を得るためには、複数の複合口金を試作して紡糸評価を幾つか繰り返す必要があるが、この複合口金の構造は非常に複雑であるため、口金の製作に期間や手間、費用が必要となり、この点においても設備費が過大となる問題がある。また、パイプ30が密集して配設されたパイプ群の外周に、海成分ポリマー導入流路31が配設されていることから、パイプ群の中心に海成分ポリマーを十分に供給することが困難となり、特に、パイプ群の中心のパイプ30から吐出された島成分ポリマー同士の合流が発生する場合がある。特に、孔充填密度を大きくするために、パイプ30をより密集して配置すれば、上記問題は、より顕著となる。本発明者らの知見によると、パイプ30のパイプ群の中には、海成分ポリマー導入流路31を自由に配設することは、構造的に困難な場合がある。これは、例えば、パイプ群の中に配設するためには、パイプ30を途中で屈曲させる等をして、海成分ポリマー導入流路31を設ける必要があるため、口金の構造が非常に複雑になり、設備費が過大となる問題がある。
In addition, in order to obtain a desired fiber form, it is necessary to make a plurality of composite die prototypes and repeat the spinning evaluation several times. However, since the structure of this composite die is very complex, In this respect, there is a problem that the equipment cost is excessive. Further, since the sea component polymer introduction flow path 31 is disposed on the outer periphery of the pipe group in which the pipes 30 are densely disposed, it is difficult to sufficiently supply the sea component polymer to the center of the pipe group. In particular, the island component polymers discharged from the pipe 30 at the center of the pipe group may merge. In particular, if the pipes 30 are arranged more densely in order to increase the hole packing density, the above problem becomes more prominent. According to the knowledge of the present inventors, it may be structurally difficult to freely dispose the sea component polymer introduction channel 31 in the pipe group of the pipe 30. This is because, for example, in order to arrange in the pipe group, it is necessary to bend the pipe 30 in the middle and to provide the sea component polymer introduction channel 31, so that the structure of the base is very complicated. Therefore, there is a problem that the equipment cost becomes excessive.
また、パイプ方式口金に類似した例として、図18に示すような、特許文献6の複合口金が開示されている。図18は、特許文献6の複合口金の概略断面図である。図中、25は吐出孔、55は上板、56は突出部を示す。特許文献6は、海成分ポリマー、島成分ポリマーを均一に分配するために、吐出孔25、および島成分吐出孔1の周囲に突出部56を有して、上口金板33の下面と、吐出孔25の周囲に形成された突出部56の上面との間隙、および上板29の下面と、島成分吐出孔1の周囲に形成された突出部56の上面との間隙を狭幅化し、圧損を大きくすることで、ポリマーの分配性を向上させることができると記載されている。また、本発明者らの知見によると、パイプを用いずに、機械加工にて孔を形成していることから、特許文献3や特許文献7のような、口金製作の際のパイプ使用の問題が回避できることから、特許文献3、特許文献7と比べて、孔充填密度を幾分は大きくすることが可能となる。
Further, as an example similar to a pipe-type base, a composite base of Patent Document 6 as shown in FIG. 18 is disclosed. FIG. 18 is a schematic cross-sectional view of the composite die of Patent Document 6. In the figure, 25 is a discharge hole, 55 is an upper plate, and 56 is a protrusion. In Patent Document 6, in order to evenly distribute the sea component polymer and the island component polymer, the discharge holes 25 and the island component discharge holes 1 have protrusions 56 around the periphery, the lower surface of the upper base plate 33, and the discharge The gap between the upper surface of the protrusion 56 formed around the hole 25 and the gap between the lower surface of the upper plate 29 and the upper surface of the protrusion 56 formed around the island component discharge hole 1 are narrowed to reduce pressure loss. It is described that the distribution property of the polymer can be improved by increasing. In addition, according to the knowledge of the present inventors, since the hole is formed by machining without using the pipe, there is a problem in using the pipe when manufacturing the die as in Patent Document 3 and Patent Document 7. Therefore, the hole packing density can be somewhat increased as compared with Patent Documents 3 and 7.
しかしながら、本発明者らの知見によると、上述の様に、両成分ポリマー分配性に関して、一定の効果は確認できるが、島成分吐出孔1、および海成分吐出孔4の周囲に突出部56を有した構造であることから、孔間ピッチが大きくなり、孔充填密度を大きくできない。これは、特許文献6の実施形態からも明らかであり、島数/1口金当たり=500個、島数/1G当たり=25個、各成分ポリマーの吐出量9g~21g/(min・口金)と言ったように、太繊度糸を対象としており、近年の超極細糸には対応できない場合がある。また、本発明者らの知見によると、間隙を通過するポリマー通過量が多いため、流路圧損が大きくなり、両成分ポリマーの均一分配は可能となるが、本発明の複合口金が対象とする、ポリマー通過量がごく微量となる超細繊度糸では、流路圧損が大きくできないため、上述のような効果は得られない場合がある。
However, according to the knowledge of the present inventors, as described above, a certain effect can be confirmed with respect to the dispersibility of both component polymers, but the protrusions 56 are formed around the island component discharge holes 1 and the sea component discharge holes 4. Since it has the structure, the pitch between holes becomes large and the hole filling density cannot be increased. This is also clear from the embodiment of Patent Document 6, where the number of islands / per cap = 500, the number of islands / per G = 25, and the discharge amount of each component polymer from 9 g to 21 g / (min · base). As mentioned above, it is intended for thick yarns and may not be compatible with recent ultra-fine yarns. Further, according to the knowledge of the present inventors, since the amount of polymer passing through the gap is large, the flow path pressure loss becomes large and the uniform distribution of both component polymers is possible, but the composite die of the present invention is targeted. In the ultrafine yarn having a very small amount of polymer passing, the channel pressure loss cannot be increased, and thus the above-described effects may not be obtained.
また、特許文献6に類似した例として、図15に示すような、特許文献4の複合口金が開示されている。図15は、特許文献4の複合口金の概略断面図である。図中、27は放射状溝、28は同心円状溝を示す。特許文献4は、島成分吐出孔1の周囲に放射状溝27や、吐出孔25に周囲に同心円上溝28を形成させることで、海成分ポリマーの分配性を向上させ、海成分ポリマー比率が少ない場合であっても、島成分同士の合流を抑制した海島型複合繊維を得ることができると記載されている。また、本発明者らの知見によると、パイプを用いずに、機械加工にて孔を形成していることから、特許文献3、特許文献7のような、口金製作の際のパイプ使用の問題が回避できることから、特許文献3、特許文献7と比べて、孔充填密度を幾分は大きくすることが可能となる。
Further, as an example similar to Patent Document 6, a composite base of Patent Document 4 as shown in FIG. 15 is disclosed. FIG. 15 is a schematic cross-sectional view of the composite die of Patent Document 4. In the figure, 27 is a radial groove and 28 is a concentric groove. Patent Document 4 discloses that the distribution of the sea component polymer is improved by forming the radial grooves 27 around the island component discharge holes 1 and the concentric grooves 28 around the discharge holes 25, and the sea component polymer ratio is small. Even so, it is described that a sea-island type composite fiber that suppresses merging of island components can be obtained. In addition, according to the knowledge of the present inventors, since the hole is formed by machining without using the pipe, there is a problem in using the pipe when manufacturing the die as in Patent Document 3 and Patent Document 7. Therefore, the hole packing density can be somewhat increased as compared with Patent Documents 3 and 7.
しかしながら、島成分吐出孔1や、吐出孔25の周囲に溝加工を施していることから、孔間ピッチが大きくなり、孔充填密度を充分には大きくできず、繊維径がナノオーダーの超極細繊維を製造することが困難な場合がある。これは、実施例に記載されている通り、得られる繊維の最小径が1μmであることから、ナノオーダーには到達できていない。また、口金に複雑な溝加工を行っているため、口金の製作に期間や手間、費用が必要となり、この点においても設備費が過大となる問題がある。
However, since the grooves are formed around the island component discharge holes 1 and the discharge holes 25, the pitch between the holes is increased, the hole filling density cannot be sufficiently increased, and the fiber diameter is ultrafine with nano order. It may be difficult to produce the fiber. As described in the examples, the minimum diameter of the obtained fiber is 1 μm, so that it cannot reach the nano-order. In addition, since complicated grooving is performed on the base, it takes time, labor, and expense to manufacture the base, and there is a problem that the equipment cost is excessive in this respect as well.
以上の様に、島成分吐出孔の孔充填密度を高めつつ、高い島成分比率(=低い海成分比率)において、島成分ポリマー同士の合流を防止し、異形状の超極細繊維を得ることが切望されているが、上記した様に、種々の問題が残されており、海島型の複合繊維製造の妨げとなってきた。従って、この問題を解決することは、工業上、重要な意味を有するのである。よって、本発明の目的は、海島型複合繊維を製造するための分配板方式口金において、島成分ポリマーの吐出孔の孔充填密度を拡大しつつ、島成分ポリマー同士の合流を防止することで、多様な繊維断面形態、特に、異形断面を高精度に形成し、この断面形態の寸法安定性を高く維持できる複合口金、および複合口金を用いた複合紡糸機により溶融紡糸を行う複合繊維の製造方法を提供することにある。
As described above, while increasing the hole packing density of the island component discharge holes, it is possible to prevent the island component polymers from joining together at a high island component ratio (= low sea component ratio), and to obtain an unusually shaped ultrafine fiber. Although eagerly desired, as described above, various problems remain, which has hindered the production of sea-island type composite fibers. Therefore, solving this problem has important industrial significance. Therefore, the purpose of the present invention is to prevent the island component polymer from joining together while expanding the hole packing density of the discharge holes of the island component polymer in the distribution plate type die for producing the sea-island type composite fiber. Various fiber cross-sectional forms, in particular, irregular shaped cross-sections can be formed with high accuracy, and a composite base capable of maintaining high dimensional stability of the cross-sectional form, and a composite fiber manufacturing method for performing melt spinning by a composite spinning machine using the composite base Is to provide.
上記課題を解決するために、本発明の複合口金は次のような構成を有する。すなわち、本発明によれば、島成分ポリマーと海成分ポリマーによって構成される複合ポリマー流を吐出するための複合口金であって、各ポリマー成分を分配するための分配孔および分配溝が形成された1枚以上の分配板と、前記分配板のポリマーの紡出経路方向の下流側に位置し、複数の島成分吐出孔と複数の海成分吐出孔とが形成された最下層分配板とで構成され、前記島成分吐出孔を中心とした半径R1の仮想円周線C1上に配置された前記海成分吐出孔と、半径R2の仮想円周線C2上に配置された前記海成分吐出孔と、半径R4の仮想円周線C4上に配置された前記島成分吐出孔とが存在し、次の式(1)を満足し、且つ次の(2)の条件イ~ニのいずれかの配置となる複合口金が提供される。
(1)R2≧R4≧√3×R1 式(1)
(2)条件イ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ロ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:3つの島成分吐出孔が中心角120度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が0度
条件ハ.C1:6つの海成分吐出孔が中心角60度にて等分配置
C2:6つの海成分吐出孔が中心角60度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が0度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ニ.C1:4つの海成分吐出孔が中心角90度にて等分配置
C2:8つの海成分吐出孔が配置
C4:4つの島成分吐出孔が中心角90度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が26.6度
θ5:C1とC4に配置された吐出孔間の位相角が0度
また、本発明の好ましい形態によれば、前記分配板を複数有し、前記分配板において、前記ポリマーの紡出経路方向の下流側に向かい前記分配孔の孔数が増加し、前記ポリマーの紡出経路方向の上流側に位置する前記分配孔と、前記ポリマーの紡出経路方向の下流側に位置する前記分配孔とを連通するように前記分配溝が形成され、前記分配溝の端部に連通する複数個の分配孔を構成する複合口金が提供される。 In order to solve the above problems, the composite base of the present invention has the following configuration. That is, according to the present invention, a composite base for discharging a composite polymer flow composed of an island component polymer and a sea component polymer, wherein distribution holes and distribution grooves for distributing each polymer component are formed. Consists of one or more distribution plates and a lowermost layer distribution plate that is located downstream of the distribution plate in the polymer spinning path direction and has a plurality of island component discharge holes and a plurality of sea component discharge holes The sea component discharge hole disposed on a virtual circumference line C1 having a radius R1 centered on the island component discharge hole, and the sea component discharge hole disposed on a virtual circumference line C2 having a radius R2. And the island component discharge holes arranged on the virtual circumferential line C4 having the radius R4, satisfying the following expression (1), and arranging any one of the following conditions (1) to (2): A composite base is provided.
(1) R2 ≧ R4 ≧ √3 × R1 Formula (1)
(2) Condition a. C1: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C2: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C4: Six island component discharge holes are at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 30 degrees. C1: Three sea component discharge holes equally divided at a central angle of 120 degrees C2: Three sea component discharge holes equally divided at a central angle of 120 degrees C4: Three island component discharge holes at a central angle of 120 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 0 degrees. C1: Six sea component discharge holes equally divided at a central angle of 60 degrees C2: Six sea component discharge holes equally divided at a central angle of 60 degrees C4: Six island component discharge holes at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Four sea component discharge holes are equally divided at a central angle of 90 degrees C2: Eight sea component discharge holes are equally distributed at a central angle of 90 degrees C4: Four sea component discharge holes are equally divided at a central angle of 90 degrees The phase angle between the discharge holes arranged in C2 is 26.6 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 0 degree. According to a preferred embodiment of the present invention, a plurality of the distribution plates are provided. The distribution plate has an increased number of holes in the distribution hole toward the downstream side in the spinning path direction of the polymer, and the distribution hole located on the upstream side in the spinning path direction of the polymer; The distribution groove is formed so as to communicate with the distribution hole located on the downstream side in the spinning path direction, and there is provided a composite base that constitutes a plurality of distribution holes communicating with the end of the distribution groove. .
(1)R2≧R4≧√3×R1 式(1)
(2)条件イ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ロ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:3つの島成分吐出孔が中心角120度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が0度
条件ハ.C1:6つの海成分吐出孔が中心角60度にて等分配置
C2:6つの海成分吐出孔が中心角60度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が0度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ニ.C1:4つの海成分吐出孔が中心角90度にて等分配置
C2:8つの海成分吐出孔が配置
C4:4つの島成分吐出孔が中心角90度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が26.6度
θ5:C1とC4に配置された吐出孔間の位相角が0度
また、本発明の好ましい形態によれば、前記分配板を複数有し、前記分配板において、前記ポリマーの紡出経路方向の下流側に向かい前記分配孔の孔数が増加し、前記ポリマーの紡出経路方向の上流側に位置する前記分配孔と、前記ポリマーの紡出経路方向の下流側に位置する前記分配孔とを連通するように前記分配溝が形成され、前記分配溝の端部に連通する複数個の分配孔を構成する複合口金が提供される。 In order to solve the above problems, the composite base of the present invention has the following configuration. That is, according to the present invention, a composite base for discharging a composite polymer flow composed of an island component polymer and a sea component polymer, wherein distribution holes and distribution grooves for distributing each polymer component are formed. Consists of one or more distribution plates and a lowermost layer distribution plate that is located downstream of the distribution plate in the polymer spinning path direction and has a plurality of island component discharge holes and a plurality of sea component discharge holes The sea component discharge hole disposed on a virtual circumference line C1 having a radius R1 centered on the island component discharge hole, and the sea component discharge hole disposed on a virtual circumference line C2 having a radius R2. And the island component discharge holes arranged on the virtual circumferential line C4 having the radius R4, satisfying the following expression (1), and arranging any one of the following conditions (1) to (2): A composite base is provided.
(1) R2 ≧ R4 ≧ √3 × R1 Formula (1)
(2) Condition a. C1: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C2: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C4: Six island component discharge holes are at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 30 degrees. C1: Three sea component discharge holes equally divided at a central angle of 120 degrees C2: Three sea component discharge holes equally divided at a central angle of 120 degrees C4: Three island component discharge holes at a central angle of 120 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 0 degrees. C1: Six sea component discharge holes equally divided at a central angle of 60 degrees C2: Six sea component discharge holes equally divided at a central angle of 60 degrees C4: Six island component discharge holes at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Four sea component discharge holes are equally divided at a central angle of 90 degrees C2: Eight sea component discharge holes are equally distributed at a central angle of 90 degrees C4: Four sea component discharge holes are equally divided at a central angle of 90 degrees The phase angle between the discharge holes arranged in C2 is 26.6 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 0 degree. According to a preferred embodiment of the present invention, a plurality of the distribution plates are provided. The distribution plate has an increased number of holes in the distribution hole toward the downstream side in the spinning path direction of the polymer, and the distribution hole located on the upstream side in the spinning path direction of the polymer; The distribution groove is formed so as to communicate with the distribution hole located on the downstream side in the spinning path direction, and there is provided a composite base that constitutes a plurality of distribution holes communicating with the end of the distribution groove. .
また、本発明の別の実施形態によれば、前記分配孔および前記分配溝によって形成された前記分配板内部の複数のポリマー通流経路について、前記分配板の上端から最下層分配板に至るまでの前記ポリマー通流経路の長さが相対的に長い経路における前記分配孔の孔径を相対的に短い経路における前記分配孔の孔径より大きくする複合口金が提供される。
According to another embodiment of the present invention, a plurality of polymer flow paths inside the distribution plate formed by the distribution holes and the distribution grooves, from the upper end of the distribution plate to the lowest distribution plate. There is provided a composite base in which the diameter of the distribution hole in the path having a relatively long polymer flow path is larger than the diameter of the distribution hole in the relatively short path.
また、本発明の別の実施形態によれば、隣接する2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、前記海成分吐出孔の少なくとも一部が存在する複合口金が提供される。
According to another embodiment of the present invention, a composite base in which at least a part of the sea component discharge hole is present in a region surrounded by two common circumscribed lines of two adjacent island component discharge holes. Is provided.
また、本発明の別の実施形態によれば、前記隣接する2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、少なくとも2つの前記海成分吐出孔のそれぞれ少なくとも一部が存在し、該2つの島成分吐出孔の中心を結ぶ線分を挟んで、該2つの海成分吐出孔が配置されている複合口金が提供される。
Further, according to another embodiment of the present invention, at least a part of each of the at least two sea component discharge holes in a region surrounded by two common outer tangent lines of the two adjacent island component discharge holes. There is provided a composite base in which the two sea component discharge holes are arranged across a line segment connecting the centers of the two island component discharge holes.
また、本発明の別の実施形態によれば、前記ポリマーの紡出経路方向の上流側ほど、分配溝を構成する分配板の厚みが大きい複合口金が提供される。
Further, according to another embodiment of the present invention, there is provided a composite die having a thicker distribution plate constituting the distribution groove toward the upstream side in the polymer spinning path direction.
また、本発明の別の実施形態によれば、前記分配板、または前記最下層分配板に形成された最小孔の直径DMINと、前記最小孔が形成された板厚みBTが、以下の式を満たす複合口金が提供される。
BT/DMIN≦2
但し、DMIN:分配板、または最下層分配板に形成された最小孔の直径(mm)、BT:最小孔が形成された分配板、または最下層分配板の厚み(mm)を示す。 Further, according to another embodiment of the present invention, the diameter DMIN of the minimum hole formed in the distribution plate or the lowermost layer distribution plate and the plate thickness BT where the minimum hole is formed are expressed by the following equations: A composite base to fill is provided.
BT / DMIN ≦ 2
DMIN: diameter of the smallest hole formed in the distribution plate or the lowermost layer distribution plate (mm), BT: thickness of the distribution plate in which the smallest hole is formed, or the lowermost layer distribution plate (mm).
BT/DMIN≦2
但し、DMIN:分配板、または最下層分配板に形成された最小孔の直径(mm)、BT:最小孔が形成された分配板、または最下層分配板の厚み(mm)を示す。 Further, according to another embodiment of the present invention, the diameter DMIN of the minimum hole formed in the distribution plate or the lowermost layer distribution plate and the plate thickness BT where the minimum hole is formed are expressed by the following equations: A composite base to fill is provided.
BT / DMIN ≦ 2
DMIN: diameter of the smallest hole formed in the distribution plate or the lowermost layer distribution plate (mm), BT: thickness of the distribution plate in which the smallest hole is formed, or the lowermost layer distribution plate (mm).
また、本発明の別の実施形態によれば、前記分配板、または前記最下層分配板の板厚みが0.1~0.5mmの範囲となる複合口金が提供される。
Further, according to another embodiment of the present invention, there is provided a composite base in which the thickness of the distribution plate or the lowermost distribution plate is in the range of 0.1 to 0.5 mm.
また、本発明の別の実施形態によれば、前記島成分吐出孔の孔充填密度が0.5孔/mm2以上である複合口金が提供される。
According to another embodiment of the present invention, there is provided a composite die having a hole filling density of the island component discharge holes of 0.5 holes / mm 2 or more.
また、本発明の別の実施形態によれば、上記複合口金において、前記分配板から前記最下層分配板の前記島成分吐出孔に至る各流路における流路圧損が等しく、前記分配板から前記最下層分配板の前記海成分吐出孔に至る各流路における流路圧損が等しくなる複合口金を用いた複合紡糸機により溶融紡糸を行う複合繊維の製造方法が提供される。
Further, according to another embodiment of the present invention, in the composite base, flow path pressure loss in each flow path from the distribution plate to the island component discharge hole of the lowermost layer distribution plate is equal, and the distribution plate Provided is a method for producing a composite fiber, in which melt spinning is performed by a composite spinning machine using a composite base in which the flow path pressure loss in each flow path to the sea component discharge hole of the lowermost layer distribution plate is equal.
また、本発明の別の実施形態によれば、上記複合口金を用いた複合紡糸機により、島成分ポリマー比率を50%以上にて溶融紡糸を行う複合繊維の製造方法が提供される。
Further, according to another embodiment of the present invention, there is provided a method for producing a composite fiber in which melt spinning is performed with an island component polymer ratio of 50% or more by a composite spinning machine using the composite base.
本発明において、「分配孔」とは、複数の分配板の組合せにより、孔が形成され、ポリマーの紡出経路方向に、ポリマーを分配する役割を果たすものをいう。
In the present invention, the “distribution hole” means a hole that is formed by a combination of a plurality of distribution plates and plays a role of distributing the polymer in the direction of the polymer spinning path.
本発明において、「分配溝」とは、複数の分配板の組合せにより、溝が形成され、ポリマーの紡出経路方向に垂直な方向に、ポリマーを分配する役割を果たすものをいう。ここで、分配溝は、細長い穴(スリット)であってもよいし、細長い溝が掘ってあってもよい。
In the present invention, the “distribution groove” means a groove in which a groove is formed by a combination of a plurality of distribution plates and plays a role of distributing the polymer in a direction perpendicular to the polymer spinning path direction. Here, the distribution groove may be an elongated hole (slit), or an elongated groove may be dug.
本発明において、「ポリマーの紡出経路方向」とは、各ポリマー成分が計量板から吐出板の口金吐出孔まで流れる主方向をいう。
In the present invention, the “polymer spinning path direction” refers to the main direction in which each polymer component flows from the measuring plate to the die discharge hole of the discharge plate.
本発明において、「ポリマーの紡出経路方向に垂直な方向」とは、各ポリマー成分が計量板から吐出板の口金吐出孔まで流れる主方向に垂直な方向をいう。
In the present invention, the “direction perpendicular to the direction of polymer spinning path” refers to the direction perpendicular to the main direction in which each polymer component flows from the metering plate to the die discharge hole of the discharge plate.
本発明において、「半径R1の仮想円周線C1」とは、基準となる島成分吐出孔に最も近接した海成分吐出孔との中心点間距離を半径R1とした仮想円周線C1をいう。
In the present invention, the “virtual circumferential line C1 having a radius R1” refers to a virtual circumferential line C1 having a radius R1 as the distance between the center points of the sea component discharge hole closest to the reference island component discharge hole. .
本発明において、「半径R2の仮想円周線C2」とは、基準となる島成分吐出孔に2番目に近接した海成分吐出孔との中心点間距離を半径R2とした仮想円周線C2をいう。
In the present invention, the “virtual circumferential line C2 having a radius R2” means a virtual circumferential line C2 having a radius R2 as the distance between the center points of the sea component ejection hole that is second closest to the reference island component ejection hole. Say.
本発明において、「半径R4の仮想円周線C4」とは、基準となる島成分吐出孔に最も近接した島成分吐出孔との中心点間距離を半径R4とした仮想円周線C4をいう。
In the present invention, the “virtual circumferential line C4 having a radius R4” refers to a virtual circumferential line C4 having a radius R4 as the distance between the center points of the island component ejection holes closest to the reference island component ejection hole. .
本発明において、「中心角」とは、基準となる島成分吐出孔の中心点と、仮想円周線C1、C2に各々配置された円周方向に隣り合う二つの海成分吐出孔の中心点、または仮想円周線C4上に配置された円周方向に隣り合う二つの島成分吐出孔の中心点とを結ぶ線分が交差する角度をいう。
In the present invention, the “center angle” means the center point of the reference island component discharge hole and the center point of two sea component discharge holes adjacent to each other in the circumferential direction arranged on the virtual circumferential lines C1 and C2. Or the angle which the line segment which connects the center point of two island component discharge holes adjacent to the circumferential direction arrange | positioned on the virtual circumference line C4 cross | intersects.
本発明において、「位相角」とは、基準となる島成分吐出孔の中心点と仮想円周線C1上に配置された海成分吐出孔の中心点を結ぶ線分と、基準となる島成分吐出孔の中心点と仮想円周線C2に配置された海成分吐出孔の中心点を結ぶ線分とが交差する角度、または、基準となる島成分吐出孔の中心点と仮想円周線C1上に配置された海成分吐出孔の中心点を結ぶ線分と、基準となる島成分吐出孔の中心点と仮想円周線C2に配置された海成分吐出孔の中心点を結ぶ線分とが交差する角度をいう。
In the present invention, the “phase angle” means a line segment connecting the center point of the reference island component discharge hole and the center point of the sea component discharge hole arranged on the virtual circumferential line C1, and the reference island component. The angle at which the line connecting the center point of the discharge hole and the center point of the sea component discharge hole arranged on the virtual circumference C2 intersects, or the center point of the reference island component discharge hole and the virtual circumference C1 A line segment connecting the center point of the sea component discharge hole disposed above, and a line segment connecting the center point of the reference island component discharge hole and the center point of the sea component discharge hole disposed on the virtual circumferential line C2. The angle at which crosses.
本発明において、「ポリマー通流経路」とは、分配板内部に形成された分配孔および分配溝が連通することで構成される経路をいう。
In the present invention, the “polymer flow path” refers to a path formed by communication between a distribution hole and a distribution groove formed inside the distribution plate.
本発明において、「孔充填密度」とは、島成分ポリマーを吐出する島成分吐出孔数を吐出導入孔の断面積で除することによって求めた値をいう。この孔充填密度が大きい程、島成分ポリマー成分が多数にて構成される複合繊維である。
In the present invention, the “hole filling density” refers to a value obtained by dividing the number of island component discharge holes for discharging the island component polymer by the cross-sectional area of the discharge introduction holes. The larger the pore packing density, the more the composite fiber is composed of a larger number of island component polymer components.
本発明の複合口金によれば、島成分ポリマーの吐出孔の孔充填密度を拡大しつつ、島成分ポリマーを均一に分配し、島成分ポリマー同士の合流を防止することで、多様な繊維断面形態、特に異形断面を高精度に形成し、この断面形態の寸法安定性を高く維持できる。
According to the composite die of the present invention, while expanding the hole filling density of the discharge holes of the island component polymers, the island component polymers are uniformly distributed, and the island component polymers are prevented from merging with each other. Particularly, the irregular cross section can be formed with high accuracy, and the dimensional stability of the cross section can be maintained high.
以下、図面を参照しながら、本発明の複合口金の実施形態について詳細に説明する。図5は、本発明の実施形態に用いられる複合口金の概略断面図であり、図7は図5のX-X矢視図であり、図1は図7の部分拡大平面図であり、図2、図3、図4、図16は本発明の別の実施形態に用いられる最下層分配板の部分拡大平面図であり、図6は本発明の実施形態に用いられる複合口金と、紡糸パック、冷却装置周辺の概略断面図、図17、図20、図21、図22、図31、図38は本発明の実施形態に用いられる分配板、最下層分配板の概略部分断面図である。なお、これらは、本発明の要点を正確に伝えるための概念図であり、図を簡略化しており、本発明の複合口金は特に制限されるものでなく、孔および溝の数ならびにその寸法比などは実施の形態に合わせて変更可能なものとする。
Hereinafter, embodiments of the composite base of the present invention will be described in detail with reference to the drawings. 5 is a schematic cross-sectional view of a composite base used in the embodiment of the present invention, FIG. 7 is a view taken along the line XX of FIG. 5, and FIG. 1 is a partially enlarged plan view of FIG. 2, 3, 4, and 16 are partially enlarged plan views of a lowermost layer distribution plate used in another embodiment of the present invention, and FIG. 6 is a composite die and a spin pack used in the embodiment of the present invention. FIG. 17, FIG. 20, FIG. 21, FIG. 22, FIG. 31, and FIG. 38 are schematic partial sectional views of the distribution plate and the lowermost layer distribution plate used in the embodiment of the present invention. These are conceptual diagrams for accurately transmitting the main points of the present invention, which are simplified, and the composite base of the present invention is not particularly limited, and the number of holes and grooves and the size ratio thereof are not limited. These can be changed according to the embodiment.
本発明の実施形態に用いられる複合口金18は、図6に示すように、紡糸パック15に装備され、スピンブロック16の中に固定され、複合口金18の直下に冷却装置17が構成される。そこで、複合口金18に導かれた2成分以上のポリマーは、各々、計量板9、分配板6、最下層分配板5を通過して、吐出板10の口金吐出孔42から吐出された後、冷却装置17により吹き出される気流により冷却され、油剤を付与された後に、海島型複合繊維として巻き取られる。なお、図6では、環状内向きに気流を吹き出す環状の冷却装置17を採用しているが、一方向から気流を吹き出す冷却装置を用いてもよい。また、計量板9の上流側に装備する部材に関しては、既存の紡糸パック15にて使用された流路等を用いればよく、特別に専有化する必要が無い。
As shown in FIG. 6, the composite base 18 used in the embodiment of the present invention is mounted on the spinning pack 15 and fixed in the spin block 16, and a cooling device 17 is configured immediately below the composite base 18. Therefore, after the polymer of two or more components led to the composite base 18 passes through the measuring plate 9, the distribution plate 6, and the lowermost layer distribution plate 5 and is discharged from the base discharge hole 42 of the discharge plate 10, After being cooled by the air flow blown out by the cooling device 17 and given an oil agent, it is wound up as a sea-island type composite fiber. In addition, in FIG. 6, although the cyclic | annular cooling device 17 which blows off airflow in cyclic | annular inward is employ | adopted, you may use the cooling device which blows off airflow from one direction. In addition, as for the member provided on the upstream side of the measuring plate 9, the flow path used in the existing spinning pack 15 may be used, and it is not necessary to dedicate specially.
本発明の実施形態に用いられる複合口金18は、図5に示すように、計量板9と、少なくとも1枚以上の分配板6、最下層分配板5、吐出板10を順に積層して構成され、特に、分配板6と最下層分配板5は薄板にて構成されるのが好ましい。その場合、計量板9と分配板6、および最下層分配板5と吐出板10は、位置決めピンにより、紡糸パック18の中心位置(芯)が合うように位置決めを行い、積層した後に、ネジ、ボルト等で固定してもよく、熱圧着により金属接合(拡散接合)させてもよい。特に、分配板6同士や、分配板6と最下層分配板5は、薄板を使用するため、熱圧着により金属接合(拡散接合)させるのが好ましい。
As shown in FIG. 5, the composite base 18 used in the embodiment of the present invention is configured by laminating a measuring plate 9, at least one distribution plate 6, a lowermost layer distribution plate 5, and a discharge plate 10 in order. In particular, the distribution plate 6 and the lowermost layer distribution plate 5 are preferably formed of thin plates. In that case, the measuring plate 9 and the distribution plate 6, and the lowermost layer distribution plate 5 and the discharge plate 10 are positioned by the positioning pins so that the center position (core) of the spinning pack 18 is aligned, You may fix with a volt | bolt etc. and you may carry out metal joining (diffusion joining) by thermocompression bonding. In particular, since the distribution plates 6 and the distribution plate 6 and the lowermost layer distribution plate 5 use thin plates, it is preferable to perform metal bonding (diffusion bonding) by thermocompression bonding.
ここで、薄板の板厚みは、0.01~1mmの範囲とするのが良く、更には、0.1~0.5mmの範囲となるのが好適である。薄板の板厚みを薄くすることで、加工できる孔の孔径や溝幅、そして孔間、溝間ピッチを小さくでき、孔充填密度を大きくできる利点を有する。具体的には、島成分吐出孔1の中で最小となる孔の直径DMINと、その最小孔が形成された最下層分配板5の板厚みBTが、式(3)の式を満たすことで、孔充填密度をより大きくすることができる。また、分配溝8が形成されている場合には、溝幅をDMINとし、分配板6の板厚みBTとが、式(3)を満たすことで、上記と同様に、孔充填密度をより大きくすることができる。
Here, the thickness of the thin plate is preferably in the range of 0.01 to 1 mm, and more preferably in the range of 0.1 to 0.5 mm. By reducing the thickness of the thin plate, there is an advantage that the hole diameter and groove width of the holes that can be processed, the distance between holes, and the pitch between grooves can be reduced, and the hole filling density can be increased. Specifically, the minimum diameter DMIN of the island component discharge holes 1 and the thickness BT of the lowermost layer distribution plate 5 in which the minimum holes are formed satisfy the expression (3). The hole filling density can be further increased. When the distribution groove 8 is formed, the groove width is set to DMIN, and the plate thickness BT of the distribution plate 6 satisfies the formula (3), so that the hole filling density is increased as described above. can do.
BT/DMIN≦2 ・・・(3)
ここで、BT/DMIN>2の場合には、上記の通り、孔充填密度をより大きくすることが可能であるが、更に、島成分ポリマーの吐出斑を最小化しようとすると、式(3)を満たすことがより好ましい。 BT / DMIN ≦ 2 (3)
Here, in the case of BT / DMIN> 2, as described above, it is possible to further increase the hole filling density. However, when it is attempted to minimize the discharge spots of the island component polymer, the equation (3) It is more preferable to satisfy.
ここで、BT/DMIN>2の場合には、上記の通り、孔充填密度をより大きくすることが可能であるが、更に、島成分ポリマーの吐出斑を最小化しようとすると、式(3)を満たすことがより好ましい。 BT / DMIN ≦ 2 (3)
Here, in the case of BT / DMIN> 2, as described above, it is possible to further increase the hole filling density. However, when it is attempted to minimize the discharge spots of the island component polymer, the equation (3) It is more preferable to satisfy.
但し、分配板6、最下層分配板5の板厚みを薄くし過ぎると、薄板の強度が低下し、撓みが発生し易くなるため、使用できるポリマーの種類が制限される場合がある(高粘度ポリマーでは圧損が大きくなり、撓みが発生する)。その場合、薄板を複数枚積層させて、それらを金属接合させることで、全体厚みを大きくし、強度を向上させれば良い。また、薄板の板厚みを厚くすることで、一枚当りの強度が向上することから、使用できるポリマーの種類が増える利点を有する。但し、厚くし過ぎると、加工できる孔径、溝幅、孔・溝間ピッチを狭くできず、延いては、孔充填密度を大きくできない場合がある。その場合には、孔数が多い分配板の厚みを薄くし、孔数が少なくなるほどに厚みを厚くすればよい。
However, if the thickness of the distribution plate 6 and the lowermost distribution plate 5 is too thin, the strength of the thin plate is reduced and bending is likely to occur, so that the types of polymers that can be used may be limited (high viscosity) The pressure loss increases with the polymer, and bending occurs.) In that case, a plurality of thin plates may be stacked and metal-bonded to increase the overall thickness and improve the strength. Further, by increasing the thickness of the thin plate, the strength per sheet is improved, so that there is an advantage that the types of polymers that can be used increase. However, if it is too thick, the hole diameter, groove width, and hole-groove pitch that can be processed cannot be reduced, and the hole filling density may not be increased. In that case, the thickness of the distribution plate having a large number of holes may be reduced, and the thickness may be increased as the number of holes is reduced.
そこで、計量板9より供給された各成分のポリマーは、少なくとも1枚以上積層された分配板6の分配溝8、および分配孔7を通過した後、最下層分配板5の島成分ポリマーを吐出するための島成分吐出孔1、および海成分ポリマーを吐出するための海成分吐出孔4より吐出することで、各成分のポリマーが合流し、複合ポリマー流が形成される。その後、複合ポリマー流は、吐出板10の吐出導入孔11、縮小孔12を通過して、口金吐出孔42より吐出される。ここで、最下層分配板5に配設された島成分吐出孔1の孔径は、全て均等な大きさが好ましく、また、海成分吐出孔4の孔径も、全て均等な大きさが好ましい。島成分吐出孔1、および海成分吐出孔4の孔径は、0.03~0.8mmの範囲とするのが良く、更には、0.05~0.5mmの範囲となるのが好適である。
Therefore, the polymer of each component supplied from the measuring plate 9 passes through the distribution groove 8 and the distribution hole 7 of the distribution plate 6 laminated at least one, and then discharges the island component polymer of the lowermost distribution plate 5. By discharging from the island component discharge hole 1 and the sea component discharge hole 4 for discharging the sea component polymer, the polymers of the respective components merge to form a composite polymer flow. Thereafter, the composite polymer flow passes through the discharge introduction hole 11 and the reduction hole 12 of the discharge plate 10 and is discharged from the base discharge hole 42. Here, the hole diameters of the island component discharge holes 1 provided in the lowermost layer distribution plate 5 are preferably all equal, and the hole diameters of the sea component discharge holes 4 are preferably all equal. The hole diameters of the island component discharge hole 1 and the sea component discharge hole 4 are preferably in the range of 0.03 to 0.8 mm, and more preferably in the range of 0.05 to 0.5 mm. .
まず、本発明の最も重要なポイントである、複合口金18の孔充填密度を大きくしつつ、島成分のポリマー同士の合流を防止し、多様な繊維断面形態、特に異形断面を高精度に形成できる原理について説明する。ここで、孔充填密度を大きくするためには、島成分吐出孔1の間隔を極力近接しなければならないが、その場合、隣り合う島成分吐出孔間において、島成分ポリマー同士の合流が発生する。そこで、この島成分ポリマー同士の合流を防止するために、例えば図12に示すように、島成分吐出孔1の周りを、海成分ポリマーを吐出する海成分吐出孔4にて囲い込む配置を行うと、隣り合う島成分ポリマー同士の合流を抑制し、島成分が六角形断面となる繊維を得ることができる。しかしながら、その反面、島成分吐出孔間距離が大きくなり過ぎて、孔充填密度を大きくすることができない。つまりは、孔充填密度と島成分ポリマーの合流防止にはトレードオフの関係が発生する。
First, while increasing the hole packing density of the composite die 18, which is the most important point of the present invention, it is possible to prevent merging of polymers of island components with each other and to form various fiber cross-sectional forms, particularly deformed cross-sections with high accuracy. The principle will be described. Here, in order to increase the hole packing density, the interval between the island component discharge holes 1 must be as close as possible, but in this case, the island component polymers merge between adjacent island component discharge holes. . Therefore, in order to prevent the island component polymers from joining each other, for example, as shown in FIG. 12, the island component discharge hole 1 is surrounded by a sea component discharge hole 4 for discharging the sea component polymer. And the confluence | merging of adjacent island component polymers can be suppressed, and the fiber from which an island component becomes a hexagonal cross section can be obtained. However, on the other hand, the distance between the island component discharge holes becomes too large to increase the hole filling density. In other words, there is a trade-off relationship between the hole packing density and the prevention of merging of the island component polymers.
ここで、島成分の断面形態が丸形状における島成分ポリマー同士の合流は、隣り合う島成分吐出孔1の中心を結ぶ線上において主に発生するが、エッジ(角)部を複数有する異形状の場合には、島成分吐出孔1の重心を結ぶ線上だけでは無く、隣り合うエッジ部間においても発生する。また、生産効率を考えると、海成分ポリマーは溶融紡糸した後に溶出するため、島成分ポリマー比率を極力大きくし、海成分ポリマー比率を小さくすることが好ましいが、その場合、島成分ポリマー同士の合流発生がより顕著となる。
Here, the merging of the island component polymers when the cross-sectional shape of the island component is round is mainly generated on the line connecting the centers of the adjacent island component discharge holes 1, but the irregular shape having a plurality of edge (corner) portions. In some cases, it occurs not only on the line connecting the gravity centers of the island component discharge holes 1 but also between adjacent edge portions. In consideration of production efficiency, since the sea component polymer is eluted after melt spinning, it is preferable to increase the island component polymer ratio as much as possible and reduce the sea component polymer ratio. Occurrence becomes more prominent.
従って、孔充填密度を大きくし、島成分ポリマー同士の合流を抑制し、高精度な繊維断面形態を有する繊維を製造するのは極めて重要な技術となる。そこで、本発明者らは、従来の技術では、何の配慮もされていなかった、上記問題に関して、鋭意検討を重ねた結果、本発明の新たな技術を見出すに至った。
Therefore, it is an extremely important technique to increase the hole packing density, suppress the merging of the island component polymers, and produce a fiber having a highly accurate fiber cross-sectional shape. Accordingly, the present inventors have conducted extensive studies on the above-mentioned problem, which was not considered in the conventional technology, and as a result, have found a new technology of the present invention.
即ち、本発明の実施形態の最下層分配板5は、島成分吐出孔1を中心とした半径R1の仮想円周線C1上に海成分吐出孔4と、半径R2の仮想円周線C2上に海成分吐出孔4と、半径R4の仮想円周線C4上に島成分吐出孔1とが配置されており、式(1)を満足し、且つ(2)の条件イ~ニのいずれかとなるように配置されている。ここで、(2)の条件イ、条件ロは、島成分が三角形断面、条件ハは六角形断面、条件ニは四角形断面となる島成分吐出孔1、および海成分吐出孔4の配置パターンを示している。
That is, the lowermost layer distribution plate 5 according to the embodiment of the present invention has a sea component discharge hole 4 and a virtual circumference C2 having a radius R2 on a virtual circumference C1 having a radius R1 with the island component discharge hole 1 as a center. The sea component discharge hole 4 and the island component discharge hole 1 are arranged on a virtual circumferential line C4 having a radius R4, satisfying the formula (1) and any one of the conditions (1) to (2) in (2) It is arranged to be. Here, conditions (a) and (b) are the arrangement patterns of the island component discharge holes 1 and the sea component discharge holes 4 in which the island component is a triangular cross section, the condition c is a hexagonal cross section, and the condition D is a quadrilateral cross section. Show.
一つ目のパターンとしては、図1に示すように、ある島成分吐出孔1を基準とし、その基準の島成分吐出孔1に最も短い中心間距離で隣接する海成分吐出孔4aとしたとき、基準の島成分吐出孔1と海成分吐出孔4aの中心点を結ぶ線分を半径R1とした仮想円周線をC1とし、その仮想円周線C1上に海成分吐出孔4を配置し、次いで、2番目に短い中心間距離で隣接する海成分吐出孔4bとしたとき、基準の島成分吐出孔1と海成分吐出孔4bの中心を結ぶ線分を半径R2とした仮想円周線C2とし、その仮想円周線C2上に海成分吐出孔4を配置し、さらに、基準となる島成分吐出孔1に最も短い中心間距離で隣接する島成分吐出孔1aとしたとき、基準の島成分吐出孔1、1aの中心を結ぶ線分を半径R4とした仮想円周線C4とし、仮想円周線C1と仮想円周線C2とに挟まれた領域内に、仮想円周線C4を配置し、式(1)を満足し、且つ、各々の仮想円周線C1、C2、およびC4上には(2)の条件イとなるように配置する。ここで、式(1)は、小数点第4位を四捨五入して算出する。
(1)R2≧R4≧√3×R1 式(1)
(2)条件イ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ロ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:3つの島成分吐出孔が中心角120度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ハ.C1:6つの海成分吐出孔が中心角60度にて等分配置
C2:6つの海成分吐出孔が中心角60度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が0度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ニ.C1:4つの海成分吐出孔が中心角90度にて等分配置
C2:8つの海成分吐出孔が配置
C4:4つの島成分吐出孔が中心角90度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が26.6度
θ5:C1とC4に配置された吐出孔間の位相角が0度
それにより、最も合流が発生し易い、基準の島成分吐出孔1と、島成分吐出孔1aとの間における島成分ポリマー同士の合流を防止し、且つ、仮想円周線C1上の海成分吐出孔4aの配置により異形断面(三角形断面)の直線部を形成し、仮想円周線C2上の海成分吐出孔4bの配置によりエッジ部を形成することで、島成分が均一で、高精度な断面(三角形断面)形態となる繊維を得ることができる。 As a first pattern, as shown in FIG. 1, when a certain islandcomponent discharge hole 1 is used as a reference and the sea component discharge hole 4a is adjacent to the reference island component discharge hole 1 at the shortest center distance. A virtual circumferential line having a radius R1 as a line segment connecting the reference island component discharge hole 1 and the center point of the sea component discharge hole 4a is defined as C1, and the sea component discharge hole 4 is disposed on the virtual circumferential line C1. Then, when the sea component discharge holes 4b adjacent to each other at the second shortest center distance are used, a virtual circumferential line having a radius R2 as a line segment connecting the reference island component discharge hole 1 and the center of the sea component discharge hole 4b. When the sea component discharge hole 4 is arranged on the virtual circumferential line C2 and the island component discharge hole 1a adjacent to the reference island component discharge hole 1 at the shortest center distance is defined as C2. A virtual circumferential line C4 having a radius R4 that is a line segment connecting the centers of the island component discharge holes 1 and 1a. A virtual circumferential line C4 is arranged in a region sandwiched between the virtual circumferential line C1 and the virtual circumferential line C2, and satisfies the formula (1), and each virtual circumferential line C1, C2, and On C4, it arrange | positions so that it may become the condition (a) of (2). Here, Equation (1) is calculated by rounding off the fourth decimal place.
(1) R2 ≧ R4 ≧ √3 × R1 Formula (1)
(2) Condition a. C1: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C2: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C4: Six island component discharge holes are at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 30 degrees. C1: Three sea component discharge holes equally divided at a central angle of 120 degrees C2: Three sea component discharge holes equally divided at a central angle of 120 degrees C4: Three island component discharge holes at a central angle of 120 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Six sea component discharge holes equally divided at a central angle of 60 degrees C2: Six sea component discharge holes equally divided at a central angle of 60 degrees C4: Six island component discharge holes at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Four sea component discharge holes are equally divided at a central angle of 90 degrees C2: Eight sea component discharge holes are equally distributed at a central angle of 90 degrees C4: Four sea component discharge holes are equally divided at a central angle of 90 degrees The phase angle between the discharge holes arranged at C2 is 26.6 degrees. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 0 degree. 1 and the island component discharge hole 1a are prevented from joining each other, and the seapart discharge hole 4a on the virtual circumferential line C1 is arranged to form a straight section having an irregular cross section (triangular cross section). Then, by forming the edge portion by the arrangement of the sea component discharge holes 4b on the virtual circumferential line C2, it is possible to obtain a fiber having a uniform island component and a highly accurate cross section (triangular cross section).
(1)R2≧R4≧√3×R1 式(1)
(2)条件イ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ロ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:3つの島成分吐出孔が中心角120度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ハ.C1:6つの海成分吐出孔が中心角60度にて等分配置
C2:6つの海成分吐出孔が中心角60度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が0度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ニ.C1:4つの海成分吐出孔が中心角90度にて等分配置
C2:8つの海成分吐出孔が配置
C4:4つの島成分吐出孔が中心角90度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が26.6度
θ5:C1とC4に配置された吐出孔間の位相角が0度
それにより、最も合流が発生し易い、基準の島成分吐出孔1と、島成分吐出孔1aとの間における島成分ポリマー同士の合流を防止し、且つ、仮想円周線C1上の海成分吐出孔4aの配置により異形断面(三角形断面)の直線部を形成し、仮想円周線C2上の海成分吐出孔4bの配置によりエッジ部を形成することで、島成分が均一で、高精度な断面(三角形断面)形態となる繊維を得ることができる。 As a first pattern, as shown in FIG. 1, when a certain island
(1) R2 ≧ R4 ≧ √3 × R1 Formula (1)
(2) Condition a. C1: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C2: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C4: Six island component discharge holes are at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 30 degrees. C1: Three sea component discharge holes equally divided at a central angle of 120 degrees C2: Three sea component discharge holes equally divided at a central angle of 120 degrees C4: Three island component discharge holes at a central angle of 120 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Six sea component discharge holes equally divided at a central angle of 60 degrees C2: Six sea component discharge holes equally divided at a central angle of 60 degrees C4: Six island component discharge holes at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Four sea component discharge holes are equally divided at a central angle of 90 degrees C2: Eight sea component discharge holes are equally distributed at a central angle of 90 degrees C4: Four sea component discharge holes are equally divided at a central angle of 90 degrees The phase angle between the discharge holes arranged at C2 is 26.6 degrees. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 0 degree. 1 and the island component discharge hole 1a are prevented from joining each other, and the sea
上記の本発明の原理をポリマーの流れ形態に沿って説明すると、島成分ポリマー、海成分ポリマーの両ポリマーは、最下層分配板5の下流側の吐出導入孔11に向けて一斉に吐出され、各ポリマーがポリマーの紡出経路方向に垂直な方向に拡幅しつつ、ポリマーの紡出経路方向に沿って流れ、両ポリマーが合流し、複合ポリマー流を形成する。その際、基準の島成分吐出孔1と島成分吐出孔1aから吐出された島成分ポリマー同士が合流するのを防止するためには、島成分ポリマーを物理的に分断する海成分ポリマーを介在させることが有効であり、この役割を仮想円周線C1上の海成分吐出孔4aから吐出される海成分ポリマーが果たしている。
Explaining the principle of the present invention along the flow form of the polymer, both the island component polymer and the sea component polymer are simultaneously discharged toward the discharge introduction hole 11 on the downstream side of the lowermost layer distribution plate 5, As each polymer widens in a direction perpendicular to the direction of the polymer spinning path, the polymer flows along the direction of the polymer spinning path, and the two polymers merge to form a composite polymer stream. At that time, in order to prevent the island component polymers discharged from the reference island component discharge hole 1 and the island component discharge hole 1a from joining together, a sea component polymer that physically divides the island component polymer is interposed. The sea component polymer discharged from the sea component discharge hole 4a on the virtual circumference C1 plays this role.
そして、もう一つ、仮想円周線C1上の海成分吐出孔4aの重要な役割は、島成分が異形断面となる形態を形成することである。これは、基準の島成分吐出孔1から吐出された島成分ポリマーの拡幅を部分的に抑制する、つまりは、島成分が三角形断面となる形態を得るために、3つの海成分吐出孔4aを中心角120度にて等分配置することで、3箇所から島成分ポリマーの拡幅を抑制する。そして、仮想円周線C2上の海成分吐出孔4bを、位相角60度を有して、中心角120度にて等分配置することで、海成分吐出孔4aの孔間から流れ出す島成分ポリマーを海成分吐出孔4bから吐出された海成分ポリマーにより抑制させる。海成分吐出孔4aと海成分吐出孔4bが位相差を有し、且つ半径が異なる仮想円周線上C1と仮想円周線C2上に配置されていることから、内周側に配置された海成分吐出孔4aにおいて三角形断面の辺を形成し、外周側に配置された海成分吐出孔4bにおいて、三角形断面のエッジ(角)部を形成する役割を有する。それに加えて、基準となる島成分吐出孔1から吐出された島成分ポリマーと、仮想円周線C4上の島成分吐出孔1aから吐出される島成分ポリマーとの合流を抑制する役割も有している。
And, another important role of the sea component discharge hole 4a on the virtual circumferential line C1 is to form a form in which the island component has an irregular cross section. This partially suppresses the widening of the island component polymer discharged from the reference island component discharge hole 1, that is, in order to obtain a form in which the island component has a triangular cross section, the three sea component discharge holes 4a are provided. By equally dividing at a central angle of 120 degrees, widening of the island component polymer is suppressed from three locations. And the island component which flows out from between the holes of the sea component discharge hole 4a by arranging the sea component discharge holes 4b on the virtual circumference C2 equally at a central angle of 120 degrees with a phase angle of 60 degrees. The polymer is suppressed by the sea component polymer discharged from the sea component discharge hole 4b. Since the sea component discharge hole 4a and the sea component discharge hole 4b have a phase difference and are disposed on the virtual circumferential line C1 and the virtual circumferential line C2 having different radii, the sea disposed on the inner peripheral side The component discharge hole 4a forms a side of a triangular cross section, and the sea component discharge hole 4b arranged on the outer peripheral side has a role of forming an edge (corner) portion of the triangular cross section. In addition, the island component polymer discharged from the reference island component discharge hole 1 and the island component polymer discharged from the island component discharge hole 1a on the virtual circumferential line C4 also have a role of suppressing merging. ing.
ここで、島充填密度を大きく、島成分が異形断面となる繊維を得るためには、仮想円周線C4の半径R4を小さくし、基準の島成分吐出孔1と島成分吐出孔1aとを近接すれば良いが、その場合、それぞれの孔から吐出された島成分ポリマーが拡幅し、島成分ポリマー同士が合流する限界となる距離があることを本発明者らは見出した。これは、仮想円周線C1と仮想円周線C2に挟まれた空間において、島成分吐出孔1から吐出された島成分ポリマーを充分に拡幅させる空間を形成しつつ、島成分ポリマーの合流を抑制できる孔配置がポイントとなる。つまり、それは、基準となる島成分吐出孔1に隣接する島成分吐出孔1aとの中心点間距離となる半径R4が、式(1)を満足するように決定すればよい。
Here, in order to obtain a fiber having a large island filling density and an island component having an irregular cross section, the radius R4 of the virtual circumferential line C4 is decreased, and the reference island component discharge hole 1 and the island component discharge hole 1a are formed. In this case, the present inventors have found that there is a distance at which the island component polymers discharged from the respective holes widen and the island component polymers join together. This is because the space between the virtual circumference line C1 and the virtual circumference line C2 forms a space that sufficiently widens the island component polymer discharged from the island component discharge hole 1, and allows the island component polymers to merge. The key is the arrangement of holes that can be suppressed. That is, it suffices to determine that the radius R4 that is the distance between the center points of the island component discharge holes 1a adjacent to the reference island component discharge hole 1 satisfies Expression (1).
ここで、式(1)のR4>R2の場合には、基準となる島成分吐出孔1と仮想円周線C4上に配置された島成分吐出孔1a同士を近接することができず、その結果、島充填密度を大きくすることができない。また、式(1)のR4<√3×R1の場合には、基準となる島成分吐出孔1と、仮想円周線C4上に配置された島成分吐出孔1aとから吐出される島成分ポリマー同士の合流が発生する場合がある。また、この配置の特徴としては、島数を多く配置し、島充填密度を大きくできる反面、島成分ポリマー比率を50%以上にできない場合があるため、ナノファイバーと言った、繊維径がナノサイズとなる複合繊維を得ることに適合している。
Here, in the case of R4> R2 in the formula (1), the island component discharge hole 1 serving as a reference and the island component discharge holes 1a arranged on the virtual circumferential line C4 cannot be brought close to each other. As a result, the island packing density cannot be increased. Further, in the case of R4 <√3 × R1 in the formula (1), the island component discharged from the reference island component discharge hole 1 and the island component discharge hole 1a arranged on the virtual circumference C4. There may be a case where merging of polymers occurs. The feature of this arrangement is that the number of islands can be increased and the island packing density can be increased, but the island component polymer ratio cannot be increased to 50% or more. It is suitable to obtain a composite fiber.
次いで、島成分が三角形断面となるその他の配置パターンとしては、図2に示すように、(2)の条件ロの配置がある。これは、基準となる島成分吐出孔1の周囲の仮想円周線C1上に3つの海成分吐出孔4を中心角120度にて等分配置し、その外周の仮想円周線C4上に位相角0度を有して、3つの島成分吐出孔1を中心角120度にて等分配置し、その外周の仮想円周線C2上に位相角60度を有して、3つの海成分吐出孔4を中心角120度にて等分配置する。このような配置とすることで、島成分ポリマー比率を大きくでき、70%以上と言った高い島比率においても、島成分ポリマー同士の合流が無く、島成分が均一な三角形断面となる繊維を得ることができる。
Next, as another arrangement pattern in which the island component has a triangular cross section, as shown in FIG. This is because three sea component discharge holes 4 are equally arranged at a central angle of 120 degrees on the virtual circumference C1 around the reference island component discharge hole 1, and on the outer circumference of the virtual circumference C4. Three island component discharge holes 1 are equally divided at a central angle of 120 degrees with a phase angle of 0 degrees, and a phase angle of 60 degrees on a virtual circumferential line C2 on the outer periphery of the three island component discharge holes 1 The component discharge holes 4 are equally arranged at a central angle of 120 degrees. By adopting such an arrangement, the island component polymer ratio can be increased, and even at a high island ratio of 70% or more, there is no merging of the island component polymers, and a fiber having a uniform triangular cross section is obtained. be able to.
また、図3に示すように、島成分が六角形断面となる配置パターンとしては、(2)の条件ハに配置がある。(2)のハの配置では、基準となる島成分吐出孔1の周囲の仮想円周線C1上に6つの海成分吐出孔4を中心角60度にて等分配置し、その外周の仮想円周線C4上に位相角30度を有して、6つの島成分吐出孔1を中心角60度にて等分配置し、その外周の仮想円周線C2上に位相角30度を有して、6つの海成分吐出孔4を中心角60度にて等分配置する。このような配置とすることで、孔充填密度を大きく、且つ、島成分ポリマー比率を大きくでき、70%以上と言った高い島比率においても、島成分ポリマー同士の合流が無く、島成分が均一な六角形断面となる繊維を得ることができる。
Further, as shown in FIG. 3, the arrangement pattern in which the island component has a hexagonal cross section is arranged under the condition (2). In the arrangement of (2) c, six sea component discharge holes 4 are equally arranged at a central angle of 60 degrees on a virtual circumferential line C1 around the reference island component discharge hole 1, and the outer periphery of the sea component discharge hole 1 is virtual. Six island component discharge holes 1 are equally distributed at a central angle of 60 degrees with a phase angle of 30 degrees on the circumferential line C4, and a phase angle of 30 degrees on the virtual circumferential line C2 on the outer periphery thereof. Then, the six sea component discharge holes 4 are equally arranged at a central angle of 60 degrees. By adopting such an arrangement, it is possible to increase the hole filling density and the island component polymer ratio, and even at a high island ratio of 70% or more, the island component polymers do not merge with each other, and the island component is uniform. A fiber having a hexagonal cross section can be obtained.
また、図4に示すように、島成分が四角形断面となる配置パターンとしては、(2)の条件ニに配置がある。(2)の条件ニの配置では、基準となる島成分吐出孔1の周囲の仮想円周線C1上に4つの海成分吐出孔4を中心角90度にて等分配置し、その外周の仮想円周線C4上に位相角0度を有して、4つの島成分吐出孔1を中心角90度にて等分配置し、その外周の仮想円周線C2上に位相角22.5度を有して、8つの海成分吐出孔4を配置する。このような配置とすることで、孔充填密度を大きく、且つ、島成分ポリマー比率を大きくでき、70%以上と言った高い島比率においても、島成分が均一な四角形断面となる繊維を得ることができる。
Further, as shown in FIG. 4, as the arrangement pattern in which the island component has a quadrangular section, there is an arrangement under the condition (2). In the arrangement of the condition (2), the four sea component discharge holes 4 are equally divided at a central angle of 90 degrees on the virtual circumference C1 around the reference island component discharge hole 1, and Four island component discharge holes 1 are equally arranged at a central angle of 90 degrees on the virtual circumferential line C4 with a phase angle of 0 degree, and a phase angle of 22.5 is placed on the virtual circumferential line C2 on the outer periphery thereof. The eight sea component discharge holes 4 are arranged at a certain degree. By adopting such an arrangement, it is possible to increase the hole packing density and the island component polymer ratio, and to obtain a fiber having a rectangular cross section with a uniform island component even at a high island ratio of 70% or more. Can do.
また、図17に示すように、分配板6を複数有し、この複数の積層された分配板6において、分配板6に形成された分配孔7の孔数が、ポリマーの紡出経路方向の下流側に向かい増加するように構成し、ポリマーの紡出経路方向にポリマーを導く分配孔7が形成された分配板6と、ポリマーの紡出経路方向に垂直な方向にポリマーを導く分配溝8が形成された分配板6とを交互に積層させて、ポリマーの紡出経路方向の上流側に位置する分配孔7と、ポリマーの紡出経路方向の下流側に位置する分配孔7とを連通するように分配溝8が形成されている。また、一枚の分配板6の片側の面には分配孔7が、他方の面には分配溝8が形成され、分配孔7と分配溝8が連通していてもよい。また、上述の通り、分配孔7が分配板6を貫通して形成されていてもよく、また、分配溝8が分配板7を貫通して形成されていてもよい。
In addition, as shown in FIG. 17, a plurality of distribution plates 6 are provided. In the plurality of stacked distribution plates 6, the number of distribution holes 7 formed in the distribution plate 6 is in the direction of the polymer spinning path. A distribution plate 6 configured to increase toward the downstream side and formed with distribution holes 7 for guiding the polymer in the direction of the polymer spinning path, and a distribution groove 8 for guiding the polymer in a direction perpendicular to the direction of the polymer spinning path The distribution holes 6 are alternately stacked, and the distribution holes 7 located on the upstream side in the direction of the polymer spinning path communicate with the distribution holes 7 located on the downstream side in the direction of the polymer spinning path. Thus, a distribution groove 8 is formed. Further, a distribution hole 7 may be formed on one surface of one distribution plate 6 and a distribution groove 8 may be formed on the other surface, and the distribution hole 7 and the distribution groove 8 may communicate with each other. Further, as described above, the distribution hole 7 may be formed through the distribution plate 6, and the distribution groove 8 may be formed through the distribution plate 7.
そこで、一つの分配孔7に対して、そのポリマー紡出経路方向の下流側の位置に連通する一つの分配溝8を形成し、その分配溝8の端部に連通する複数個(図17では二つ)の分配孔7を構成するトーナメント方式のポリマーの通流経路が形成されている。このトーナメント方式のポリマーの通流経路では、ポリマー紡出経路方向の最上端に位置する分配板6の分配孔7、または分配溝8から最下層分配板5の島成分吐出孔1に至る経路長が等しくなっている。そして、複数の積層された分配板6において、各々の分配板6においては、分配孔7の孔径、分配溝8の溝幅、溝深さ、溝長を等しくした構造となっている。
Therefore, a single distribution groove 8 that communicates with a single distribution hole 7 at a position downstream in the polymer spinning path direction is formed, and a plurality of distribution grooves 8 that communicate with the end of the distribution groove 8 (in FIG. 17). A flow path for a tournament-type polymer constituting the two distribution holes 7 is formed. In this tournament-type polymer flow path, the path length from the distribution hole 7 of the distribution plate 6 located at the uppermost end in the polymer spinning path direction or from the distribution groove 8 to the island component discharge hole 1 of the lowermost distribution plate 5 Are equal. In each of the stacked distribution plates 6, each distribution plate 6 has a structure in which the hole diameter of the distribution hole 7, the groove width, the groove depth, and the groove length of the distribution groove 8 are equal.
この場合、ポリマーの紡出経路方向の上流側に向い、トーナメント流路の数が減少するに伴って、分配溝8や、分配孔7を通過するポリマーの流量が順次大きくなり、流路圧損が大きくなるため、それに合わせて、分配孔7の孔径や、分配溝8の溝幅、溝深さを順次大きくし、流路圧損の増大を抑制するのが好ましい。特に、流路圧損が大きな分配溝を構成する分配板の厚みを大きくするのがより効果的である。また、図17に示すように、一つの分配溝8が、ポリマーの紡出経路方向の下流側に対して、二つの分配孔7に連通する2分岐のトーナメント方式のポリマーの通流経路が好適であるが、これに限定はしない。分配溝8が二つ以上の分配孔7に連通する場合(2分岐以上のトーナメント方式の流路の場合)は、ポリマー紡出経路方向の上流側の分配孔7から、下流側の分配孔7に至る分配溝8の溝長、溝幅、溝深さをそれぞれ等しくすることで、各ポリマーの通流経路の流路圧損を等しくするのがよい。また、分配溝8の端部に分配孔7を配設することで、ポリマーの異常滞留を無くし、ポリマーの分配性が高く、精密に制御できる利点を有する。
In this case, as the number of tournament flow paths decreases toward the upstream side in the direction of the polymer spinning path, the flow rate of the polymer passing through the distribution grooves 8 and the distribution holes 7 sequentially increases, and the flow path pressure loss increases. Accordingly, it is preferable to increase the diameter of the distribution hole 7, the width of the distribution groove 8, and the depth of the distribution groove in order to suppress the increase in flow path pressure loss. In particular, it is more effective to increase the thickness of the distribution plate constituting the distribution groove having a large flow path pressure loss. Also, as shown in FIG. 17, a two-branch tournament type polymer flow path in which one distribution groove 8 communicates with two distribution holes 7 on the downstream side in the polymer spinning path direction is preferable. However, this is not a limitation. When the distribution groove 8 communicates with two or more distribution holes 7 (in the case of a tournament type flow path having two or more branches), the distribution holes 7 on the downstream side are distributed from the distribution holes 7 on the upstream side in the polymer spinning path direction. It is preferable that the flow path pressure loss of the flow path of each polymer is equalized by equalizing the groove length, groove width, and groove depth of the distribution groove 8 that reaches the center. Further, disposing the distribution hole 7 at the end of the distribution groove 8 eliminates the abnormal retention of the polymer, has the advantage of high polymer distribution and precise control.
ここで、その他の各ポリマーの通流経路の流路圧損を等しくする構造としては、分配孔7および分配溝8によって形成された分配板6内部の複数のポリマー通流経路について、分配板6の上端から最下層分配板5に至るまでのポリマー通流経路の長さが相対的に長い経路における分配孔6の孔径を、相対的に短い経路における分配孔6の孔径より大きくすることが挙げられ、これにより流路圧損を均等にすることが可能となる。
Here, as a structure for equalizing the flow path pressure loss of the other polymer flow paths, a plurality of polymer flow paths inside the distribution plate 6 formed by the distribution holes 7 and the distribution grooves 8 can be used. It is mentioned that the diameter of the distribution hole 6 in the path having a relatively long polymer flow path from the upper end to the lowermost layer distribution plate 5 is larger than the diameter of the distribution hole 6 in the relatively short path. This makes it possible to equalize the flow path pressure loss.
また、その他の各ポリマーの通流経路の流路圧損を等しくする構造としては、最下層分配板5の島成分吐出孔1の孔径を、その上流側の分配板6の各流路における流路圧損差を等しくするように調整する構造が挙げられる。具体的には、流路圧損が大きな流路に連通する島成分吐出孔1の孔径を大きくし、流路圧損が小さな上流側の流路に連通する島成分吐出孔1を小さくすることで、流路圧損を等しくすることが可能となる。
Further, as a structure for equalizing the flow path pressure loss of the other polymer flow paths, the hole diameter of the island component discharge hole 1 of the lowermost layer distribution plate 5 is set to the flow path in each flow path of the distribution plate 6 on the upstream side. A structure for adjusting the pressure loss difference to be equal can be mentioned. Specifically, by increasing the diameter of the island component discharge hole 1 communicating with the flow path having a large flow path pressure loss and reducing the island component discharge hole 1 communicating with the upstream flow path having a small flow path pressure loss, It is possible to equalize the flow path pressure loss.
また、図31に示すように、一つの分配溝8が、ポリマー紡出経路方向の下流側に対して、複数個の分配孔7に連通し、また、ポリマー紡出経路方向の上流側に対しても、複数個の分配孔7に連通している場合において、各ポリマーの通流経路の流路圧損を等しくする構造としては、分配溝8の中央部に連通した分配孔7と、端部に連通した分配孔7を通過するポリマーの流量を等しくするために、中央部と比較して、端部に位置する分配孔7の孔径を大きくすることで、流路圧損を均等にすることが可能となる。
In addition, as shown in FIG. 31, one distribution groove 8 communicates with the plurality of distribution holes 7 with respect to the downstream side in the polymer spinning path direction, and also with respect to the upstream side in the polymer spinning path direction. However, in the case where the plurality of distribution holes 7 are communicated with each other, the structure in which the flow path pressure loss of each polymer flow path is made equal is the distribution hole 7 communicating with the central portion of the distribution groove 8 and the end portion. In order to equalize the flow rate of the polymer passing through the distribution hole 7 communicated with the center, the diameter of the distribution hole 7 located at the end portion is made larger than that of the central portion, so that the flow path pressure loss can be made uniform. It becomes possible.
次いで、分配板6に配設された分配孔7は、主にポリマー紡出経路方向にポリマーを分配し、分配溝8は、主にポリマー紡出経路方向に垂直な方向にポリマーを分配するため、繊維断面方向にポリマーを自由、かつ容易に分配することができ、これを利用して、隣接する島成分吐出孔1の間の極めて狭い領域内に海成分吐出孔4を配置できる。
Next, the distribution holes 7 provided in the distribution plate 6 distribute the polymer mainly in the direction of the polymer spinning path, and the distribution groove 8 distributes the polymer mainly in the direction perpendicular to the direction of the polymer spinning path. The polymer can be distributed freely and easily in the fiber cross-sectional direction, and by using this, the sea component discharge holes 4 can be arranged in a very narrow area between the adjacent island component discharge holes 1.
特に、図20に示すように、最下層分配板5の直上の分配板6には、分配孔7と分配溝8が配設されているのが好ましい。この場合、分配孔7には島成分吐出孔1を連通させ、分配溝8には海成分吐出孔4を連通させる。こうすることで、分配板6において、分配孔7により近接した位置に分配溝8を配置させて、それに連通する海成分吐出孔4を島成分吐出孔1により近接させて配置させることができ、孔充填密度を大きくできる。また、最下層分配板5の直上の分配板6は、図21に示すように、分配溝8のポリマー紡出経路方向の下流側に分配孔7が連通していても、また、図22に示すように、分配孔7のポリマー紡出経路方向の下流側に分配溝8が連通しても、上記と同様の効果を得ることができる。更には、最下層分配板5の島成分吐出孔1の孔充填密度を大きく、つまりは、基準の島成分吐出孔1と仮想円周線C1上の海成分吐出孔4や、仮想円周線C4上の島成分吐出孔1、あるいは仮想円周線C2上の海成分吐出孔4との間隔を小さくするために、本発明の分配板6、および最下層分配板5は、薄板の積層構造となっている。
In particular, as shown in FIG. 20, it is preferable that a distribution hole 6 and a distribution groove 8 are provided in the distribution plate 6 immediately above the lowermost layer distribution plate 5. In this case, the island component discharge hole 1 is communicated with the distribution hole 7, and the sea component discharge hole 4 is communicated with the distribution groove 8. In this way, in the distribution plate 6, the distribution groove 8 can be disposed at a position closer to the distribution hole 7, and the sea component discharge hole 4 communicating therewith can be disposed closer to the island component discharge hole 1. The hole packing density can be increased. Further, as shown in FIG. 21, the distribution plate 6 immediately above the lowermost layer distribution plate 5 may have a distribution hole 7 communicating with the downstream side of the distribution groove 8 in the polymer spinning path direction. As shown, even if the distribution groove 8 communicates with the distribution hole 7 on the downstream side in the polymer spinning path direction, the same effect as described above can be obtained. Furthermore, the hole packing density of the island component discharge holes 1 of the lowermost layer distribution plate 5 is increased, that is, the sea component discharge holes 4 on the reference island component discharge holes 1 and the virtual circumferential line C1, or the virtual circumferential line. In order to reduce the distance between the island component discharge hole 1 on C4 or the sea component discharge hole 4 on the virtual circumferential line C2, the distribution plate 6 and the lowermost layer distribution plate 5 of the present invention have a laminated structure of thin plates. It has become.
次に、図1、図2、図3、図4、図5、図6に示した本発明の実施形態の複合口金18に共通した各部材、各部材の形状について詳細に説明する。
Next, each member common to the composite base 18 of the embodiment of the present invention shown in FIGS. 1, 2, 3, 4, 5, and 6 and the shape of each member will be described in detail.
本発明における複合口金18は、円形状に限定されず、四角形であってもよく、多角形であってもよい。また、複合口金18における口金吐出孔42の配列は、海島型複合繊維の本数、糸条数、冷却装置17に応じて、適宜決定すればよい。冷却装置17として、環状の冷却装置では、口金吐出孔42を一列、もしくは複数列に渡り環状に配列するのがよく、また、一方向の冷却装置では、口金吐出孔42を千鳥に配列するのがよい。
The composite base 18 in the present invention is not limited to a circular shape, and may be a square or a polygon. Further, the arrangement of the base discharge holes 42 in the composite base 18 may be appropriately determined according to the number of sea-island composite fibers, the number of yarns, and the cooling device 17. As the cooling device 17, in the case of an annular cooling device, the base discharge holes 42 may be arranged in a ring or in a row over a plurality of rows. In the case of a one-way cooling device, the base discharge holes 42 are arranged in a staggered manner. Is good.
また、口金吐出孔42のポリマーの紡出経路方向に垂直な方向の断面は丸形状に限定されず、丸形以外の断面状や中空断面状であってもよい。但し、丸形以外の断面形状とする場合は、ポリマーの計量性を確保するために、口金吐出孔42の長さを大きくするのが好ましい。
Further, the cross section in the direction perpendicular to the polymer spinning path direction of the nozzle discharge hole 42 is not limited to a round shape, and may be a cross section other than a round shape or a hollow cross section. However, in the case of a cross-sectional shape other than a round shape, it is preferable to increase the length of the die discharge hole 42 in order to ensure the meterability of the polymer.
また、本発明における島成分吐出孔1は、ポリマーの紡出経路方向に垂直な方向の断面は丸形状に限定されず、丸形以外の異形断面状や中空断面状であってもよい。この場合、最下層分配板5に配設された島成分吐出孔1の形状は、全て同形状とするのが好ましい。丸形断面以外の場合、島成分に所望の形となるように、予め島成分吐出孔1をその相似形とすることで、異形断面の繊維が得やすくなる。また、島成分の異形断面繊維において、角部をよりシャープに形成しやすくなる。(曲率半径を小さくし易くなる。)但し、島成分吐出孔1が丸形以外の断面状の場合には、その直上に連通して丸断面状の分配孔7を配置することで、直上の丸断面の分配孔7にてポリマーの計量性を確保した後、丸形以外の断面形状の島成分吐出孔1にてポリマーを吐出するのが好ましい。また、本発明における海成分吐出孔4は、島成分吐出孔1と同様に、ポリマーの紡出経路方向に垂直な方向の断面は丸形状に限定されず、丸形以外の断面状であってもよい。この場合、最下層分配板5に配設された海成分吐出孔4の形状は、全て同形状とするのが好ましい。
In addition, the island component discharge hole 1 in the present invention is not limited to a round shape in a cross section perpendicular to the polymer spinning path direction, and may have an irregular cross section other than a round shape or a hollow cross section. In this case, it is preferable that the shape of the island component discharge holes 1 arranged in the lowermost layer distribution plate 5 is the same. In the case of a shape other than the round cross section, it is easy to obtain a fiber having a deformed cross section by making the island component discharge holes 1 similar in advance so that the island component has a desired shape. In addition, in the irregular cross-section fiber of the island component, it becomes easier to form corners more sharply. (It is easy to reduce the radius of curvature.) However, when the island component discharge hole 1 has a cross-sectional shape other than a round shape, a round cross-sectional distribution hole 7 is arranged in communication with the island component discharge hole 1 to provide a round top right. It is preferable to discharge the polymer through the island component discharge holes 1 having a cross-sectional shape other than the round shape after ensuring the polymer meterability through the cross-sectional distribution holes 7. In addition, the sea component discharge hole 4 in the present invention is not limited to a round shape in the direction perpendicular to the polymer spinning path direction, like the island component discharge hole 1, and has a cross-sectional shape other than a round shape. Also good. In this case, it is preferable that all the sea component discharge holes 4 arranged in the lowermost layer distribution plate 5 have the same shape.
また、本発明における吐出導入孔11は、ポリマーの紡出経路方向において、最下層分配板5の下面より一定の助走区間を設けることで、島成分ポリマーと海成分ポリマーが合流した直後の流速差を緩和させ、複合ポリマー流を安定化させることができる。また、吐出導入孔11の孔径は、最下層分配板5に配設された島成分吐出孔1と海成分吐出孔4の各吐出孔群の仮想円52の外径よりも大きく、かつ、仮想円52の断面積と、吐出導入孔11の断面積比が極力小さくなるように構成されるのが好ましい。それにより、最下層分配板5より吐出された各ポリマーの拡幅が抑えられ、複合ポリマー流を安定化させることができる。
Further, the discharge introduction hole 11 in the present invention is provided with a constant running section from the lower surface of the lowermost layer distribution plate 5 in the polymer spinning path direction, so that the flow velocity difference immediately after the island component polymer and the sea component polymer merge. Can be relaxed and the composite polymer stream can be stabilized. Further, the hole diameter of the discharge introduction hole 11 is larger than the outer diameter of the virtual circle 52 of each discharge hole group of the island component discharge hole 1 and the sea component discharge hole 4 disposed in the lowermost layer distribution plate 5 and is virtual. It is preferable that the cross-sectional area ratio of the circle 52 and the cross-sectional area ratio of the discharge introduction hole 11 be as small as possible. Thereby, the widening of each polymer discharged from the lowermost layer distribution plate 5 is suppressed, and the composite polymer flow can be stabilized.
また、本発明における縮小孔12は、吐出導入孔11から口金吐出孔42に至る流路の縮小角度αを50~90°の範囲に設定することで、複合ポリマー流のドローレゾナンス等の不安定現象を抑え、安定的に複合ポリマー流を供給することができる。ここで、縮小角度αが50°より小さい場合、複合ポリマー流の不安定現象を抑えることはできるが、複合口金18自体が大型化し、また、縮小角度αが90°より大きい場合、複合ポリマー流の不安定現象がより顕著化する場合がある。
Further, the reduction hole 12 in the present invention is unstable such as draw resonance of the composite polymer flow by setting the reduction angle α of the flow path from the discharge introduction hole 11 to the die discharge hole 42 in the range of 50 to 90 °. It is possible to suppress the phenomenon and supply the composite polymer stream stably. Here, when the reduction angle α is smaller than 50 °, the instability phenomenon of the composite polymer flow can be suppressed, but the composite base 18 itself is enlarged, and when the reduction angle α is larger than 90 °, the composite polymer flow is reduced. Instability phenomenon may become more prominent.
また、本発明における島成分吐出孔1、海成分吐出孔4および分配孔7は、ポリマー紡出経路方向に孔断面積が一定であるのが好適であるが、断面積が漸減、または漸増、もしくは漸減と漸増していてもよい。これは、本発明における分配板6、最下層分配板5では、主にエッチング処理を用いて孔加工していることから、微小な孔を加工する際に、ポリマーの紡出経路方向に孔断面積が一定とならない場合があるためであり、その場合には、加工条件等を適宜適正化すれば良い。
The island component discharge hole 1, sea component discharge hole 4 and distribution hole 7 in the present invention preferably have a constant hole cross-sectional area in the polymer spinning path direction, but the cross-sectional area gradually decreases or increases, Alternatively, it may be gradually decreased and gradually increased. This is because, in the distribution plate 6 and the lowermost layer distribution plate 5 in the present invention, holes are cut mainly using an etching process, so that when the minute holes are processed, the holes are cut in the direction of the polymer spinning path. This is because the area may not be constant. In that case, the processing conditions and the like may be appropriately optimized.
また、本発明における最下層分配板5は、1枚であってもよいが、複数枚が積層されていてもよい。この場合、1枚の最下層分配板5では、島成分吐出孔1、海成分吐出孔4のポリマー計量性が得られず、繊維形態が経時的に変化した場合には、複数枚を積層することで、ポリマーの計量性を確保することができる。
Further, the lowermost layer distribution plate 5 in the present invention may be one, or a plurality of layers may be laminated. In this case, in the single lowermost layer distribution plate 5, when the polymer meterability of the island component discharge hole 1 and the sea component discharge hole 4 cannot be obtained and the fiber form changes with time, a plurality of sheets are laminated. Thus, the meterability of the polymer can be ensured.
また、本発明の1枚の分配板6には、分配板6の上流側に分配孔7が配設され、それに連通して分配溝8(下流側)が配設されていてもよく、また、分配板6の上流側に分配溝8が配設され、それに連通して分配孔7(下流側)が配設されていてもよい。このように、分配孔7と分配溝8を連通させ、これを1回以上繰り返すことで、ポリマーを分配することができる。
Further, one distribution plate 6 of the present invention may be provided with a distribution hole 7 on the upstream side of the distribution plate 6 and a distribution groove 8 (downstream side) in communication therewith. The distribution groove 8 may be disposed on the upstream side of the distribution plate 6, and the distribution hole 7 (downstream side) may be disposed in communication therewith. In this way, the polymer can be distributed by communicating the distribution hole 7 and the distribution groove 8 and repeating this one or more times.
また、分配板6での1つの成分のポリマーの分配方法は、前述の通り、トーナメント方式が最も好ましいが、図38に示すように、複数の分配孔7に対して一つ分配溝8、または複数の分配孔7に対して複数の分配溝8を構成するスリット方式であってもよく、また、トーナメント方式とスリット方式を組み合わせた複合方式であってもよい。ここで、他の成分のポリマーも上記と同様の分配方法を採用しているが、説明簡略化のため、1成分のポリマーでのみ説明する。
Also, as described above, the tournament method is most preferable as a method for distributing the polymer of one component on the distribution plate 6, but as shown in FIG. 38, one distribution groove 8 or a plurality of distribution holes 7 is provided. A slit method in which a plurality of distribution grooves 8 are formed for a plurality of distribution holes 7 may be used, or a combined method in which a tournament method and a slit method are combined. Here, the polymer of the other components also adopts the same distribution method as described above, but only one component polymer will be described for the sake of simplicity.
トーナメント方式は、前述の通り、分配溝8の端部に分配孔7を配設することで、ポリマーの異常滞留を無くし、ポリマーの分配性が高く、精密に制御できる利点を有する。しかし、例えば、一つの分配溝8または分配孔7が生産中にポリマー詰まり等で閉塞した場合には、下流側にポリマーが分配されず、その結果、所望の複合断面繊維が得られない場合がある。
As described above, the tournament method has the advantage that the distribution hole 7 is disposed at the end of the distribution groove 8 to eliminate abnormal retention of the polymer, the polymer distribution property is high, and the control can be precisely performed. However, for example, when one distribution groove 8 or distribution hole 7 is blocked due to polymer clogging or the like during production, the polymer is not distributed downstream, and as a result, a desired composite cross-section fiber may not be obtained. is there.
また、スリット方式は、一つの分配溝8に対して複数の分配孔7が構成されることから、上記の孔や溝の閉塞等の問題に対して対応性が高く、また、一つの分配板6でポリマーの紡出経路方向に垂直な方向にポリマーを多く分配できることから、分配板6の枚数を少なくできるため、複合口金18の製造コストを抑える利点を有する。しかし、その反面、ポリマーの異常滞留が発生し易く、ポリマー分配の精密な制御に関してはトーナメント方式に劣る場合がある。そこで、上流側(計量板9側)にスリット方式、下流側(最下層分配板5側)にトーナメント方式を構成する複合方式とすることで、上流側では孔や溝の閉塞によるポリマー分配不良を無くし、下流側ではポリマーの計量性を高めて、均一にポリマーを分配することが好ましい。
In addition, since the slit method has a plurality of distribution holes 7 for one distribution groove 8, it is highly compatible with problems such as blockage of the holes and grooves, and one distribution plate. 6 allows a large amount of polymer to be distributed in a direction perpendicular to the direction of the polymer spinning path. Therefore, the number of distribution plates 6 can be reduced, which has the advantage of reducing the manufacturing cost of the composite die 18. However, on the other hand, abnormal retention of the polymer is likely to occur, and the precise control of the polymer distribution may be inferior to the tournament method. Therefore, by adopting a composite system that forms a slit system on the upstream side (metering plate 9 side) and a tournament system on the downstream side (lowermost layer distribution plate 5 side), polymer distribution failure due to blockage of holes and grooves on the upstream side. It is preferable that the polymer is uniformly distributed on the downstream side by improving the meterability of the polymer.
また、スリット方式において、ポリマーの計量性を高める方法としては、1成分のポリマーが、分配孔7(流入側)-分配溝8-分配孔7(流出側)を通過する場合、流入側の分配孔7に対して、流出側の分配孔7の孔径を、流入側の分配孔7に近い方の孔径を小さく、遠い方の孔径を大きくする。つまりは、流入側の分配孔7に近い方の分配孔7(流出側)と、遠い方の分配孔7(流出側)において、流路圧損が同等になるように、孔径を調整するのが好ましい。また、流路圧損の調整は、流路溝8の溝幅にて調整してもよい。また、上記のように、全ての分配板6にて、流路圧損を等しくするために、分配孔7、分配溝8の寸法を調整してもよいが、最下層分配板5に接する分配板6の分配孔7のみを、その上流側の全ての流路圧損が等しくなるように孔径を調整してもよい。
In addition, in the slit method, as a method for improving the polymer meterability, when one-component polymer passes through the distribution hole 7 (inflow side) -distribution groove 8-distribution hole 7 (outflow side), the distribution on the inflow side is performed. The diameter of the distribution hole 7 on the outflow side is smaller than the diameter of the distribution hole 7 on the inflow side with respect to the hole 7, and the diameter of the far side is increased. In other words, the hole diameter is adjusted so that the flow path pressure loss is equal between the distribution hole 7 (outflow side) closer to the inflow side distribution hole 7 and the distant distribution hole 7 (outflow side). preferable. Further, the flow path pressure loss may be adjusted by the groove width of the flow path groove 8. Further, as described above, in order to equalize the flow path pressure loss in all the distribution plates 6, the dimensions of the distribution holes 7 and the distribution grooves 8 may be adjusted, but the distribution plate in contact with the lowermost layer distribution plate 5. Only the six distribution holes 7 may be adjusted in diameter so that all the flow path pressure losses on the upstream side are equal.
また、トーナメント方式において、孔や溝の閉塞を抑制する方法としては、分配孔7の孔径、分配溝8の溝幅、溝深さを大きくするのがよく、特に、ポリマーの紡出経路方向の上流側(計量板9側)ほど、分配溝8を構成する分配板6の厚みを大きくし、分配溝8の溝深さを大きくするのがよく、また、ポリマーの紡出経路方向の上流側(計量板9側)ほど、分配溝8の溝幅を大きくするのがよく、また、分配孔7の孔径を大きくするのがよい。また、分配板6でのポリマーの分配方法に関しては、所望の繊維断面形態に応じて、分配板6の分配溝8、および分配孔7を適宜配置すればよく、上記方法に特に限定するものではない。
Further, in the tournament method, as a method for suppressing the blockage of the holes and grooves, it is preferable to increase the hole diameter of the distribution holes 7, the groove width and the groove depth of the distribution grooves 8, and particularly in the direction of the polymer spinning path. It is better to increase the thickness of the distribution plate 6 constituting the distribution groove 8 and to increase the depth of the distribution groove 8 on the upstream side (the measuring plate 9 side), and to the upstream side in the polymer spinning path direction. It is better to increase the groove width of the distribution groove 8 and to increase the hole diameter of the distribution hole 7 toward the measuring plate 9 side. Further, regarding the polymer distribution method on the distribution plate 6, the distribution groove 8 and the distribution hole 7 of the distribution plate 6 may be appropriately arranged according to the desired fiber cross-sectional shape, and the method is not particularly limited to the above method. Absent.
次に、図1、図5、図6に示した本発明の実施形態の複合口金18に共通した複合繊維の製造方法について詳細に説明する。
Next, a method for producing a composite fiber common to the composite base 18 of the embodiment of the present invention shown in FIGS. 1, 5, and 6 will be described in detail.
本発明の複合繊維の製造方法は、公知の複合紡糸機で、本発明の複合口金18を使用すればよい。例えば、溶融紡糸の場合には、紡糸温度は、2種類以上のポリマーのうち、主に高融点や高粘度ポリマーが流動性を示す温度とする。この流動性を示す温度としては、分子量によっても異なるが、そのポリマーの融点が目安となり、融点+60℃以下で設定すればよい。これ以下であれば、紡糸ヘッドあるいは紡糸パック内でポリマーが熱分解等することなく、分子量低下が抑制されるため、好ましい。紡糸速度はポリマーの物性や複合繊維の目的によって異なるが、500~6000m/分程度とすることができる。特に、産業資材用途で高い力学的特性が必要な場合には、高分子量ポリマーを用い、500~2000m/分とし、その後高倍率延伸することが好ましい。延伸に際しては、ポリマーのガラス転移温度など、軟化できる温度を目安として、予熱温度を適切に設定することが好ましい。予熱温度の上限としては、予熱過程で繊維の自発伸長により糸道乱れが発生しない温度とすることが好ましい。例えば、ガラス転移温度が70℃付近に存在するPETの場合には、通常この予熱温度は80~95℃程度で設定される。
The method for producing the composite fiber of the present invention may be a known composite spinning machine using the composite base 18 of the present invention. For example, in the case of melt spinning, the spinning temperature is set to a temperature at which a high melting point or high viscosity polymer mainly exhibits fluidity among two or more types of polymers. The temperature indicating the fluidity varies depending on the molecular weight, but the melting point of the polymer is a guideline and may be set at a melting point + 60 ° C. or lower. If it is less than this, the polymer is not thermally decomposed in the spinning head or the spinning pack, and the molecular weight reduction is suppressed, which is preferable. The spinning speed varies depending on the physical properties of the polymer and the purpose of the composite fiber, but can be about 500 to 6000 m / min. In particular, when high mechanical properties are required for industrial material applications, it is preferable to use a high molecular weight polymer, set to 500 to 2000 m / min, and then stretch at a high magnification. In stretching, it is preferable to appropriately set the preheating temperature using as a guide the temperature at which the polymer can be softened, such as the glass transition temperature of the polymer. The upper limit of the preheating temperature is preferably a temperature at which yarn path disturbance does not occur due to spontaneous elongation of the fiber during the preheating process. For example, in the case of PET having a glass transition temperature around 70 ° C., this preheating temperature is usually set at about 80 to 95 ° C.
また、本発明の島成分吐出孔1、海成分吐出孔4から吐出される各成分のポリマーの吐出速度比は、吐出量、孔径および孔数によって、制御することが好ましい。(吐出速度とは、吐出流量を、島成分吐出孔1または海成分吐出孔4の断面積で除した値を言う。)この吐出速度の範囲としては、単孔当たりの島成分ポリマーの吐出速度Va、海成分ポリマーの吐出速度をVbとした場合、その比(Va/VbあるいはVb/Va)が0.05~20であることが好ましく、さらに好ましくは、0.1~10の範囲であり、この範囲であれば、最下層分配板5から吐出されたポリマーは層流として、吐出導入孔11を経て、縮小孔12に導かれるため、断面形態が著しく安定し、精度よく形態を維持することができる。
Moreover, it is preferable to control the discharge rate ratio of the polymer of each component discharged from the island component discharge hole 1 and the sea component discharge hole 4 of the present invention by the discharge amount, the hole diameter, and the number of holes. (The discharge speed is a value obtained by dividing the discharge flow rate by the cross-sectional area of the island component discharge hole 1 or the sea component discharge hole 4.) The discharge speed range is the discharge speed of the island component polymer per single hole. When the discharge speed of Va and sea component polymer is Vb, the ratio (Va / Vb or Vb / Va) is preferably 0.05 to 20, more preferably 0.1 to 10. In this range, since the polymer discharged from the lowermost distribution plate 5 is led as a laminar flow through the discharge introduction hole 11 to the reduction hole 12, the cross-sectional shape is remarkably stabilized and the shape is maintained with high accuracy. be able to.
また、本発明に使用されるポリマーの溶融粘度比は、2.0未満とすることで、安定的に複合ポリマー流を形成することができる。溶融粘度比が2.0以上の場合は、島成分ポリマーと海成分ポリマーが合流する際に不安定化し、得られた繊維断面の走行方向において糸の太さ斑が発生する場合がある。
Moreover, the composite polymer flow can be stably formed by setting the melt viscosity ratio of the polymer used in the present invention to less than 2.0. When the melt viscosity ratio is 2.0 or more, the island component polymer and the sea component polymer become unstable when they merge, and there are cases where uneven thickness of the yarn occurs in the traveling direction of the obtained fiber cross section.
次に、本発明の分配板6および最下層分配板5の作製方法としては、通常電気・電子部品の加工に用いられる、薄板にパターンを転写し、化学的に処理することで微細加工を施すエッチング加工が好適である。ここで、エッチング加工とは、エッチング液などの化学薬品による化学反応・腐食作用を応用して薄板を食刻(溶解加工・化学切削)する加工方法であり、目的とする加工形状にマスキング(必要な部分表面を部分的に被覆保護すること)による防食処理を施した上で、エッチング液などの腐食剤によって不要部分を除去することで目的の加工形状を非常に高精度に得ることができる。この加工方法では、被加工物の熱歪への配慮が必要ないため、上記した他の加工方法と比較して、被加工物の厚みの下限に制約がなく、極めて薄い金属板に本発明で言う合流溝8や分配孔7、島成分吐出孔1を穿設することができる。
Next, as a manufacturing method of the distribution plate 6 and the lowermost layer distribution plate 5 of the present invention, a pattern is transferred to a thin plate, which is usually used for processing of electric / electronic parts, and fine processing is performed by chemical processing. Etching is preferred. Here, etching is a processing method that applies a chemical reaction and corrosive action of chemicals such as an etchant to etch a thin plate (dissolution processing / chemical cutting), and masks the required processing shape (necessary) The target processed shape can be obtained with very high accuracy by removing the unnecessary portion with a corrosive agent such as an etching solution. Since this processing method does not require consideration to the thermal strain of the workpiece, there is no restriction on the lower limit of the thickness of the workpiece compared to the other processing methods described above, and the present invention can be applied to an extremely thin metal plate. The junction grooves 8, the distribution holes 7, and the island component discharge holes 1 can be formed.
また、エッチング加工で作製した分配板6、および最下層分配板5は1枚当たりの厚みを薄くすることが可能になるため、複数枚積層させても、複合口金18の総厚みに与える影響はほとんど無く、所望の断面形態の複合繊維に合わせて、他のパック部材を新設する必要がない。言い換えれば、分配板6と最下層分配板5のみを交換すれば、断面形態を変更することも可能になるため、繊維製品の高性能多品種化が進む昨今では、好ましい特徴と言える。また、他の作製方法としては、従来の口金作製で用いられるドリル加工や金属精密加工である旋盤、マニシング、プレス、レーザー加工等を用いることで可能である。但し、これらの加工は被加工物の歪抑制という観点から、加工板の厚みの下限に制約があるため、複数の分配板を積層させる本発明の複合口金に適用するには分配板6の厚みを考慮する必要がある。
In addition, since the distribution plate 6 and the lowermost layer distribution plate 5 manufactured by etching can be reduced in thickness per sheet, the effect on the total thickness of the composite base 18 even if a plurality of sheets are stacked. There is almost no need to newly install another pack member in accordance with the composite fiber having a desired cross-sectional shape. In other words, if only the distribution plate 6 and the lowermost layer distribution plate 5 are exchanged, the cross-sectional shape can be changed. Further, as another manufacturing method, it is possible to use a lathe, machining, press, laser processing, or the like, which is a drill processing or metal precision processing used in conventional base manufacturing. However, since these processes are limited in the lower limit of the thickness of the processed plate from the viewpoint of suppressing distortion of the workpiece, the thickness of the distribution plate 6 is applicable to the composite die of the present invention in which a plurality of distribution plates are laminated. Need to be considered.
次に、本発明の複合口金によって得られる繊維とは、2種類以上のポリマーが組み合わされた繊維のことを意味し、繊維横断面において2種類以上のポリマーが海島状等の形態をとって存在している繊維のことを言う。ここで、本発明で言う2種類以上のポリマーとは、例えば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々の分子構造が異なるポリマーを2種類以上使用するということが含まれるのは言うまでもないが、製糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤や粒子の添加量が異なること、また、分子量が異なること、あるいは、共重合がなされている等などが含まれる。
Next, the fiber obtained by the composite base of the present invention means a fiber in which two or more kinds of polymers are combined, and two or more kinds of polymers are present in the form of a sea island or the like in the fiber cross section. Say the fiber you are doing. Here, it is needless to say that the two or more types of polymers referred to in the present invention include the use of two or more types of polymers having different molecular structures such as polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, and polypropylene. However, matting agents such as titanium dioxide, silicon oxide, kaolin, anti-coloring agents, stabilizers, antioxidants, deodorants, flame retardants, yarn friction reducing agents, coloring, as long as the yarn-making stability is not impaired. Examples include various functional particles such as pigments and surface modifiers, additives such as organic compounds, and different amounts of particles added, different molecular weights, and copolymerization.
また、本発明の複合口金18によって得られる繊維の単糸断面は、丸形状はもとより、三角、扁平等の丸形以外の形状や中空であってもよい。また、本発明は、極めて汎用性の高い発明であり、複合繊維の単糸繊度により特に限られるものではなく、複合繊維の単糸数により特に限られるものではなく、さらに、複合繊維の糸条数により特に限られるものでも無く、1糸条であってもよく、2糸条以上の多糸条であってもよい。
Further, the cross section of the single yarn of the fiber obtained by the composite base 18 of the present invention may be not only a round shape but also a shape other than a round shape such as a triangle or a flat shape or a hollow shape. Further, the present invention is an extremely versatile invention, and is not particularly limited by the single yarn fineness of the composite fiber, is not particularly limited by the number of single yarns of the composite fiber, and further, the number of yarns of the composite fiber Is not particularly limited, and may be a single yarn or a multi-yarn of two or more yarns.
本発明の複合口金によって得られる海島型複合繊維とは、図8の(a)、(b)、(c)、図32の(a)、(b)、(c)、(d)に示すように、異なる2種類以上のポリマーが繊維軸方向に垂直な断面において、海島構造(ここで言う海島構造とは、島成分ポリマー13で構成されている島部分が、海成分ポリマー20で構成されている海部分により複数に区別されている構造)が形成されている繊維を言う。その場合、島部分の断面形状に制約はなく、図1、または図2に示すように、1つの島成分吐出孔1によって島部分の断面形状が構成されていてもよく、また、図16に示すように、複数個の島成分吐出孔1が集まった島成分吐出部21によって断面形状が構成されていてもよい。その場合、図8(a)に示すような、三角形断面となる海島型複合繊維を得ることができる。また、図3に示すような、島成分吐出孔1、海成分吐出孔4の配置とすることで、図8(b)に示すような六角形断面となり、また、図4に示すような、配置とすることで、図8(c)に示すような四角形断面となる海島型複合繊維を得ることができる。このように、通常、ポリエステルやポリアミドなどのポリマーを溶融紡糸によって得た場合、真円形の断面を持つことが多いが、異形断面とすることで真円形の繊維では得られない特殊な風合いを付与したり、織り編みの際のこなれを良くしたり、繊維を被覆する他の樹脂との接触面積を増加させ、剥離などの問題を抑制することができる。
The sea-island type composite fibers obtained by the composite die of the present invention are shown in (a), (b), (c) of FIG. 8 and (a), (b), (c), (d) of FIG. As described above, in a cross section in which two or more different types of polymers are perpendicular to the fiber axis direction, a sea-island structure (the sea-island structure referred to here is an island portion composed of the island component polymer 13 is composed of the sea component polymer 20). A structure in which a plurality of structures are distinguished by the sea portion. In that case, the cross-sectional shape of the island portion is not limited, and the cross-sectional shape of the island portion may be configured by one island component discharge hole 1 as shown in FIG. 1 or FIG. As shown, the cross-sectional shape may be configured by an island component discharge portion 21 in which a plurality of island component discharge holes 1 are gathered. In that case, a sea-island type composite fiber having a triangular cross section as shown in FIG. 8A can be obtained. Further, by arranging the island component discharge holes 1 and the sea component discharge holes 4 as shown in FIG. 3, a hexagonal cross section as shown in FIG. 8 (b) is obtained, and as shown in FIG. By arranging, a sea-island type composite fiber having a square cross section as shown in FIG. 8C can be obtained. In this way, when a polymer such as polyester or polyamide is usually obtained by melt spinning, it often has a true circular cross section, but the irregular cross section gives a special texture that cannot be obtained with a true circular fiber. Or the weaving and knitting can be improved, the contact area with other resin coating the fiber can be increased, and problems such as peeling can be suppressed.
また、図32(a)に示すように、異なる2種類以上のポリマーが繊維軸方向に垂直な断面において、海島構造(ここで言う海島構造とは、島成分ポリマー13で構成されている島部分が、海成分ポリマー20で構成されている海部分により複数に区別されている構造)が形成されている繊維を言う。その場合、島部分の断面形状に制約はなく、島成分吐出孔1の断面形状によって島部分の断面形状が制御され、また、島成分吐出孔1と吐出孔25の断面形状の組合せによって島部分の断面形状が制御される。
Further, as shown in FIG. 32 (a), in a cross section in which two or more kinds of different polymers are perpendicular to the fiber axis direction, a sea-island structure (the sea-island structure referred to here is an island portion composed of the island component polymer 13). Is a fiber in which a plurality of structures are distinguished by the sea portion composed of the sea component polymer 20. In that case, the cross-sectional shape of the island portion is not limited, the cross-sectional shape of the island portion is controlled by the cross-sectional shape of the island component discharge hole 1, and the island portion is determined by the combination of the cross-sectional shapes of the island component discharge hole 1 and the discharge hole 25. The cross-sectional shape is controlled.
また、易溶出成分である海成分ポリマー20を溶出することにより、いわゆる極細繊維だけでなく、分割繊維等も得ることができる。また、図32(b)に示すように、島成分吐出孔1を丸形状とし、吐出孔25を星型とする、または、島成分吐出孔1を星型、吐出孔25を丸形状とすることで、島部分の形状を星形にすることができる。また、図32(c)に示すように、海島複合繊維の島部分を2種類の島成分ポリマー13(c)、島成分ポリマー13(d)で構成することで、芯鞘複合繊維を得ることができる。芯鞘複合繊維とは、異なる2成分以上のポリマーが繊維軸方向に垂直な断面において、芯成分を鞘成分が被覆するように構成しているものである。この芯鞘複合繊維の製造方法としては、本明細書の図には記載していないが、下層板37の吐出孔25で得られた複合芯鞘成分ポリマー流を取り囲む、3成分目のポリマーを吐出する分配板を積層することで、多重芯鞘繊維とすることができる。
Further, by eluting the sea component polymer 20 which is an easily eluted component, not only so-called ultrafine fibers but also split fibers can be obtained. Further, as shown in FIG. 32 (b), the island component discharge hole 1 has a round shape and the discharge hole 25 has a star shape, or the island component discharge hole 1 has a star shape and the discharge hole 25 has a round shape. Thus, the shape of the island portion can be changed to a star shape. Moreover, as shown in FIG.32 (c), a core-sheath composite fiber is obtained by comprising the island part of sea-island composite fiber by two types of island component polymer 13 (c) and island component polymer 13 (d). Can do. The core-sheath composite fiber is configured such that the sheath component covers the core component in a cross section perpendicular to the fiber axis direction of two or more different polymers. As a manufacturing method of this core-sheath composite fiber, although not described in the drawings of this specification, a third component polymer surrounding the composite core-sheath component polymer flow obtained at the discharge hole 25 of the lower layer plate 37 is used. A multi-core sheath fiber can be formed by laminating the distribution plates to be discharged.
この芯鞘複合繊維の用途としては、衣料用途に用いた場合には品位ならびに感性に優れたものとなることが言うまでもなく、力学的特性、耐薬品性、耐熱性という観点から見ても、単独ポリマーでは出せない特性を有する繊維となるために、産業資材用途でも有効に活用することができる。特に、屈曲疲労や摩耗特性も従来品よりも向上し、タイヤコードやタイヤのキャップレイヤー材などのゴム補強用途のみならず漁網や農業資材の他、スクリーン紗などにも好適に用いることができる。
The use of this core-sheath composite fiber is not limited to being excellent in quality and sensitivity when used for clothing, but also from the standpoint of mechanical properties, chemical resistance, and heat resistance. Since it becomes the fiber which has the characteristic which cannot be taken out with a polymer, it can be used effectively also for an industrial material use. In particular, bending fatigue and wear characteristics are improved as compared with conventional products, and it can be suitably used not only for rubber reinforcement applications such as tire cords and tire cap layer materials, but also for fishing nets and agricultural materials, as well as screen rods.
また、図32(d)に示すように、海島複合繊維の島部分を2種類の島成分ポリマーで構成することで、サイドバイサイド複合繊維を得ることもできる。サイドバイサイド複合繊維とは、異なる2成分以上のポリマーが繊維軸方向に垂直な断面において、互いに張り合わされた形態を構成し、この断面形態が1種類または2種類の間隔を持って規則的に配列されている繊維を言う。
Also, as shown in FIG. 32 (d), side-by-side composite fibers can be obtained by configuring the island portion of the sea-island composite fibers with two types of island component polymers. A side-by-side composite fiber is a structure in which two or more different polymers are bonded to each other in a cross section perpendicular to the fiber axis direction, and the cross-sectional form is regularly arranged with one or two kinds of intervals. Say fiber.
このサイドバイサイド複合繊維の製造方法としては、複合口金18の上層板29において、島成分ポリマー(A)13を吐出する島成分吐出孔1と、島成分ポリマー(A)13とは異なる島成分ポリマー(B)14を吐出する島成分吐出孔4を各々吐出孔群として集め、その吐出孔群を互いに隣接し、左右対称、あるいは左右非対称に配列させ島成分吐出部21を構成すればよい。複合繊維として紡糸した後、海成分ポリマーを溶出することで、サイドバイサイド複合繊維を得ることができる。このように、2種類以上のポリマーが多層に張り合わされていても良いし、3種類以上のポリマーを張り合わせることにより、3種類以上の特性を付与することも好適である。
As a method for producing this side-by-side composite fiber, the island component discharge hole 1 for discharging the island component polymer (A) 13 and the island component polymer (A) 13 different from the island component polymer (A) 13 in the upper layer plate 29 of the composite base 18 are used. B) The island component discharge holes 4 for discharging 14 may be collected as discharge hole groups, and the discharge hole groups may be arranged adjacent to each other and arranged symmetrically or asymmetrically. After spinning as a composite fiber, a side-by-side composite fiber can be obtained by eluting the sea component polymer. Thus, two or more types of polymers may be laminated together, and it is also preferable to impart three or more types of properties by bonding three or more types of polymers.
このサイドバイサイド複合繊維の用途としては、繊維断面方向で、収縮特性および染色特性が断面方向に変化した繊維を得ることができる。例えば、吸湿によって収縮性を発現するポリマーを片方に配置すれが、吸湿によって、布帛の網目等が変化するため、衣料用の通気性自己調節機能及び透湿防水機能を有する布帛となる。
As a use of this side-by-side composite fiber, a fiber having shrinkage characteristics and dyeing characteristics changed in the cross-sectional direction in the fiber cross-sectional direction can be obtained. For example, if a polymer that exhibits shrinkage due to moisture absorption is placed on one side, the mesh of the fabric changes due to moisture absorption, so that the fabric has a breathable self-adjusting function and a moisture-permeable waterproof function for clothing.
また、本発明の複合口金を用いて得られる島数に関しては、理論的には2島からスペースの許す範囲で無限に作製することは可能であるが、実質的に実施可能な範囲として2~10000島が好ましい範囲である。本発明の複合口金の優位性を得る範囲としては100~10000島がさらに好ましい範囲である。
Further, regarding the number of islands obtained using the composite base of the present invention, it is theoretically possible to make an infinite range from two islands within the space allowed, but as a practically feasible range, 2 to 10,000 islands is a preferred range. As a range for obtaining the superiority of the composite die of the present invention, 100 to 10,000 islands is a more preferable range.
また、本発明においては、孔充填密度が0.5孔/mm2以上であることが好ましい。孔充填密度が0.5孔/mm2以上であれば、従来の複合口金技術との差異がより明確となる。本発明者等が検討した範囲では、孔充填密度は0.5~20孔/mm2の範囲であれば実施可能であった。この孔充填密度という観点では、本発明の複合口金の優位性が得られる範囲としては1~20孔/mm2が好ましい範囲である。
Moreover, in this invention, it is preferable that a hole filling density is 0.5 hole / mm < 2 > or more. If the hole filling density is 0.5 hole / mm 2 or more, the difference from the conventional composite die technology becomes more clear. In the range examined by the present inventors, the hole packing density was 0.5 to 20 holes / mm 2 . From the viewpoint of the hole packing density, the range in which the superiority of the composite die of the present invention is obtained is preferably 1 to 20 holes / mm 2 .
また、本発明における海島型複合繊維は、海成分ポリマー20を溶出することで、単独紡糸では得ることができない非常に縮小された極細異形繊維として、外接繊維径が10~1000nm、かつ繊維径バラツキを表す繊維径CV%が0~30%の均一性の優れた長繊維型ナノファイバーを作製することができる。この長繊維型ナノファイバーは、シート状物とすることで、磁気記録ディスクなどに用いるアルミニウム合金基板やガラス基板を超高精度の仕上げ加工を施すのに好適に用いることができる。また、他の用途として、あえて一部の島を合流させ、繊維径分布を自由に制御したシート状物も作製可能である。
Further, the sea-island type composite fiber according to the present invention is a very fine deformed fiber that cannot be obtained by single spinning by eluting the sea component polymer 20, and has a circumscribed fiber diameter of 10 to 1000 nm and a fiber diameter variation. It is possible to produce a long-fiber nanofiber having excellent uniformity with a fiber diameter CV% representing 0 to 30%. By forming the long fiber type nanofibers into a sheet-like material, the long fiber type nanofibers can be suitably used for finishing the aluminum alloy substrate or the glass substrate used for a magnetic recording disk or the like with ultrahigh precision. As another application, it is also possible to produce a sheet-like material in which some islands are intentionally joined and the fiber diameter distribution is freely controlled.
以上のように、本発明の複合口金18で製造可能な複合形態を従来公知の断面形態を例示して説明したが、本発明の複合口金18においては、断面形態を任意に制御することができるため、以上の形態にとらわれることなく、自由な形態を作製することができる。
As described above, the composite form that can be manufactured by the composite base 18 of the present invention has been described by exemplifying a conventionally known cross-sectional form. However, in the composite base 18 of the present invention, the cross-sectional form can be arbitrarily controlled. Therefore, a free form can be produced without being restricted by the above form.
また、本発明の複合繊維の強度は、強度は2cN/dtex以上が好ましく、産業資材用途で必要とされる力学的特性を考えれば、5cN/dtex以上であることが好ましい。現実的な上限としては20cN/dtexである。また、伸度は延伸糸で2~60%、特に高強度が必要とされる産業資材分野では2~25%、衣料用では25~60%とすることが好ましい。また、本発明の複合繊維は、繊維巻き取りパッケージやトウ、カットファイバー、わた、ファイバーボール、コード、パイル、織編、不織布、紙、液体分散体など多用な繊維製品とすることができる。
In addition, the strength of the composite fiber of the present invention is preferably 2 cN / dtex or more, and is preferably 5 cN / dtex or more in view of mechanical properties required for industrial materials. A practical upper limit is 20 cN / dtex. The elongation is preferably 2 to 60% for drawn yarn, particularly 2 to 25% in the industrial material field where high strength is required, and 25 to 60% for clothing. Further, the conjugate fiber of the present invention can be used in various fiber products such as fiber winding packages, tows, cut fibers, cotton, fiber balls, cords, piles, woven and knitted fabrics, non-woven fabrics, paper, and liquid dispersions.
次いで、本発明とは異なり、複合口金18の孔充填密度を大きくしつつ、繊維断面形態を高精度に形成できる実施形態(以降、第1の実施形態、第2の実施形態、第3の実施形態と呼ぶ)について説明する。図33は、第1の実施形態に用いられる複合口金の概略断面図であり、図34は第1の実施形態に用いられる複合口金と、紡糸パック、冷却装置周辺の概略断面図であり、図24は図33の部分拡大断面図であり、図29は図24のY-Y矢視図であり、図27は第1の実施形態に用いられる複合口金の部分拡大断面図である。また、図25は第2の実施形態に用いられる複合口金の部分拡大断面図であり、図26は第3の実施形態に用いられる複合口金の部分拡大断面図であり、図28は図26のX-X矢視図であり、図30は図27のZ-Z矢視図である。図中、36は中層板、37は下層板、38は上層突出部、39は仮想外接円、46は上層突出部の下面、47は下層板の上面、48は合流室、49は仮想内接円、50は外周端部孔をそれぞれ示す。
Next, unlike the present invention, an embodiment in which the fiber cross-sectional shape can be formed with high accuracy while increasing the hole filling density of the composite die 18 (hereinafter, the first embodiment, the second embodiment, and the third embodiment). Will be described. FIG. 33 is a schematic cross-sectional view of the composite base used in the first embodiment, and FIG. 34 is a schematic cross-sectional view around the composite base used in the first embodiment, the spin pack, and the cooling device. 24 is a partial enlarged cross-sectional view of FIG. 33, FIG. 29 is a view taken in the direction of arrows YY of FIG. 24, and FIG. 27 is a partial enlarged cross-sectional view of the composite base used in the first embodiment. 25 is a partially enlarged cross-sectional view of the composite base used in the second embodiment, FIG. 26 is a partially enlarged cross-sectional view of the composite base used in the third embodiment, and FIG. FIG. 30 is a view taken along the line XX, and FIG. 30 is a view taken along the line ZZ in FIG. In the figure, 36 is an intermediate layer plate, 37 is a lower layer plate, 38 is an upper layer protruding portion, 39 is a virtual circumscribed circle, 46 is a lower surface of the upper layer protruding portion, 47 is an upper surface of the lower layer plate, 48 is a merge chamber, and 49 is a virtual inscribed plate. Circles and 50 indicate outer peripheral end holes, respectively.
第1の実施形態に用いられる複合口金18は、図34に示すように、紡糸パック15に装備され、スピンブロック16の中に固定され、複合口金18の直下に冷却装置17が構成される。そこで、複合口金18に導かれた2成分以上のポリマーは、各々、計量板9、分配板6、上層板29、中層板36、下層板37を通過して、吐出板10の口金吐出孔42から吐出された後、冷却装置17により吹き出される気流により冷却され、油剤を付与された後に、マルチフィラメン糸として巻き取られる。
As shown in FIG. 34, the composite base 18 used in the first embodiment is mounted on the spin pack 15, is fixed in the spin block 16, and a cooling device 17 is configured immediately below the composite base 18. Therefore, the two or more polymers introduced to the composite base 18 pass through the measuring plate 9, the distribution plate 6, the upper layer plate 29, the middle layer plate 36, and the lower layer plate 37, respectively, and then the base discharge hole 42 of the discharge plate 10. After being discharged from the air, it is cooled by an air flow blown out by the cooling device 17 and applied with an oil agent, and then wound as a multifilament yarn.
なお、図34では、環状内向きに気流を吹き出す環状の冷却装置17を採用しているが、一方向から気流を吹き出す冷却装置を用いてもよい。また、計量板9の上流側に装備する部材に関しては、既存の紡糸パック15にて使用された流路等を用いればよく、特別に専有化する必要が無い。
In addition, in FIG. 34, although the cyclic | annular cooling device 17 which blows off airflow in cyclic | annular inward is employ | adopted, you may use the cooling device which blows off airflow from one direction. In addition, as for the member provided on the upstream side of the measuring plate 9, the flow path used in the existing spinning pack 15 may be used, and it is not necessary to dedicate specially.
第1の実施形態に用いられる複合口金18は、図33に示すように、計量板9と、複数の分配板6、上層板29、中層板36、下層板37、吐出板10を順に積層して構成され、特に、分配板6、上層板29、中層板36、下層板37は薄板にて構成されるのが好ましい。その場合、計量板9と分配板6、および上層板29、中層板36、下層板37と吐出板10は、位置決めピンにより、紡糸パック18の中心位置(芯)が合うように位置決めを行い、積層した後に、ネジ、ボルト等で固定してもよく、熱圧着により金属接合(拡散接合)させてもよい。特に、分配板6同士や、分配板6と上層板29、上層板29と中層板36、中層板36と下層板37は、薄板を使用するため、熱圧着により金属接合(拡散接合)させるのが好ましい。
As shown in FIG. 33, the composite base 18 used in the first embodiment includes a measuring plate 9, a plurality of distribution plates 6, an upper layer plate 29, an intermediate layer plate 36, a lower layer plate 37, and a discharge plate 10 that are sequentially stacked. In particular, the distribution plate 6, the upper layer plate 29, the middle layer plate 36, and the lower layer plate 37 are preferably formed of thin plates. In that case, the measuring plate 9 and the distribution plate 6, the upper layer plate 29, the middle layer plate 36, the lower layer plate 37, and the discharge plate 10 are positioned by the positioning pins so that the center position (core) of the spinning pack 18 is aligned, After the lamination, it may be fixed with screws, bolts, etc., or may be metal bonded (diffusion bonded) by thermocompression bonding. In particular, since the distribution plates 6, the distribution plate 6 and the upper layer plate 29, the upper layer plate 29 and the middle layer plate 36, and the middle layer plate 36 and the lower layer plate 37 use thin plates, metal bonding (diffusion bonding) is performed by thermocompression bonding. Is preferred.
そこで、図33、および図24に示すように、計量板9より供給された各成分のポリマーは、複数の積層された分配板6の分配溝8、および分配孔7を通過した後、上層板29の島成分ポリマーを吐出するための島成分吐出孔1、および海成分ポリマーを吐出するための海成分吐出孔4より、中層板36の合流室48に吐出することで、島成分ポリマーの外周を海成分ポリマーが囲い込むように合流し、芯鞘型海島複合ポリマー流が形成される。その後、芯鞘型海島複合ポリマー流は、下層板37の吐出孔25を経て、吐出板10の吐出導入孔11、縮小孔12を通過して、口金吐出孔42より吐出される。
Therefore, as shown in FIGS. 33 and 24, the polymer of each component supplied from the measuring plate 9 passes through the distribution grooves 8 and the distribution holes 7 of the plurality of stacked distribution plates 6, and then is the upper layer plate. The outer periphery of the island component polymer is discharged from the island component discharge hole 1 for discharging 29 island component polymers and the sea component discharge hole 4 for discharging the sea component polymer into the joining chamber 48 of the intermediate layer plate 36. Are combined so that the sea component polymer surrounds, and a core-sheath sea-island composite polymer flow is formed. Thereafter, the core-sheath sea-island composite polymer flow passes through the discharge holes 25 of the lower layer plate 37, passes through the discharge introduction holes 11 and the reduction holes 12 of the discharge plate 10, and is discharged from the base discharge holes 42.
まず、重要なポイントである、複合口金18の孔充填密度を大きくしつつ、繊維断面形態を高精度に形成(=島成分ポリマーを均一に分配し、島成分ポリマー同士の合流を防止する)できる原理について説明する。
First, it is possible to form the fiber cross-sectional shape with high accuracy while increasing the hole filling density of the composite die 18 which is an important point (= is uniformly distributing island component polymers and preventing the island component polymers from joining together). The principle will be described.
ここで、孔充填密度を大きくするためには、図23に示すように、島成分吐出孔1を密接させ、孔数を可能な限り多く配置しなければいけないが、その場合には、島成分ポリマー同士の合流を防止するために、島成分吐出孔1の周囲に海成分吐出孔4を配置する必要があり、そのため、上層板29に配置できる島成分吐出孔1の孔数が制約される。これは、本発明者らに知見によると、島成分ポリマー同士の合流を防止するためには、上層板29に配設された島成分吐出孔1の孔数と同一か、それ以上の海成分吐出孔4が必要となることが分かっており、例えば、図41に示すように、一個の島成分吐出孔1を基準として、6個の海成分吐出孔4を六方向から囲い込む配列等が挙げられるが、この場合には、島成分吐出孔1の3倍の海成分吐出孔4が必要となる。
Here, in order to increase the hole filling density, as shown in FIG. 23, it is necessary to close the island component discharge holes 1 and arrange the number of holes as much as possible. In order to prevent merging of the polymers, it is necessary to dispose the sea component discharge holes 4 around the island component discharge holes 1, and therefore, the number of island component discharge holes 1 that can be disposed in the upper layer plate 29 is limited. . According to the knowledge of the present inventors, in order to prevent merging of the island component polymers, the sea component equal to or more than the number of island component discharge holes 1 arranged in the upper layer plate 29 is used. It is known that the discharge holes 4 are necessary. For example, as shown in FIG. 41, an array that surrounds the six sea component discharge holes 4 from six directions on the basis of one island component discharge hole 1 In this case, three times as many sea component discharge holes 4 as island component discharge holes 1 are required.
つまりは、孔充填密度を大きくするために、島成分吐出孔1の孔数を多く、海成分吐出孔4の孔数を極力少なくした場合には、島成分ポリマー同士の合流が発生し、反対に、島成分ポリマー同士の合流を抑制するために、海成分吐出孔4の孔数を多く、島成分吐出孔1の孔数を少なく配置した場合には、孔充填密度が大きくできないため、島充填密度と島成分ポリマー同士の合流にはトレードオフの関係が発生する。
In other words, when the number of island component discharge holes 1 is increased and the number of sea component discharge holes 4 is decreased as much as possible in order to increase the hole filling density, the island component polymers are merged with each other. In addition, in order to suppress the merging of island component polymers, when the number of sea component discharge holes 4 is large and the number of island component discharge holes 1 is small, the hole filling density cannot be increased. There is a trade-off between the packing density and the merging of the island component polymers.
また、上記に加えて、上層板29に配設された全ての島成分吐出孔1より島成分ポリマーを均一に吐出するためには、島成分吐出孔1や、その上流側において、島成分ポリマーを均一に供給・分配し、且つ計量する機構が必要となる。そこで、例えば、図18に示すように、計量機構として、島成分吐出孔1の周囲に突出部43を有し、間隙を狭化することで、流路圧損を大きくする等が挙げられるが、この場合には、島成分吐出孔1を密接して配設できず、上層板29に配置できる島成分吐出孔1の孔数が制約されて、孔充填密度を大きくできない。更には、上層板29に配設された全ての島成分吐出孔1の周囲に、海成分ポリマーを供給するために、例えば、図15に示すように、海成分ポリマーの分配機構として、島成分吐出孔1の周囲に放射状溝27や、また、吐出孔25の周囲に同心円上溝28を配設する等が挙げられるが、この場合には、島成分吐出孔1や、それに対向する吐出孔25を密接して配設できず、上層板29に配置できる島成分吐出孔1の孔数が制約されて、孔充填密度を大きくできない。
In addition to the above, in order to uniformly discharge the island component polymer from all the island component discharge holes 1 arranged in the upper layer plate 29, the island component polymer is formed at the island component discharge hole 1 or upstream thereof. It is necessary to provide a mechanism for uniformly supplying, distributing, and weighing the liquid. Therefore, for example, as shown in FIG. 18, as the measuring mechanism, there is a protrusion 43 around the island component discharge hole 1, and by narrowing the gap, the flow path pressure loss is increased. In this case, the island component discharge holes 1 cannot be disposed closely, and the number of island component discharge holes 1 that can be disposed in the upper layer plate 29 is restricted, so that the hole filling density cannot be increased. Further, in order to supply the sea component polymer around all the island component discharge holes 1 arranged in the upper layer plate 29, for example, as shown in FIG. For example, a radial groove 27 is disposed around the discharge hole 1 and a concentric groove 28 is disposed around the discharge hole 25. In this case, the island component discharge hole 1 and the discharge hole 25 opposed thereto are provided. Cannot be disposed closely, and the number of island component discharge holes 1 that can be disposed on the upper layer plate 29 is limited, and the hole filling density cannot be increased.
従って、孔充填密度を大きくしつつ、島成分ポリマーを均一に分配し、島成分ポリマー同士の合流を防止することが複合繊維を製造する上で極めて重要な技術となる。そこで、本発明者らは、従来の技術では、何の配慮もされていなかった、上記問題に関して、鋭意検討を重ねた結果、新たな技術を見出すに至った。
Therefore, it is an extremely important technique for producing a composite fiber to increase the hole packing density, uniformly distribute the island component polymers, and prevent the island component polymers from joining together. Accordingly, the present inventors have intensively studied the above problem, which was not considered in the conventional technique, and as a result, have found a new technique.
即ち、第1の実施形態の複合口金18は、図24に示すように、複数の積層された分配板6には、島成分ポリマーと海成分ポリマーを各々分配するための分配孔7および/又は分配溝8が形成され、上層板29には、分配孔7または分配溝8に連通した、1つ以上の海成分吐出孔4と、海成分吐出孔4の孔数よりも多く配置された島成分吐出孔1とが形成され、中層板36には、島成分吐出孔1と海成分吐出孔4とに連通した合流室48が形成され、下層板37には、合流室48に連通した吐出孔25が、島成分吐出孔1と対向した位置に形成されている。
That is, as shown in FIG. 24, in the composite base 18 of the first embodiment, the plurality of stacked distribution plates 6 have distribution holes 7 and / or for distributing the island component polymer and the sea component polymer, respectively. The distribution groove 8 is formed, and the upper layer plate 29 is arranged with one or more sea component discharge holes 4 communicating with the distribution holes 7 or the distribution grooves 8 and more islands than the number of the sea component discharge holes 4. The component discharge hole 1 is formed, the middle plate 36 is formed with a merge chamber 48 communicating with the island component discharge hole 1 and the sea component discharge hole 4, and the lower layer plate 37 is discharged with the merge chamber 48. A hole 25 is formed at a position facing the island component discharge hole 1.
このような構造とすることで、全ての島成分吐出孔1の周囲に海成分ポリマーが充満している合流室48に島成分ポリマーが吐出されることから、吐出直後に、島成分ポリマーの外周を海成分ポリマーが囲い込み、芯鞘型海島複合ポリマー流を形成した後、吐出孔25に導かれるため、島成分ポリマー同士の合流が発生し難くなる。また、島成分ポリマー同士の合流を防止するために、島成分吐出孔1の周囲に多くの海成分吐出孔4を配置する必要がなく、また、合流室48に海成分ポリマーを供給する海成分吐出孔4の孔数を少なくできるため、島成分吐出孔1を密接して配設することができ、孔充填密度を大きくすることが可能となる。更には、ポリマー紡出経路方向の上端の分配板6から上層板29の島成分吐出孔1に至る複数のポリマー通流経路の流路圧損を等しくすることで、上層板29に配設された全ての島成分吐出孔1から島成分ポリマーを均一に吐出し、島成分ポリマー同士の合流を抑制できる。上記の結果、均一な芯鞘型海島複合ポリマー流を形成し、高精度な繊維断面形態を形成することができる。
By adopting such a structure, the island component polymer is discharged into the merge chamber 48 where the sea component polymer is filled around all the island component discharge holes 1, so that the outer periphery of the island component polymer is immediately after the discharge. After the sea component polymer surrounds and forms a core-sheath type sea-island composite polymer flow, it is guided to the discharge hole 25, so that it is difficult for the island component polymers to merge. Further, it is not necessary to arrange many sea component discharge holes 4 around the island component discharge holes 1 in order to prevent the island component polymers from joining together, and the sea component supplying the sea component polymer to the merge chamber 48 Since the number of the discharge holes 4 can be reduced, the island component discharge holes 1 can be closely arranged, and the hole filling density can be increased. Furthermore, the flow path pressure loss of a plurality of polymer flow paths from the distribution plate 6 at the upper end in the polymer spinning path direction to the island component discharge holes 1 of the upper layer board 29 is made equal to be arranged on the upper layer board 29. It is possible to uniformly discharge the island component polymer from all the island component discharge holes 1 and suppress the merging of the island component polymers. As a result, a uniform core-sheath sea-island composite polymer flow can be formed, and a highly accurate fiber cross-sectional form can be formed.
次に、上層板29、中層板36、下層板37の作製方法としては、通常電気・電子部品の加工に用いられるエッチング加工が好適である。これを用いることにより、特に、上層板29においては、隣り合う島成分吐出孔1間の距離が近接化でき、下層板37においても、隣り合う吐出孔25間の距離を近接化できるため、孔充填密度をより大きくすることが可能となる。
Next, as a manufacturing method of the upper layer plate 29, the middle layer plate 36, and the lower layer plate 37, an etching process that is usually used for processing electric / electronic parts is suitable. By using this, in particular, in the upper layer plate 29, the distance between the adjacent island component discharge holes 1 can be made closer, and also in the lower layer plate 37, the distance between the adjacent discharge holes 25 can be made closer. It is possible to increase the packing density.
また、上層板29は、図29に示すように、孔群を形成した島成分吐出孔1の周囲に海成分吐出孔4が配設されている。これにより、島成分吐出孔1を密集して配設し、孔充填密度を大きくすることができる。この場合、孔群を形成した島成分吐出孔1は、周期性を持って配設されているのが好適であるが、非周期に配設されていてもよい。また、島成分吐出孔1の周囲に配設された海成分吐出孔4は、孔群の全周を取り囲む様に配設するのが好適であるが、その限りではない。例えば、孔群が矩形の場合には、対向する二つの側面にのみ海成分吐出孔4を配設しても良い。
Further, as shown in FIG. 29, the upper layer plate 29 is provided with sea component discharge holes 4 around the island component discharge holes 1 in which hole groups are formed. Thereby, the island component discharge holes 1 can be arranged densely, and the hole filling density can be increased. In this case, the island component discharge holes 1 forming the hole group are preferably arranged with periodicity, but may be arranged non-periodically. Further, the sea component discharge holes 4 disposed around the island component discharge holes 1 are preferably disposed so as to surround the entire circumference of the hole group, but this is not a limitation. For example, when the hole group is rectangular, the sea component discharge holes 4 may be provided only on two opposing side surfaces.
また、図30に示すように、上層板29に配設された島成分吐出孔1が孔群を形成する領域内(図30では、5行×4列の孔群領域)において、海成分吐出孔4を配設してもよい。この場合、図29に示すような島成分吐出孔1の孔配列と比較すると、孔充填密度は若干低くなるが、海成分吐出孔4を配設することで、孔群領域の中心部に海成分ポリマーを供給することも可能となる。これにより、孔群領域内の全ての島成分吐出孔1において、島成分ポリマーの外周を囲い込むように、海成分ポリマーを供給することができる。このように、島成分吐出孔1の孔群領域内に海成分吐出孔4を配設するには、図27に示すように、分配孔7や、分配溝8が形成された分配板6を積層させ、島成分吐出孔1の領域内に海成分吐出孔4に連通する流路を形成することで可能となる。複合口金は、分配板6を複数枚用いて流路を形成することから、流路の自由度が高く、必要な位置に必要な数、島成分吐出孔1、および海成分吐出孔4を配設することができる。よって、上記の様に、ポリマー物性、および紡糸条件等に合わせた、島成分吐出孔1、および海成分吐出孔4の孔配置を適宜決定すればよい。
In addition, as shown in FIG. 30, the sea component discharge is performed in the region where the island component discharge holes 1 arranged in the upper layer plate 29 form a hole group (in FIG. 30, a hole group region of 5 rows × 4 columns). The holes 4 may be provided. In this case, the hole filling density is slightly lower than the hole arrangement of the island component discharge holes 1 as shown in FIG. 29, but the sea component discharge holes 4 are provided, so that the sea area is formed in the center of the hole group region. It is also possible to supply component polymers. Thereby, in all the island component discharge holes 1 in the hole group region, the sea component polymer can be supplied so as to surround the outer periphery of the island component polymer. Thus, in order to arrange the sea component discharge hole 4 in the hole group region of the island component discharge hole 1, as shown in FIG. 27, the distribution hole 6 and the distribution plate 6 in which the distribution groove 8 is formed are provided. This is possible by stacking and forming a flow path communicating with the sea component discharge hole 4 in the region of the island component discharge hole 1. Since the composite base uses a plurality of distribution plates 6 to form the flow path, the degree of freedom of the flow path is high, and the necessary number of island component discharge holes 1 and sea component discharge holes 4 are arranged at necessary positions. Can be set. Therefore, as described above, the arrangement of the island component discharge holes 1 and the sea component discharge holes 4 may be appropriately determined according to the polymer physical properties, the spinning conditions, and the like.
次に、図25に示す第2の実施形態について説明する。第2の実施形態は、上層板29と中層板36が同一の薄板で構成されている。そこで、予め1枚の薄板に合流室48、および島成分吐出孔1、海成分吐出孔4をエッチング加工にて形成することで、積層する薄板の枚数を削減し、その結果、複合口金の製造コストを抑えることが可能となる。但し、エッチング加工の際に、薄板に形成する孔や、溝の加工精度が悪化する場合があるため、事前に加工精度を確認し、板厚み、孔径、溝幅等を決定するのが好ましい。また、明細書では省略したが、中層板36と下層板37が同一の薄板で構成されていても良く、この場合、上記と同様の特徴を有する。
Next, the second embodiment shown in FIG. 25 will be described. In the second embodiment, the upper layer plate 29 and the middle layer plate 36 are formed of the same thin plate. Therefore, by previously forming the merge chamber 48, the island component discharge holes 1, and the sea component discharge holes 4 in one thin plate by etching, the number of thin plates to be stacked is reduced, and as a result, the composite base is manufactured. Costs can be reduced. However, since the processing accuracy of the holes and grooves formed in the thin plate may deteriorate during the etching processing, it is preferable to confirm the processing accuracy in advance and determine the plate thickness, hole diameter, groove width, and the like. Although omitted in the specification, the middle layer plate 36 and the lower layer plate 37 may be composed of the same thin plate, and in this case, has the same characteristics as described above.
また、図26、図28に示す第3の実施形態について説明する。第3の実施形態は、島成分吐出孔1を中心とした周囲に、上層板29の下面よりもポリマーの紡出経路方向の下流側に突出した上層突出部38を有しており、上層突出部38の外周形状よりも大きな仮想外接円39と、上層突出部38の外周形状よりも小さな仮想内接円49とを持つ吐出孔25が形成され、上層突出部38の下面46が、下層板37の上面47と、同一、またはポリマーの紡出経路方向の下方に配設され、上層突出部38の端部周りに海成分ポリマーを供給する外端部孔50が形成されている。ここで、上層突出部38の下面46と、下層板37の上面47とが同一面の場合は、金属圧着により拡散接合されているのが好適である。これにより、吐出孔25において、島成分ポリマーがポリマーの紡出経路方向の下流側に向かって吐出され、海成分ポリマーが、上層突出部38の端部周りの外端部孔50よりポリマーの紡出経路方向の下流側に向かって吐出され、その後、島成分ポリマーの外周を海成分ポリマーが囲い込むように合流し、芯鞘複合ポリマー流が形成され、ポリマーの紡出経路方向の下流側に導かれる。
The third embodiment shown in FIGS. 26 and 28 will be described. The third embodiment has an upper layer protruding portion 38 that protrudes downstream from the lower surface of the upper layer plate 29 in the polymer spinning path direction around the island component discharge hole 1. A discharge hole 25 having a virtual circumscribed circle 39 larger than the outer peripheral shape of the portion 38 and a virtual inscribed circle 49 smaller than the outer peripheral shape of the upper layer protruding portion 38 is formed, and the lower surface 46 of the upper layer protruding portion 38 is formed as a lower layer plate An outer end hole 50 is formed around the end of the upper layer protrusion 38 and is disposed on the same surface as or below the upper surface 47 of 37 and in the direction of the polymer spinning path. Here, when the lower surface 46 of the upper layer protruding portion 38 and the upper surface 47 of the lower layer plate 37 are the same surface, it is preferable that they are diffusion bonded by metal crimping. As a result, the island component polymer is discharged from the discharge hole 25 toward the downstream side in the polymer spinning path direction, and the sea component polymer is spun from the outer end hole 50 around the end of the upper layer protruding portion 38. It is discharged toward the downstream side in the exit path direction, and then merges so that the sea component polymer surrounds the outer periphery of the island component polymer, forming a core-sheath composite polymer stream, and downstream in the polymer spinning path direction. Led.
よって、第1の実施形態において、高精度な島成分ポリマーの断面形態が形成できるが、更に、第3の実施形態とすることで、島成分ポリマーと海成分ポリマー、そして芯鞘複合ポリマー流を全て同じ方向に形成し、ポリマー流の不必要な衝突を回避し、ポリマー流乱れを抑制できることから、より高精度な島成分ポリマーの断面形態を形成し、この断面形態を高い寸法安定性で維持することができる。
Therefore, in the first embodiment, a highly accurate cross-sectional shape of the island component polymer can be formed, but further, by adopting the third embodiment, the island component polymer, the sea component polymer, and the core-sheath composite polymer flow Forming all in the same direction, avoiding unnecessary collision of polymer flow and suppressing polymer turbulence, form a more accurate island component polymer cross-sectional shape and maintain this cross-sectional shape with high dimensional stability can do.
また、第1の実施形態において、薄板を多層に構成し、圧着することにより、分配板の強度向上が可能であるが、第3の実施形態において、上層突出部38の下面46と、下層板37の上面47を同一面で接合することにより、更に、薄板の強度が向上し、撓み等を抑制することができ、撓みによるポリマー分配不良を抑制することができる。また、島成分吐出孔1のポリマーの紡出経路方向に垂直な方向の断面を丸形状、吐出孔25のポリマーの紡出経路方向に垂直な方向の断面を異形状とすることにより、得られる島成分断面を異形状とすることができる。例えば、図28に示すように、島成分吐出孔1を丸形状、吐出孔25を十字の形状とすることで、得られる島成分断面は十字となる。このように、所望の島成分断面形状に合わせて、島成分吐出孔1、吐出孔25の断面形状を適宜決定すればよい。また、明細書では省略したが、島成分吐出孔1を十字、吐出孔25を丸形成として構成されていても良く、この場合、上記と同様の特徴を有する。
Further, in the first embodiment, the strength of the distribution plate can be improved by configuring the thin plate in multiple layers and crimping. In the third embodiment, the lower surface 46 of the upper layer protrusion 38 and the lower layer plate By joining the upper surface 47 of 37 on the same surface, the strength of the thin plate can be further improved, bending and the like can be suppressed, and poor polymer distribution due to bending can be suppressed. Further, the cross section of the island component discharge hole 1 in the direction perpendicular to the polymer spinning path direction is round, and the cross section in the direction perpendicular to the polymer spinning path direction of the discharge hole 25 is different. An island component cross section can be made into an irregular shape. For example, as shown in FIG. 28, when the island component discharge hole 1 has a round shape and the discharge hole 25 has a cross shape, the obtained island component cross section has a cross shape. As described above, the cross-sectional shapes of the island component discharge holes 1 and the discharge holes 25 may be appropriately determined in accordance with the desired island component cross-sectional shape. Although omitted in the specification, the island component discharge holes 1 may be formed in a cross shape and the discharge holes 25 may be formed in a round shape. In this case, the same features as described above are provided.
また、第1、第2、第3の実施形態における複合繊維の製造方法としては、図33に示すように、計量板9、分配板6、上層板29、中層板36、下層板37、吐出板10から構成される複合口金18を用いて、溶融紡糸を行うことで、芯鞘複合繊維を得ることができる。
In addition, as shown in FIG. 33, the manufacturing method of the conjugate fiber in the first, second, and third embodiments includes the measuring plate 9, the distribution plate 6, the upper layer plate 29, the middle layer plate 36, the lower layer plate 37, and the discharge. A core-sheath composite fiber can be obtained by performing melt spinning using the composite base 18 composed of the plate 10.
次いで、複合口金18の孔充填密度を大きくしつつ、島成分のポリマー同士の合流を防止できる本発明の別の実施形態について説明する。図19は本発明の別の実施形態に用いられる複合口金の部分拡大平面図である。
Next, another embodiment of the present invention that can prevent the island component polymers from joining together while increasing the hole packing density of the composite die 18 will be described. FIG. 19 is a partially enlarged plan view of a composite base used in another embodiment of the present invention.
本発明の別の実施形態に用いられる複合口金18は、図5に示すように、計量板9と、少なくとも1枚以上の分配板6、最下層分配板5、吐出板10を順に積層して構成され、特に、分配板6と最下層分配板5は薄板にて構成されるのが好ましい。そこで、図19に示すように、計量板9より供給された各成分のポリマーは、少なくとも1枚以上積層された分配板6の分配溝8、および分配孔7を通過した後、最下層分配板5の島成分ポリマーを吐出するための島成分吐出孔1、および海成分ポリマーを吐出するための海成分吐出孔4より吐出することで、各成分のポリマーが合流し、複合ポリマー流が形成される。その後、複合ポリマー流は、吐出板10の吐出導入孔11、縮小孔12を通過して、口金吐出孔42より吐出される。
As shown in FIG. 5, the composite base 18 used in another embodiment of the present invention is configured by laminating a measuring plate 9, at least one distribution plate 6, a lowermost layer distribution plate 5, and a discharge plate 10 in order. In particular, the distribution plate 6 and the lowermost layer distribution plate 5 are preferably formed of thin plates. Therefore, as shown in FIG. 19, the polymer of each component supplied from the measuring plate 9 passes through the distribution groove 8 and the distribution hole 7 of the distribution plate 6 laminated at least one, and then the lowermost layer distribution plate. By discharging from the island component discharge hole 1 for discharging the island component polymer 5 and the sea component discharge hole 4 for discharging the sea component polymer, the polymers of the respective components merge to form a composite polymer flow. The Thereafter, the composite polymer flow passes through the discharge introduction hole 11 and the reduction hole 12 of the discharge plate 10 and is discharged from the base discharge hole 42.
まず、本発明の重要なポイントである、複合口金18の孔充填密度を大きくしつつ、島成分のポリマー同士の合流を防止できる原理について説明する。ここで、孔充填密度を大きくするためには、島成分吐出孔1の間隔を極力近接しなければならないが、その場合、隣り合う島成分吐出孔間において、島成分ポリマー同士の合流が発生する。この島成分ポリマー同士の合流を防止するために、例えば図41に示すように、島成分吐出孔1の周りを、海成分ポリマーを吐出する海成分吐出孔4にて囲い込む配置を行うと、隣り合う島成分ポリマー同士の合流を抑制することは比較的容易に想像できるが、島成分吐出孔間距離が大きくなり過ぎて、孔充填密度を大きくすることができない。つまりは、孔充填密度と島成分ポリマーの合流防止にはトレードオフの関係が発生する。
First, the principle that can prevent the island component polymers from joining together while increasing the hole packing density of the composite die 18, which is an important point of the present invention, will be described. Here, in order to increase the hole packing density, the interval between the island component discharge holes 1 must be as close as possible, but in this case, the island component polymers merge between adjacent island component discharge holes. . In order to prevent the island component polymers from merging with each other, for example, as shown in FIG. 41, the island component discharge hole 1 is surrounded by the sea component discharge hole 4 for discharging the sea component polymer. Although it can be imagined relatively easily to suppress the merging of adjacent island component polymers, the distance between the island component discharge holes becomes too large to increase the hole filling density. In other words, there is a trade-off relationship between the hole packing density and the prevention of merging of the island component polymers.
従って、孔充填密度を大きくしつつ、島成分ポリマー同士の合流を防止することが複合繊維を製造する上で極めて重要な技術となる。そこで、本発明者らは、従来の技術では、何の配慮もされていなかった、上記問題に関して、鋭意検討を重ねた結果、本発明の新たな技術を見出すに至った。
Therefore, increasing the hole packing density and preventing the island component polymers from joining together is a very important technique for producing composite fibers. Accordingly, the present inventors have conducted extensive studies on the above-mentioned problem, which was not considered in the conventional technology, and as a result, have found a new technology of the present invention.
即ち、本発明の別の実施形態の最下層分配板5は、最も短い中心点間距離で隣接する2つの島成分吐出孔と、この2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、海成分吐出孔の少なくとも一部が存在するように各吐出孔が配置されている。具体的には図19に示すように、ある島成分吐出孔1を基準とし、その基準の島成分吐出孔1に最も短い中心間距離で隣接する島成分吐出孔1を島成分吐出孔53aとしたとき、基準の島成分吐出孔1と、島成分吐出孔53aと、この2つの島成分吐出孔1,53aの2本の共通外接線54とに囲まれた領域内に、海成分吐出孔4の少なくとも一部が存在するように各吐出孔が配置されている。このような構成とすることで、最もポリマー同士の合流が発生し易い、基準の島成分吐出孔1と島成分吐出孔53aとの間におけるポリマー同士の合流を防止することができる。
That is, the lowermost layer distribution plate 5 according to another embodiment of the present invention includes two island component discharge holes that are adjacent to each other at the shortest center point distance, and two common outer tangent lines of the two island component discharge holes. Each discharge hole is arranged so that at least a part of the sea component discharge hole exists in the enclosed region. Specifically, as shown in FIG. 19, with respect to a certain island component discharge hole 1, the island component discharge hole 1 adjacent to the reference island component discharge hole 1 at the shortest center distance is referred to as an island component discharge hole 53a. In this case, the sea component discharge hole 1 is located in a region surrounded by the reference island component discharge hole 1, the island component discharge hole 53a, and the two common circumscribed lines 54 of the two island component discharge holes 1 and 53a. Each discharge hole is arranged so that at least a part of 4 is present. By adopting such a configuration, it is possible to prevent merging of polymers between the reference island component discharge hole 1 and the island component discharge hole 53a, which is most likely to cause merging of polymers.
上記の本発明の原理をポリマーの流れ形態に沿って説明すると、島成分ポリマー、海成分ポリマーの両ポリマーは、最下層分配板5の下流側の吐出導入孔11に向けて一斉に吐出され、各ポリマーがポリマーの紡出経路方向に垂直な方向に拡幅しつつ、ポリマーの紡出経路方向に沿って流れ、両ポリマーが合流し、複合ポリマー流を形成する。その際、基準の島成分吐出孔1と島成分吐出孔53aから吐出された島成分ポリマーが合流するのを防止するためには、島成分ポリマーを物理的に分断する海成分ポリマーを介在させることが有効である。つまり、基準の島成分吐出孔1と島成分吐出孔53aを繋ぐ流路空間(この場合、基準の島成分吐出孔1と、島成分吐出孔53aと、この2つの島成分吐出孔1,53aの2本の共通外接線54とに囲まれた領域)に、海成分ポリマーを供給する海成分吐出孔2の少なくとも一部が存在するようにすることで、島成分ポリマー同士の合流を防止することができる。
Explaining the principle of the present invention along the flow form of the polymer, both the island component polymer and the sea component polymer are simultaneously discharged toward the discharge introduction hole 11 on the downstream side of the lowermost layer distribution plate 5, As each polymer widens in a direction perpendicular to the direction of the polymer spinning path, the polymer flows along the direction of the polymer spinning path, and the two polymers merge to form a composite polymer stream. At that time, in order to prevent the island component polymer discharged from the reference island component discharge hole 1 and the island component discharge hole 53a from joining, a sea component polymer that physically divides the island component polymer is interposed. Is effective. That is, a channel space connecting the reference island component discharge hole 1 and the island component discharge hole 53a (in this case, the reference island component discharge hole 1, the island component discharge hole 53a, and the two island component discharge holes 1, 53a). In the region surrounded by the two common outer tangent lines 54), at least a part of the sea component discharge hole 2 for supplying the sea component polymer is present, so that the island component polymers are prevented from merging with each other. be able to.
本発明の別の実施形態の最下層分配板5は、島成分吐出孔1が1種類又は2種類の周期で形成されていることが多い。例えば、図19の最下層分配板5では、島成分吐出孔1が2種類の周期で形成されている。1つは、基準の島成分吐出孔1と島成分吐出孔53aとの中心点間距離であり、これが短い方の周期である。この短い方の周期が、前述の「最も短い中心点間距離」である。もう1つは、基準の島成分吐出孔1と島成分吐出孔53bとの中心点間距離であり、これが長い方の周期である。島成分吐出孔1が1種類の周期で形成されている場合、基準の島成分吐出孔1と島成分吐出孔53aとの中心点間距離と、基準の島成分吐出孔1と島成分吐出孔53bとの中心点間距離とが同じである。なお、図19では、2種類の周期の繰り返し方向は直交しているが、直交していなくともよい。
In the lowermost layer distribution plate 5 of another embodiment of the present invention, the island component discharge holes 1 are often formed with one or two periods. For example, in the lowermost layer distribution plate 5 of FIG. 19, the island component discharge holes 1 are formed in two types of cycles. One is the distance between the center points of the reference island component discharge hole 1 and the island component discharge hole 53a, which is the shorter cycle. This shorter cycle is the aforementioned “shortest distance between center points”. The other is the distance between the center points of the reference island component discharge hole 1 and the island component discharge hole 53b, which is the longer cycle. When the island component discharge holes 1 are formed with one kind of cycle, the distance between the center points of the reference island component discharge holes 1 and the island component discharge holes 53a, the reference island component discharge holes 1 and the island component discharge holes The distance between the center points with 53b is the same. In FIG. 19, the repetition directions of the two types of cycles are orthogonal, but they may not be orthogonal.
島成分吐出孔1が2種類の周期で形成されている場合、(i)短い方の周期で隣接する基準の島成分吐出孔1、島成分吐出孔53aと、この2つの島成分吐出孔1、53aとの2本の共通外接線54とで囲まれる領域内に、海成分吐出孔4の少なくとも一部が存在し、かつ、(ii)長い方の周期で隣接する基準の島成分吐出孔1、島成分吐出孔53bと、この2つの島成分吐出孔1,53bの2本の共通外接線54とで囲まれる領域内に、海成分吐出孔4の少なくとも一部が存在するように配置することが好ましい。最も短い中心点間距離、つまり短い方の周期で隣接する2つの島成分吐出孔1,53aより吐出する島成分ポリマー同士が合流し易いように、その次に短い中心点間距離、つまり長い方の周期で隣接する2つの島成分吐出孔1,53bより吐出する島成分ポリマー同士も合流し易い。そこで、基準の島成分吐出孔1と島成分吐出孔53bを繋ぐ流路空間にも、海成分ポリマーを供給する海成分吐出孔4の少なくとも一部が存在するように配置することで、島成分ポリマー同士の合流を防止することができる。
When the island component discharge holes 1 are formed with two types of cycles, (i) a reference island component discharge hole 1 and an island component discharge hole 53a adjacent to each other with a shorter cycle, and the two island component discharge holes 1 , 53a and at least a part of the sea component discharge hole 4 in the region surrounded by the two common outer tangent lines 54, and (ii) a reference island component discharge hole adjacent in a longer cycle 1. Arranged so that at least a part of the sea component discharge hole 4 exists in a region surrounded by the island component discharge holes 53b and the two common outer tangent lines 54 of the two island component discharge holes 1 and 53b. It is preferable to do. The shortest distance between the center points, that is, the shortest distance between the center points, that is, the longer one, so that the island component polymers discharged from the two adjacent island component discharge holes 1 and 53a in the shorter cycle can be easily merged. The island component polymers discharged from the two adjacent island component discharge holes 1 and 53b with a period of are easily joined together. Therefore, the island component is arranged by disposing at least part of the sea component discharge hole 4 for supplying the sea component polymer also in the channel space connecting the reference island component discharge hole 1 and the island component discharge hole 53b. Merge of polymers can be prevented.
また、本発明の別の実施形態の最下層分配板5は、隣接する2つの島成分吐出孔と、この2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、少なくとも2つの海成分吐出孔のそれぞれ少なくとも一部が存在し、隣接する2つの島成分吐出孔の中心を結ぶ線分を挟んで、2つの海成分吐出孔が配置されていることが好ましい。具体的には図19に示すように、隣接する2つの島成分吐出孔1(基準の島成分吐出孔1と島成分吐出孔53a、又は基準の島成分吐出孔1と島成分吐出孔53b)を繋ぐ流路空間に、少なくとも2つの海成分吐出孔4のそれぞれ少なくとも一部を存在させ、さらに隣接する2つの島成分吐出孔1(基準の島成分吐出孔1と島成分吐出孔53a、および基準の島成分吐出孔1と島成分吐出孔53b)の中心を結ぶ線分Aを挟んで、この2つの海成分吐出孔4を配置する。こうすることにより、隣接する島成分吐出孔1を加工限界レベルにまで近接させた状態において、2つの海成分吐出孔4を最も近接した位置に配置できるため、孔充填密度を極限にまで大きくしつつ、島成分ポリマーの合流を防止することができる。また、2つの海成分吐出孔4の配置は特に限定するものではないが、線分Aを線対称軸とするように配置されているのが好ましい。島成分吐出孔1から吐出され拡幅していく島成分ポリマーは、2つの海成分吐出孔4から吐出された海成分ポリマーにより拡幅が拒まれて一定の形状となるのであるが、2つの海成分吐出孔4が線分Aを線対称軸とするように配置されていると、拡幅後の島成分ポリマーの形状が線分Aを線対称軸とするきれいな対象形となるので好ましい。
Further, the lowermost layer distribution plate 5 according to another embodiment of the present invention has at least a region surrounded by two adjacent island component discharge holes and two common circumscribing lines of the two island component discharge holes. It is preferable that at least a part of each of the two sea component discharge holes is present, and the two sea component discharge holes are arranged across a line segment connecting the centers of the two adjacent island component discharge holes. Specifically, as shown in FIG. 19, two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, or reference island component discharge hole 1 and island component discharge hole 53b). At least a part of each of the at least two sea component discharge holes 4 and two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, and The two sea component discharge holes 4 are arranged across a line segment A connecting the centers of the reference island component discharge hole 1 and the island component discharge hole 53b). By doing so, in the state where the adjacent island component discharge holes 1 are close to the processing limit level, the two sea component discharge holes 4 can be arranged at the closest positions, so that the hole filling density is increased to the limit. However, it is possible to prevent the island component polymer from joining. Moreover, although arrangement | positioning of the two sea component discharge holes 4 is not specifically limited, It is preferable to arrange | position so that the line segment A may be a line symmetry axis. The island component polymer discharged and widened from the island component discharge hole 1 is rejected to widen by the sea component polymer discharged from the two sea component discharge holes 4 and has a certain shape. It is preferable that the discharge holes 4 are arranged so that the line segment A is an axis of line symmetry, because the shape of the island component polymer after widening becomes a clean target shape having the line segment A as an axis of line symmetry.
また、図40に示す本発明の別の実施形態の最下層分配板5は、意図的に島成分ポリマー同士を合流させるために、これら合流する島成分ポリマーを吐出する複数の島成分吐出孔1を集めて孔群(集合体)を形成してもよい。また、意図的に海成分ポリマー同士を合流させるために、これら合流する海成分ポリマーを吐出する複数の海成分吐出孔4を集めて孔群(集合体)を形成してもよい。この場合には、1つの孔群を構成する島成分吐出孔1のうち、一番外側に並ぶ島成分吐出孔1を順次接するように結んでいった線で囲まれた領域を島成分吐出部とする。また、1つの孔群を構成する海成分吐出孔4のうち、一番外側に並ぶ海成分吐出孔4を順次接するように結んでいった線で囲まれた領域を海成分吐出部とする。なお、島成分吐出部内には島成分吐出孔1のみが存在し、海成分吐出部内には海成分吐出孔4のみが存在する。そして、島成分吐出孔1の孔群を島成分吐出孔部21、島成分吐出孔53aの孔群を島成分吐出孔部22a、島成分吐出孔53bの孔群を島成分吐出孔部22b、海成分吐出孔4の孔群を海成分吐出孔部24とし、これまでの説明での島成分吐出孔1、島成分吐出孔53a、島成分吐出孔53bおよび海成分吐出孔4を、それぞれ島成分吐出部21、島成分吐出部22a、島成分吐出部22bおよび海成分吐出部24と読み替えればよい。逆に言うと、図19,35,36及び37に示す実施形態の最下層分配板5は、島成分吐出部が1つの島成分吐出孔で構成され、海成分吐出部内が1つの海成分吐出孔で構成されている最下層分配板である。図40の実施形態においては、島成分吐出部21(22a,22b)内の島成分吐出孔1(2a,2b)から吐出される島成分ポリマーや、海成分吐出部24内の海成分吐出孔4から吐出される海成分ポリマーは、それぞれ吐出直後に合流するが、もともと合流させることを意図して吐出されているので、合流したとしても問題はない。
In addition, the lowermost layer distribution plate 5 according to another embodiment of the present invention shown in FIG. 40 has a plurality of island component discharge holes 1 for discharging the island component polymers to be merged in order to intentionally merge the island component polymers. May be collected to form a hole group (aggregate). Further, in order to intentionally join the sea component polymers, a plurality of sea component discharge holes 4 for discharging the sea component polymers to be joined may be collected to form a hole group (aggregate). In this case, among the island component discharge holes 1 constituting one hole group, an area surrounded by a line connecting the outermost island component discharge holes 1 so as to be in contact with each other in sequence is an island component discharge unit. And In addition, among the sea component discharge holes 4 constituting one hole group, a region surrounded by a line connecting the outermost sea component discharge holes 4 so as to be in contact with each other sequentially is defined as a sea component discharge portion. In addition, only the island component discharge hole 1 exists in the island component discharge part, and only the sea component discharge hole 4 exists in the sea component discharge part. The hole group of the island component discharge holes 1 is the island component discharge hole portion 21, the hole group of the island component discharge holes 53 a is the island component discharge hole portion 22 a, and the hole group of the island component discharge holes 53 b is the island component discharge hole portion 22 b, A group of sea component discharge holes 4 is defined as a sea component discharge hole portion 24. The island component discharge hole 1, the island component discharge hole 53a, the island component discharge hole 53b, and the sea component discharge hole 4 in the description so far are designated as islands. What is necessary is just to read as the component discharge part 21, the island component discharge part 22a, the island component discharge part 22b, and the sea component discharge part 24. Conversely, in the lowermost layer distribution plate 5 of the embodiment shown in FIGS. 19, 35, 36 and 37, the island component discharge part is constituted by one island component discharge hole, and the inside of the sea component discharge part is one sea component discharge. It is a lowermost layer distribution plate composed of holes. In the embodiment of FIG. 40, the island component polymer discharged from the island component discharge hole 1 (2a, 2b) in the island component discharge portion 21 (22a, 22b) or the sea component discharge hole in the sea component discharge portion 24 is used. The sea component polymers discharged from No. 4 are merged immediately after the discharge, but are originally intended to be merged, so there is no problem even if they merge.
また、本発明の別の実施形態とは異なるが、隣接する2つの島成分吐出孔1の最小間隙DAと、2つの海成分吐出孔4の最小間隙DBを、DB/DA≦0.7とすることで、島成分ポリマー、海成分ポリマーの溶融粘度等の物性や、各ポリマーの吐出量、吐出量比等の紡糸条件の如何に関わらず、複合繊維を工業上、製造できる紡糸条件の範囲において、島成分ポリマー同士の合流を安定的に防止できる。DB/DA>0.7であると、島成分ポリマー同士の合流が発生する場合がある。なお、DB/DAの下限は特に規定するものではなく、小さければ小さいほど、島成分ポリマー同士の合流は防止できるが、最小間隙DAが大きくなり、孔充填密度が小さくなるので、実用的な範囲で下限は設定すればよい。
Further, although different from another embodiment of the present invention, the minimum gap DA between the two adjacent island component discharge holes 1 and the minimum gap DB between the two sea component discharge holes 4 are DB / DA ≦ 0.7. Thus, regardless of the physical properties such as the melt viscosity of the island component polymer and the sea component polymer, and the spinning conditions such as the discharge amount of each polymer, the discharge rate ratio, etc. , The merging of the island component polymers can be stably prevented. When DB / DA> 0.7, merging of island component polymers may occur. In addition, the lower limit of DB / DA is not particularly defined, and the smaller the smaller, the more the island component polymers can be prevented from joining, but the minimum gap DA becomes larger and the hole filling density becomes smaller. And the lower limit can be set.
本発明の別の実施形態における最下層分配板5は、その全面に島成分吐出孔1と海成分吐出孔4が配置されていてもよく、あるいは図39に示すように、部分的に島成分吐出孔1と海成分吐出孔4とが密集して配置さていてもよい(図39の仮想円52で囲まれた部分)。図37のような形態の場合、個々の仮想円52内の島成分吐出孔1と海成分吐出孔4が、これまで説明してきたように配置されていれば、仮想円52内の島成分吐出孔1と海成分吐出孔4の配置は全ての仮想円52で同じであってもいいし、個々の仮想円52によって異なっていてもよい。さらに、図39に示すように、1つの仮想円52の中で、部分的に島成分吐出孔1と海成分吐出孔4の配置が異なっていてもよい(図39の仮想円52内の右半分部分と左半分部分)。この場合も、個々の部分内の島成分吐出孔1と海成分吐出孔4が、これまで説明してきたように配置されていればよい。
In the lowermost layer distribution plate 5 in another embodiment of the present invention, the island component discharge holes 1 and the sea component discharge holes 4 may be disposed on the entire surface, or as shown in FIG. The discharge holes 1 and the sea component discharge holes 4 may be densely arranged (portion surrounded by a virtual circle 52 in FIG. 39). In the case of the form as shown in FIG. 37, if the island component discharge holes 1 and the sea component discharge holes 4 in the individual virtual circles 52 are arranged as described above, the island component discharge in the virtual circle 52 is performed. The arrangement of the holes 1 and the sea component discharge holes 4 may be the same for all virtual circles 52 or may be different for each virtual circle 52. Furthermore, as shown in FIG. 39, the arrangement of the island component discharge holes 1 and the sea component discharge holes 4 may be partially different in one virtual circle 52 (the right side in the virtual circle 52 in FIG. 39). Half and left half). Also in this case, the island component discharge holes 1 and the sea component discharge holes 4 in the individual portions may be arranged as described so far.
このように、本発明の別の実施形態の複合口金18は、最下層分配板5と、その直上の分配板6の分配溝8を用いて、海成分ポリマーを繊維断面方向に容易に分配できるため、隣接する2つの島成分吐出部21又は島成分吐出孔1の間の極めて狭い領域に、容易に海成分吐出部24又は海成分吐出孔4を配置することができる。その結果、隣接する2つの島成分吐出部21又は島成分吐出孔1を近接させることにより、孔充填密度を大きくすることができる。また、最下層分配板5の直下に、さらに分配板6を追加して重ねることで、島成分吐出孔1の配置パターンを容易に変更できるため、設計変更に伴う、時間、費用等が少なくなる利点も有する。
As described above, the composite base 18 of another embodiment of the present invention can easily distribute the sea component polymer in the fiber cross-sectional direction by using the lowermost distribution plate 5 and the distribution groove 8 of the distribution plate 6 immediately above the lower distribution plate 5. Therefore, the sea component discharge part 24 or the sea component discharge hole 4 can be easily arranged in a very narrow region between the two adjacent island component discharge parts 21 or the island component discharge holes 1. As a result, the hole filling density can be increased by bringing two adjacent island component discharge portions 21 or island component discharge holes 1 close to each other. Moreover, since the arrangement pattern of the island component discharge holes 1 can be easily changed by adding and overlapping the distribution plate 6 directly below the lowermost layer distribution plate 5, the time and cost associated with the design change are reduced. There are also advantages.
次いで、本発明とは異なり、複合口金18の孔充填密度を大きくしつつ、島成分のポリマー同士の合流を防止できる他の実施形態(以降、第5の実施形態、第6の実施形態、第7の実施形態と呼ぶ)について説明する。
Next, unlike the present invention, while increasing the hole filling density of the composite die 18, other embodiments (hereinafter referred to as fifth embodiment, sixth embodiment, 7).
図35は第5の実施形態、図36は第6の実施形態、図37は第7の実施形態に用いられる複合口金の部分拡大平面図であり、最下層分配板の概略部分断面図である。
35 is a fifth embodiment, FIG. 36 is a partially enlarged plan view of a composite base used in the sixth embodiment, and FIG. 37 is a schematic partial sectional view of the lowermost layer distribution plate. .
図35に示す第5の実施形態は、隣接する2つの島成分吐出孔1(基準の島成分吐出孔1と島成分吐出孔53a、および基準の島成分吐出孔1と島成分吐出孔53b)で繋がれる流路空間を完全に塞ぐように海成分吐出孔4が配設されている。この実施形態では、海成分ポリマーが、島成分ポリマー同士の合流が予想される経路空間において存在するため、より島成分ポリマー同士の合流を防止できる。ただし、この実施形態では、隣接する島成分吐出孔1の距離を、海成分吐出孔4の大きさ以下には小さくすることはできない。
The fifth embodiment shown in FIG. 35 includes two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a, and reference island component discharge hole 1 and island component discharge hole 53b). The sea component discharge hole 4 is disposed so as to completely block the flow path space connected by the. In this embodiment, since the sea component polymer is present in a path space where the island component polymers are expected to merge with each other, the island component polymers can be further prevented from joining. However, in this embodiment, the distance between the adjacent island component discharge holes 1 cannot be made smaller than the size of the sea component discharge holes 4.
また、図36に示す第6の実施形態は、海成分吐出孔4の断面形状が、丸形状とは異なる形状となっている。この場合、丸形状では孔径を小さくしなければ配置できなかった場所においても、海成分吐出孔4を配置できるため、局所的に海成分ポリマーを吐出でき、より島成分ポリマー同士の合流を防止できると共に、隣接する島成分吐出孔1を極限にまで近接させることができ、孔充填密度を大きくすることができる。海成分吐出孔4がこのような丸形状以外の断面形状の場合は、海成分吐出孔4の上流側に丸断面形状の分配孔7を連通して配置することで、直上の分配孔7にて海成分ポリマーの計量性を確保した後、海成分吐出孔4にて海成分ポリマーを吐出するのが好ましい。また、海成分吐出孔4の断面形状を制御することで、島成分吐出孔1から吐出されて拡幅する島成分ポリマーを任意の断面形状に制御することもできる。
In the sixth embodiment shown in FIG. 36, the cross-sectional shape of the sea component discharge hole 4 is different from the round shape. In this case, since the sea component discharge hole 4 can be arranged even in a place where the hole shape cannot be arranged unless the hole diameter is reduced in the round shape, the sea component polymer can be locally discharged, and the merging of the island component polymers can be further prevented. At the same time, the adjacent island component discharge holes 1 can be brought close to the limit, and the hole filling density can be increased. When the sea component discharge hole 4 has a cross-sectional shape other than the round shape, a distribution hole 7 having a round cross-sectional shape is connected to the upstream side of the sea component discharge hole 4 so as to communicate with the distribution hole 7 directly above. It is preferable to discharge the sea component polymer through the sea component discharge hole 4 after ensuring the meterability of the sea component polymer. Moreover, by controlling the cross-sectional shape of the sea component discharge hole 4, the island component polymer discharged from the island component discharge hole 1 and widened can be controlled to have an arbitrary cross-sectional shape.
また、図37に示す第7の実施形態は、海成分吐出孔4が島成分吐出孔1を取り囲む円周状のスリットになっている。この場合、海成分ポリマーが、島成分ポリマー同士の合流が予想される全経路空間において存在するため、より島成分ポリマー同士の合流を防止できる。海成分吐出孔4がこのような断面形状の場合も、海成分吐出孔4の上流側に丸断面形状の分配孔7を連通して配置することで、直上の分配孔7にて海成分ポリマーの計量性を確保した後、海成分吐出孔4にて海成分ポリマーを吐出するのが好ましい。
In the seventh embodiment shown in FIG. 37, the sea component discharge hole 4 is a circumferential slit surrounding the island component discharge hole 1. In this case, since the sea component polymer exists in the entire path space where the island component polymers are expected to merge, the island component polymers can be further prevented from joining. Even in the case where the sea component discharge hole 4 has such a cross-sectional shape, a distribution hole 7 having a round cross-sectional shape is arranged in communication with the upstream side of the sea component discharge hole 4 so that the sea component polymer is disposed in the distribution hole 7 directly above. It is preferable to discharge the sea component polymer through the sea component discharge hole 4 after securing the measurement property.
以下実施例を挙げて、本実施形態の複合口金の効果を具体的に説明する。各実施例、比較例では、島成分吐出部が1つの島成分吐出孔で、海成分吐出部が1つの海成分吐出孔で構成されている最下層分配板を使用して海島型複合繊維を紡糸し、下記の通り、島成分ポリマーの合流有無を判定した。
Hereinafter, the effects of the composite base of the present embodiment will be specifically described with reference to examples. In each of the examples and comparative examples, the island-component composite fiber is formed by using the lowermost layer distribution plate in which the island component discharge portion is composed of one island component discharge hole and the sea component discharge portion is composed of one sea component discharge hole. Spinning was performed, and whether or not the island component polymers were merged was determined as described below.
(1)海島型複合繊維の島成分の析出
海島型複合繊維から島成分を析出するために、易溶出成分の海成分が溶出可能な溶液などに海島型複合繊維を浸漬して除去し、難溶出成分の島成分のマルチフィラメントを得た。易溶出成分が、5-ナトリウムスルホイソフタル酸などが共重合された共重合PETやポリ乳酸(PLA)等の場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を用いた。また、アルカリ水溶液は50℃以上に加熱すると、加水分解の進行を早めることができるため、また、流体染色機などを利用し、処理すれば、一度に大量に処理をすることができる。 (1) Precipitation of island component of sea-island type composite fiber In order to deposit island component from sea-island type composite fiber, the sea-island type composite fiber is soaked and removed in a solution that can elute sea component of elution easily. The multifilament of the island component of the eluted component was obtained. When the easily eluting component is copolymerized PET or polylactic acid (PLA) in which 5-sodium sulfoisophthalic acid or the like is copolymerized, an alkaline aqueous solution such as a sodium hydroxide aqueous solution is used. Further, when the aqueous alkali solution is heated to 50 ° C. or higher, the progress of hydrolysis can be accelerated, and if it is processed using a fluid dyeing machine or the like, it can be processed in a large amount at a time.
海島型複合繊維から島成分を析出するために、易溶出成分の海成分が溶出可能な溶液などに海島型複合繊維を浸漬して除去し、難溶出成分の島成分のマルチフィラメントを得た。易溶出成分が、5-ナトリウムスルホイソフタル酸などが共重合された共重合PETやポリ乳酸(PLA)等の場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を用いた。また、アルカリ水溶液は50℃以上に加熱すると、加水分解の進行を早めることができるため、また、流体染色機などを利用し、処理すれば、一度に大量に処理をすることができる。 (1) Precipitation of island component of sea-island type composite fiber In order to deposit island component from sea-island type composite fiber, the sea-island type composite fiber is soaked and removed in a solution that can elute sea component of elution easily. The multifilament of the island component of the eluted component was obtained. When the easily eluting component is copolymerized PET or polylactic acid (PLA) in which 5-sodium sulfoisophthalic acid or the like is copolymerized, an alkaline aqueous solution such as a sodium hydroxide aqueous solution is used. Further, when the aqueous alkali solution is heated to 50 ° C. or higher, the progress of hydrolysis can be accelerated, and if it is processed using a fluid dyeing machine or the like, it can be processed in a large amount at a time.
(2)マルチフィラメントの繊維径および繊維径バラツキ(CV%)
得られた極細繊維からなるマルチフィラメントをエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製 VE-7800型走査型電子顕微鏡(SEM)にて倍率5000倍で撮影した。得られた写真から無作為に選定した150本の極細繊維を抽出し、写真について画像処理ソフト(WINROOF)を用いて全ての外接円径(繊維径)を測定し、平均繊維径および繊維径標準偏差を求めた。ここで、外接円とは、図8の(a)の破線14のことを言う。これらの結果から下記式を基づき繊維径CV%(変動係数:Coefficient of Variation)を算出した。以上の値は全て3ヶ所の各写真について測定を行い、3ヶ所の平均値とし、nm単位で小数点1桁目まで測定し、小数点以下を四捨五入するものである。 (2) Multifilament fiber diameter and fiber diameter variation (CV%)
The resulting multifilament made of ultrafine fibers was embedded in an epoxy resin, frozen with a Reichert FC / 4E cryosectioning system, and cut with a Reichert-Nissei ultracut N (ultra microtome) equipped with a diamond knife. The cut surface was photographed at a magnification of 5000 with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation. 150 ultra-fine fibers randomly selected from the obtained photos are extracted, all circumscribed circle diameters (fiber diameters) are measured using image processing software (WINROOF), and the average fiber diameter and fiber diameter standard are measured. Deviation was determined. Here, the circumscribed circle refers to thebroken line 14 in FIG. From these results, the fiber diameter CV% (coefficient of variation) was calculated based on the following formula. All of the above values are measured for each of the three photographs, averaged at the three positions, measured in nm to the first decimal place, and rounded off to the nearest decimal place.
得られた極細繊維からなるマルチフィラメントをエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製 VE-7800型走査型電子顕微鏡(SEM)にて倍率5000倍で撮影した。得られた写真から無作為に選定した150本の極細繊維を抽出し、写真について画像処理ソフト(WINROOF)を用いて全ての外接円径(繊維径)を測定し、平均繊維径および繊維径標準偏差を求めた。ここで、外接円とは、図8の(a)の破線14のことを言う。これらの結果から下記式を基づき繊維径CV%(変動係数:Coefficient of Variation)を算出した。以上の値は全て3ヶ所の各写真について測定を行い、3ヶ所の平均値とし、nm単位で小数点1桁目まで測定し、小数点以下を四捨五入するものである。 (2) Multifilament fiber diameter and fiber diameter variation (CV%)
The resulting multifilament made of ultrafine fibers was embedded in an epoxy resin, frozen with a Reichert FC / 4E cryosectioning system, and cut with a Reichert-Nissei ultracut N (ultra microtome) equipped with a diamond knife. The cut surface was photographed at a magnification of 5000 with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation. 150 ultra-fine fibers randomly selected from the obtained photos are extracted, all circumscribed circle diameters (fiber diameters) are measured using image processing software (WINROOF), and the average fiber diameter and fiber diameter standard are measured. Deviation was determined. Here, the circumscribed circle refers to the
繊維径バラツキ(CV%)=(繊維径標準偏差/平均繊維径)×100
(3)異形度および異形度バラツキ(CV%)
前述した繊維径および繊維径バラツキと同様の方法で、マルチフィラメントの断面を撮影し、その画像から、切断面に外接する真円の径を外接円径(繊維径)とし、さらに、内接する真円の径を内接円径として、異形度=外接円径÷内接円径から、小数点3桁目までを求め、小数点3桁目以下を四捨五入したものを異形度として求めた。ここで、内接円とは、図8の(a)の破線19のことを言う。この異形度を同一画像内で無作為に抽出した150本の極細繊維について測定し、その平均値および標準偏差から、下記式に基づき異形度バラツキ(CV%(変動係数:Coefficient of Variation))を算出した。この異形度バラツキについては、小数点2桁目以下は四捨五入するものである。 Fiber diameter variation (CV%) = (fiber diameter standard deviation / average fiber diameter) × 100
(3) Deformity and irregularity variation (CV%)
The cross section of the multifilament is photographed by the same method as the fiber diameter and fiber diameter variation described above, and the diameter of the perfect circle circumscribing the cut surface is defined as the circumscribed circle diameter (fiber diameter) from the image. Using the diameter of the circle as the inscribed circle diameter, the degree of irregularity = the circumscribed circle diameter ÷ the inscribed circle diameter was obtained up to the third decimal point, and the figure rounded to the third decimal place was obtained as the irregularity. Here, the inscribed circle refers to thebroken line 19 in FIG. This extraordinary degree was measured for 150 ultrafine fibers randomly extracted in the same image, and from the average value and standard deviation, irregularity degree variation (CV% (coefficient of variation)) was calculated based on the following formula. Calculated. About this irregularity variation, the second decimal place is rounded off.
(3)異形度および異形度バラツキ(CV%)
前述した繊維径および繊維径バラツキと同様の方法で、マルチフィラメントの断面を撮影し、その画像から、切断面に外接する真円の径を外接円径(繊維径)とし、さらに、内接する真円の径を内接円径として、異形度=外接円径÷内接円径から、小数点3桁目までを求め、小数点3桁目以下を四捨五入したものを異形度として求めた。ここで、内接円とは、図8の(a)の破線19のことを言う。この異形度を同一画像内で無作為に抽出した150本の極細繊維について測定し、その平均値および標準偏差から、下記式に基づき異形度バラツキ(CV%(変動係数:Coefficient of Variation))を算出した。この異形度バラツキについては、小数点2桁目以下は四捨五入するものである。 Fiber diameter variation (CV%) = (fiber diameter standard deviation / average fiber diameter) × 100
(3) Deformity and irregularity variation (CV%)
The cross section of the multifilament is photographed by the same method as the fiber diameter and fiber diameter variation described above, and the diameter of the perfect circle circumscribing the cut surface is defined as the circumscribed circle diameter (fiber diameter) from the image. Using the diameter of the circle as the inscribed circle diameter, the degree of irregularity = the circumscribed circle diameter ÷ the inscribed circle diameter was obtained up to the third decimal point, and the figure rounded to the third decimal place was obtained as the irregularity. Here, the inscribed circle refers to the
異形度バラツキ(CV%)=(異形度の標準偏差/異形度の平均値)×100(%)
(4)極細繊維の断面形状評価
前述した繊維径および繊維径バラツキと同様の方法で、マルチフィラメントの断面を撮影し、その画像から、断面の輪郭にある2つの端点を持った線分が直線である部分の数をカウントした。対象該画像から同一画像内で無作為に抽出した150本のマルチフィラメントの断面について評価した。150本のマルチフィラメントについて、直線部の数をカウントし、その総和をマルチフィラメントの本数で割り返して、マルチフィラメント1本当たりの直線部の数を算出し、小数点第2位以下は四捨五入した。
また、断面の輪郭に存在する直線部から図8の(a)の22のように延長した線を引く。隣り合った2本の線の交点の数をカウントするとともに、その角度を測定し、その角度の総和を交点の数で割り返すことにより算出し、小数点以下を四捨五入した値をマルチフィラメント糸の1本の交点の角度とした。同様の操作を150本のマルチフィラメントについて行い、その単純な数平均を交点の角度とした。 Variation in irregularities (CV%) = (standard deviation of irregularities / average value of irregularities) x 100 (%)
(4) Evaluation of cross-sectional shape of ultrafine fiber Using the same method as the fiber diameter and fiber diameter variation described above, a cross section of a multifilament is photographed, and a line segment having two end points in the cross-sectional outline is straight from the image. The number of parts that are The cross section of 150 multifilaments randomly extracted from the target image in the same image was evaluated. About 150 multifilaments, the number of straight portions was counted, and the total sum was divided by the number of multifilaments to calculate the number of straight portions per multifilament, and rounded off to the second decimal place.
Further, a line extended as 22 in FIG. 8A is drawn from the straight line portion existing in the outline of the cross section. The number of intersections of two adjacent lines is counted, the angle is measured, the total of the angles is calculated by dividing by the number of intersections, and the value rounded to the nearest decimal point is 1 The angle of book intersection. The same operation was performed on 150 multifilaments, and the simple number average was taken as the angle of intersection.
(4)極細繊維の断面形状評価
前述した繊維径および繊維径バラツキと同様の方法で、マルチフィラメントの断面を撮影し、その画像から、断面の輪郭にある2つの端点を持った線分が直線である部分の数をカウントした。対象該画像から同一画像内で無作為に抽出した150本のマルチフィラメントの断面について評価した。150本のマルチフィラメントについて、直線部の数をカウントし、その総和をマルチフィラメントの本数で割り返して、マルチフィラメント1本当たりの直線部の数を算出し、小数点第2位以下は四捨五入した。
また、断面の輪郭に存在する直線部から図8の(a)の22のように延長した線を引く。隣り合った2本の線の交点の数をカウントするとともに、その角度を測定し、その角度の総和を交点の数で割り返すことにより算出し、小数点以下を四捨五入した値をマルチフィラメント糸の1本の交点の角度とした。同様の操作を150本のマルチフィラメントについて行い、その単純な数平均を交点の角度とした。 Variation in irregularities (CV%) = (standard deviation of irregularities / average value of irregularities) x 100 (%)
(4) Evaluation of cross-sectional shape of ultrafine fiber Using the same method as the fiber diameter and fiber diameter variation described above, a cross section of a multifilament is photographed, and a line segment having two end points in the cross-sectional outline is straight from the image. The number of parts that are The cross section of 150 multifilaments randomly extracted from the target image in the same image was evaluated. About 150 multifilaments, the number of straight portions was counted, and the total sum was divided by the number of multifilaments to calculate the number of straight portions per multifilament, and rounded off to the second decimal place.
Further, a line extended as 22 in FIG. 8A is drawn from the straight line portion existing in the outline of the cross section. The number of intersections of two adjacent lines is counted, the angle is measured, the total of the angles is calculated by dividing by the number of intersections, and the value rounded to the nearest decimal point is 1 The angle of book intersection. The same operation was performed on 150 multifilaments, and the simple number average was taken as the angle of intersection.
(5)繊度
海島型複合繊維を丸編みとし、水酸化ナトリウム3重量%水溶液(80℃ 浴比1:100)に浸漬することで易溶解成分を99%以上溶解除去した後、編みを解くことで極細繊維からなるマルチフィラメントを抜き出し、この1mの重量を測定し、10000倍することで繊度を算出した。これを10回繰り返し、その単純平均値の小数点第2位を四捨五入した値を繊度とした。 (5) Fineness Sea-island type composite fibers are made into a circular knitting, and 99% or more of the readily soluble components are dissolved and removed by immersing them in a 3% by weight aqueous solution of sodium hydroxide (80 ° C. bath ratio 1: 100), and then the knitting is unwound. Then, a multifilament made of ultrafine fibers was extracted, the weight of 1 m was measured, and the fineness was calculated by multiplying by 10,000. This was repeated 10 times, and the value obtained by rounding off the second decimal place of the simple average value was defined as the fineness.
海島型複合繊維を丸編みとし、水酸化ナトリウム3重量%水溶液(80℃ 浴比1:100)に浸漬することで易溶解成分を99%以上溶解除去した後、編みを解くことで極細繊維からなるマルチフィラメントを抜き出し、この1mの重量を測定し、10000倍することで繊度を算出した。これを10回繰り返し、その単純平均値の小数点第2位を四捨五入した値を繊度とした。 (5) Fineness Sea-island type composite fibers are made into a circular knitting, and 99% or more of the readily soluble components are dissolved and removed by immersing them in a 3% by weight aqueous solution of sodium hydroxide (80 ° C. bath ratio 1: 100), and then the knitting is unwound. Then, a multifilament made of ultrafine fibers was extracted, the weight of 1 m was measured, and the fineness was calculated by multiplying by 10,000. This was repeated 10 times, and the value obtained by rounding off the second decimal place of the simple average value was defined as the fineness.
(6)ポリマーの溶融粘度
チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s-1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。 (6) Polymer melt viscosity The chip-like polymer was adjusted to a moisture content of 200 ppm or less by a vacuum dryer, and the melt speed was measured stepwise by a Capillograph 1B manufactured by Toyo Seiki Co., Ltd. The measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216 s -1 is described in the examples or comparative examples. By the way, it took 5 minutes from putting the sample into the heating furnace to starting the measurement, and the measurement was performed in a nitrogen atmosphere.
チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s-1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。 (6) Polymer melt viscosity The chip-like polymer was adjusted to a moisture content of 200 ppm or less by a vacuum dryer, and the melt speed was measured stepwise by a Capillograph 1B manufactured by Toyo Seiki Co., Ltd. The measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216 s -1 is described in the examples or comparative examples. By the way, it took 5 minutes from putting the sample into the heating furnace to starting the measurement, and the measurement was performed in a nitrogen atmosphere.
(7)島成分ポリマーの合流有無
極細繊維からなるマルチフィラメントをエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製 VE-7800型走査型電子顕微鏡(SEM)にて倍率5000倍で撮影した。上記で撮影した断面写真より、画像処理ソフト(WINROOF)を用いて、得られた繊維の全島数を測定し、全島数を全吐出孔数(最下層板に配設された吐出孔と近接吐出孔の合計)で除した値が1であれば、島成分ポリマー同士の合流は無く(合流無し)、1未満であれば、島成分ポリマー同士の合流は有り(合流有り)とした。また、断面形態の経時的な変化を評価するために、紡糸開始時より72時間連続して紡糸を行い、この72時間後の海島型複合繊維の断面も同様の方法で撮影し、島成分ポリマー同士の合流有無を判別した。 (7) Insulation of polymer of island component Multifilament made of ultrafine fiber is embedded in epoxy resin, frozen with Reichert FC-4E cryosectioning system, and Reichert-Nissei ultracut N equipped with diamond knife (ultramicrotome) Then, the cut surface was photographed with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation at a magnification of 5000 times. Use the image processing software (WINROOF) to measure the total number of islands of the fiber obtained from the cross-sectional photograph taken above, and the total number of islands is the total number of discharge holes (the discharge holes and proximity discharges arranged on the bottom layer plate). If the value divided by the total number of holes) is 1, there is no merging between island component polymers (no merging), and if it is less than 1, there is merging between island component polymers (with merging). In addition, in order to evaluate the change of the cross-sectional shape over time, spinning was performed continuously for 72 hours from the start of spinning, and the cross section of the sea-island type composite fiber after 72 hours was photographed in the same way, The presence or absence of merging with each other was determined.
極細繊維からなるマルチフィラメントをエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した後、その切削面を(株)キーエンス製 VE-7800型走査型電子顕微鏡(SEM)にて倍率5000倍で撮影した。上記で撮影した断面写真より、画像処理ソフト(WINROOF)を用いて、得られた繊維の全島数を測定し、全島数を全吐出孔数(最下層板に配設された吐出孔と近接吐出孔の合計)で除した値が1であれば、島成分ポリマー同士の合流は無く(合流無し)、1未満であれば、島成分ポリマー同士の合流は有り(合流有り)とした。また、断面形態の経時的な変化を評価するために、紡糸開始時より72時間連続して紡糸を行い、この72時間後の海島型複合繊維の断面も同様の方法で撮影し、島成分ポリマー同士の合流有無を判別した。 (7) Insulation of polymer of island component Multifilament made of ultrafine fiber is embedded in epoxy resin, frozen with Reichert FC-4E cryosectioning system, and Reichert-Nissei ultracut N equipped with diamond knife (ultramicrotome) Then, the cut surface was photographed with a VE-7800 scanning electron microscope (SEM) manufactured by Keyence Corporation at a magnification of 5000 times. Use the image processing software (WINROOF) to measure the total number of islands of the fiber obtained from the cross-sectional photograph taken above, and the total number of islands is the total number of discharge holes (the discharge holes and proximity discharges arranged on the bottom layer plate). If the value divided by the total number of holes) is 1, there is no merging between island component polymers (no merging), and if it is less than 1, there is merging between island component polymers (with merging). In addition, in order to evaluate the change of the cross-sectional shape over time, spinning was performed continuously for 72 hours from the start of spinning, and the cross section of the sea-island type composite fiber after 72 hours was photographed in the same way, The presence or absence of merging with each other was determined.
(8)極限粘度[η]
オルソクロロフェノールを溶媒として25℃で測定した。
[実施例1]
島成分として、固有粘度(IV)0.63dl/gのポリエチレンテレフタレート(PET 溶融粘度:120Pa・s)と、海成分ポリマーとして、IV0.58dl/gの5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET 溶融粘度:140Pa・s)を290℃で別々に溶融後、計量し、図6に示した本実施形態の複合口金が組み込まれた紡糸パックに流入させ、口金吐出孔から海島複合ポリマー流を吐出した。なお、最下層分配板には、島成分ポリマー用として、1つの吐出導入孔に対して、1000の島成分吐出孔が等間隔に穿孔されている。海島比率は、50/50とし、吐出された複合ポリマー流を冷却固化後油剤付与し、紡糸速度1500m/minで巻き取り、150dtex-15フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で3.0倍延伸を行い、50dtex-15フィラメントの海島型複合繊維とし、前述した方法で、海成分を99%以上溶解し、15000本のマルチフィラメントを採取した。 (8) Intrinsic viscosity [η]
Measurement was performed at 25 ° C. using orthochlorophenol as a solvent.
[Example 1]
Polyethylene terephthalate (PET melt viscosity: 120 Pa · s) with an intrinsic viscosity (IV) of 0.63 dl / g as an island component, and 5.0 mol% of 5-sodium sulfoisophthalic acid with an IV of 0.58 dl / g as a sea component polymer Copolymerized PET (copolymerized PET melt viscosity: 140 Pa · s) is melted separately at 290 ° C., weighed, and flowed into a spin pack incorporating the composite die of this embodiment shown in FIG. A sea-island composite polymer stream was discharged from the hole. In the lowermost layer distribution plate, 1000 island component discharge holes are perforated at regular intervals for one discharge introduction hole for the island component polymer. The sea-island ratio was 50/50, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and unstretched with 150 dtex-15 filament (single hole discharge rate 2.25 g / min) Fiber was collected. The wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C and 130 ° C to form a sea-island composite fiber of 50 dtex-15 filaments, and 99% or more of sea components are dissolved by the method described above. 15,000 multifilaments were collected.
オルソクロロフェノールを溶媒として25℃で測定した。
[実施例1]
島成分として、固有粘度(IV)0.63dl/gのポリエチレンテレフタレート(PET 溶融粘度:120Pa・s)と、海成分ポリマーとして、IV0.58dl/gの5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET 溶融粘度:140Pa・s)を290℃で別々に溶融後、計量し、図6に示した本実施形態の複合口金が組み込まれた紡糸パックに流入させ、口金吐出孔から海島複合ポリマー流を吐出した。なお、最下層分配板には、島成分ポリマー用として、1つの吐出導入孔に対して、1000の島成分吐出孔が等間隔に穿孔されている。海島比率は、50/50とし、吐出された複合ポリマー流を冷却固化後油剤付与し、紡糸速度1500m/minで巻き取り、150dtex-15フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で3.0倍延伸を行い、50dtex-15フィラメントの海島型複合繊維とし、前述した方法で、海成分を99%以上溶解し、15000本のマルチフィラメントを採取した。 (8) Intrinsic viscosity [η]
Measurement was performed at 25 ° C. using orthochlorophenol as a solvent.
[Example 1]
Polyethylene terephthalate (PET melt viscosity: 120 Pa · s) with an intrinsic viscosity (IV) of 0.63 dl / g as an island component, and 5.0 mol% of 5-sodium sulfoisophthalic acid with an IV of 0.58 dl / g as a sea component polymer Copolymerized PET (copolymerized PET melt viscosity: 140 Pa · s) is melted separately at 290 ° C., weighed, and flowed into a spin pack incorporating the composite die of this embodiment shown in FIG. A sea-island composite polymer stream was discharged from the hole. In the lowermost layer distribution plate, 1000 island component discharge holes are perforated at regular intervals for one discharge introduction hole for the island component polymer. The sea-island ratio was 50/50, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and unstretched with 150 dtex-15 filament (single hole discharge rate 2.25 g / min) Fiber was collected. The wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C and 130 ° C to form a sea-island composite fiber of 50 dtex-15 filaments, and 99% or more of sea components are dissolved by the method described above. 15,000 multifilaments were collected.
ここで、実施例1に用いた複合口金は、分配孔が穿孔された分配板と、分配溝が穿孔された分配板を交互に積層し、その下流側において、図1に示すような最下層分配板が積層されている。分配板の板厚み0.1mm、孔直径0.2mm、溝幅0.3mm、溝深さ0.1mm、最小孔間ピッチ0.4mmにて穿孔されている。そして、最下層分配板の板厚み0.1mm、島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.8mm、仮想円周線C4の半径R4が0.693mmにて、(2)の条件イの配置となるように穿孔されている。表1に記載のとおり、島成分が三角形断面(直線部3箇所 交点の角度60゜)となり、島成分ポリマー同士の合流は無く、繊維径バラツキは4.6%、異形度1.9、異形度バラツキ4.5%となり、このマルチフィラメントの繊維径は537nmとなった。
[実施例2]
図2に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ロに変更した以外は実施例1と同じ複合口金を用いて、島成分ポリマー比率を実施例1と比べて大きく(海島比率を20/80)し、それ以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、13500本のマルチフィラメントを採取した。 Here, in the composite base used in Example 1, the distribution plate in which the distribution holes are perforated and the distribution plate in which the distribution grooves are perforated are alternately laminated, and the lowermost layer as shown in FIG. Distribution plates are stacked. The distribution plate is perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum hole pitch of 0.4 mm. And the thickness 0.1mm of the lowermost layer distribution plate, the hole diameter 0.2mm of the island component discharge hole, and the sea component discharge hole, the radius R1 of the virtual circumferential line C1 is 0.4mm, and the virtual circumferential line C2 The radius R2 is 0.8 mm, the radius R4 of the virtual circumference C4 is 0.693 mm, and the holes are drilled so as to satisfy the condition (2). As shown in Table 1, the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 4.6%, the degree of deformity is 1.9, and the shape is irregular. The variation was 4.5%, and the fiber diameter of this multifilament was 537 nm.
[Example 2]
As shown in FIG. 2, the island component polymer is formed using the same composite die as in Example 1 except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate is changed to the condition (2). The ratio was larger than that of Example 1 (sea / island ratio was 20/80). Otherwise, spinning was performed under the same polymer, equivalent fineness and spinning conditions as in Example 1, and 13,500 multifilaments were collected.
[実施例2]
図2に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ロに変更した以外は実施例1と同じ複合口金を用いて、島成分ポリマー比率を実施例1と比べて大きく(海島比率を20/80)し、それ以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、13500本のマルチフィラメントを採取した。 Here, in the composite base used in Example 1, the distribution plate in which the distribution holes are perforated and the distribution plate in which the distribution grooves are perforated are alternately laminated, and the lowermost layer as shown in FIG. Distribution plates are stacked. The distribution plate is perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum hole pitch of 0.4 mm. And the thickness 0.1mm of the lowermost layer distribution plate, the hole diameter 0.2mm of the island component discharge hole, and the sea component discharge hole, the radius R1 of the virtual circumferential line C1 is 0.4mm, and the virtual circumferential line C2 The radius R2 is 0.8 mm, the radius R4 of the virtual circumference C4 is 0.693 mm, and the holes are drilled so as to satisfy the condition (2). As shown in Table 1, the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 4.6%, the degree of deformity is 1.9, and the shape is irregular. The variation was 4.5%, and the fiber diameter of this multifilament was 537 nm.
[Example 2]
As shown in FIG. 2, the island component polymer is formed using the same composite die as in Example 1 except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate is changed to the condition (2). The ratio was larger than that of Example 1 (sea / island ratio was 20/80). Otherwise, spinning was performed under the same polymer, equivalent fineness and spinning conditions as in Example 1, and 13,500 multifilaments were collected.
ここで、実施例2に用いた複合口金には、孔直径0.2mmとなる島成分吐出孔、および海成分吐出孔が、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.8mm、仮想円周線C4の半径R4が0.8mmにて穿孔されている。表1に記載のとおり、島成分が三角形断面(直線部3箇所 交点の角度60゜)となり、島成分ポリマー同士の合流は無く、繊維径バラツキは5.9%、異形度1.84、異形度バラツキ6.3%となり、このマルチフィラメントの繊維径は955nmとなった。
[実施例3]
図3に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ハに変更した以外は実施例1と同じ複合口金を用い、また、海島比率を20/80とした以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、15000本のマルチフィラメントを採取した。 Here, the composite base used in Example 2 has an island component discharge hole and a sea component discharge hole having a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. A hole is drilled with a radius R2 of C2 of 0.8 mm and a radius R4 of the virtual circumferential line C4 of 0.8 mm. As shown in Table 1, the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 5.9%, the degree of deformity is 1.84, and the shape is irregular. The degree of dispersion was 6.3%, and the fiber diameter of this multifilament was 955 nm.
[Example 3]
As shown in FIG. 3, the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed to the condition (2), and the sea island ratio 15000 multifilaments were collected by spinning under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was 20/80.
[実施例3]
図3に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ハに変更した以外は実施例1と同じ複合口金を用い、また、海島比率を20/80とした以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、15000本のマルチフィラメントを採取した。 Here, the composite base used in Example 2 has an island component discharge hole and a sea component discharge hole having a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. A hole is drilled with a radius R2 of C2 of 0.8 mm and a radius R4 of the virtual circumferential line C4 of 0.8 mm. As shown in Table 1, the island component has a triangular cross-section (three straight portions at an intersection angle of 60 °), the island component polymers do not merge with each other, the fiber diameter variation is 5.9%, the degree of deformity is 1.84, and the shape is irregular. The degree of dispersion was 6.3%, and the fiber diameter of this multifilament was 955 nm.
[Example 3]
As shown in FIG. 3, the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed to the condition (2), and the sea island ratio 15000 multifilaments were collected by spinning under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was 20/80.
ここで、実施例3に用いた複合口金には、孔直径0.2mmとなる島成分吐出孔、および海成分吐出孔が、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.8mm、仮想円周線C4の半径R4が0.693mmにて穿孔されている。表1に記載のとおり、島成分が六角形断面(直線部6箇所 交点の角度120゜)となり、島成分ポリマー同士の合流は無く、繊維径バラツキは5.9%、異形度1.23、異形度バラツキ3.9%となり、このマルチフィラメントの繊維径は488nmとなった。
[実施例4]
図4に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ニに変更した以外は実施例1と同じ複合口金を用い、また、海島比率を30/70とした以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、13000本のマルチフィラメントを採取した。 Here, the composite base used in Example 3 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. The C2 radius R2 is 0.8 mm, and the virtual circumference C4 has a radius R4 of 0.693 mm. As shown in Table 1, the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.23, The irregularity variation was 3.9%, and the fiber diameter of this multifilament was 488 nm.
[Example 4]
As shown in FIG. 4, the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed to the condition (2). The sample was spun under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was changed to 30/70, and 13,000 multifilaments were collected.
[実施例4]
図4に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を(2)の条件ニに変更した以外は実施例1と同じ複合口金を用い、また、海島比率を30/70とした以外は実施例1と同等のポリマー、同等の繊度、紡糸条件で紡糸し、13000本のマルチフィラメントを採取した。 Here, the composite base used in Example 3 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. The C2 radius R2 is 0.8 mm, and the virtual circumference C4 has a radius R4 of 0.693 mm. As shown in Table 1, the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.23, The irregularity variation was 3.9%, and the fiber diameter of this multifilament was 488 nm.
[Example 4]
As shown in FIG. 4, the same composite base as in Example 1 was used except that the arrangement of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed to the condition (2). The sample was spun under the same polymer, the same fineness, and the same spinning conditions as in Example 1 except that the ratio was changed to 30/70, and 13,000 multifilaments were collected.
ここで、実施例4に用いた複合口金には、孔直径0.2mmとなる島成分吐出孔、および海成分吐出孔が、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.894mm、仮想円周線C4の半径R4が0.8mmにて穿孔されている。表1に記載のとおり、島成分が四角形断面(直線部4箇所 交点の角度90度)となり、島成分ポリマー同士の合流は無く、繊維径バラツキは5.3%、異形度1.71、異形度バラツキ5.6%となり、このマルチフィラメントの繊維径は868nmとなった。
[比較例1]
図9に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を変更した以外は実施例1と同じ複合口金を用い、実施例1と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, the composite base used in Example 4 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. The C2 has a radius R2 of 0.894 mm, and the imaginary circumferential line C4 has a radius R4 of 0.8 mm. As shown in Table 1, the island component has a square cross section (angle of 90 ° at the four straight portions), there is no merging of the island component polymers, the fiber diameter variation is 5.3%, the degree of deformity is 1.71, and the shape is irregular. The degree of variation was 5.6%, and the fiber diameter of this multifilament was 868 nm.
[Comparative Example 1]
As shown in FIG. 9, except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed, the same composite base as in Example 1 was used, and the same polymer, sea island ratio, Multifilaments were collected by spinning at the same fineness and spinning conditions.
[比較例1]
図9に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を変更した以外は実施例1と同じ複合口金を用い、実施例1と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, the composite base used in Example 4 has an island component discharge hole and a sea component discharge hole with a hole diameter of 0.2 mm, a radius R1 of the virtual circumferential line C1 of 0.4 mm, and a virtual circumferential line. The C2 has a radius R2 of 0.894 mm, and the imaginary circumferential line C4 has a radius R4 of 0.8 mm. As shown in Table 1, the island component has a square cross section (angle of 90 ° at the four straight portions), there is no merging of the island component polymers, the fiber diameter variation is 5.3%, the degree of deformity is 1.71, and the shape is irregular. The degree of variation was 5.6%, and the fiber diameter of this multifilament was 868 nm.
[Comparative Example 1]
As shown in FIG. 9, except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed, the same composite base as in Example 1 was used, and the same polymer, sea island ratio, Multifilaments were collected by spinning at the same fineness and spinning conditions.
ここで、比較例1に用いた複合口金には、仮想円周線C1上に3つの海成分吐出孔が中心角120度にて等分配置、仮想円周線C2上に3つの海成分吐出孔が中心角120度にて等分配置、仮想円周線C4上に3つの島成分吐出孔が中心角120度にて等分配置され、C1とC2に配置された吐出孔間の位相角が60度、C1とC4に配置された吐出孔間の位相角が30度にて配置されている。そして、島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.8mm、仮想円周線C4の半径R4が0.4mmにて穿孔されており、R4が式(1)の範囲から外れている。表1に記載のとおり、島成分ポリマーの合流が発生し、三角形断面のマルチフィラメントを得ることができなかった。
[比較例2]
図10に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置パターンを変更した以外は実施例2と同じ複合口金を用い、実施例2と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 1, three sea component discharge holes are equally arranged at a central angle of 120 degrees on the virtual circumferential line C1, and three sea component discharges are performed on the virtual circumferential line C2. The holes are equally divided at a central angle of 120 degrees, the three island component discharge holes are equally divided at a central angle of 120 degrees on the virtual circumference C4, and the phase angle between the discharge holes disposed at C1 and C2 Is arranged at 60 degrees and the phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.8 mm, and the virtual circumferential line The radius R4 of C4 is perforated at 0.4 mm, and R4 is out of the range of the formula (1). As shown in Table 1, the island component polymer merged, and a multifilament having a triangular cross section could not be obtained.
[Comparative Example 2]
As shown in FIG. 10, the same composite base as in Example 2 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 2 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
[比較例2]
図10に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置パターンを変更した以外は実施例2と同じ複合口金を用い、実施例2と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 1, three sea component discharge holes are equally arranged at a central angle of 120 degrees on the virtual circumferential line C1, and three sea component discharges are performed on the virtual circumferential line C2. The holes are equally divided at a central angle of 120 degrees, the three island component discharge holes are equally divided at a central angle of 120 degrees on the virtual circumference C4, and the phase angle between the discharge holes disposed at C1 and C2 Is arranged at 60 degrees and the phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.8 mm, and the virtual circumferential line The radius R4 of C4 is perforated at 0.4 mm, and R4 is out of the range of the formula (1). As shown in Table 1, the island component polymer merged, and a multifilament having a triangular cross section could not be obtained.
[Comparative Example 2]
As shown in FIG. 10, the same composite base as in Example 2 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 2 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
ここで、比較例2に用いた複合口金には、仮想円周線C1上に4つの海成分吐出孔が中心角90度にて等分配置、仮想円周線C2上に8つの海成分吐出孔が配置、仮想円周線C4上に4つの島成分吐出孔が中心角90度にて等分配置され、C1とC2に配置された吐出孔間の位相角が26.6度、C1とC4に配置された吐出孔間の位相角が45度にて配置されている。そして、島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.894mm、仮想円周線C4の半径R4が0.566mmにて穿孔されており、R4が式(1)の範囲から外れている。表1に記載のとおり、島成分ポリマーの合流が発生し、繊維径バラツキは26%、異形度バラツキ27%となり、均一な四角形断面となるマルチフィラメントを得ることができなかった。
[比較例3]
図11に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を変更した以外は実施例2と同じ複合口金を用い、実施例2と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。ここで、図11の孔配置は、本発明者らが、島成分が四角形断面の変形パターンとして、平行四辺形の断面となるように考案したものである。島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.566mm、仮想円周線C4の半径R4が0.8mmにて穿孔されており、R4が式(1)の範囲から外れている。表1に記載のとおり、島成分ポリマーの合流が発生し、平行四辺形の断面となるマルチフィラメントを得ることができなかった。
[比較例4]
図12に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置パターンを変更した以外は実施例3と同じ複合口金を用い、実施例3と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 2, four sea component discharge holes are equally arranged at a central angle of 90 degrees on the virtual circumferential line C1, and eight sea component discharges are performed on the virtual circumferential line C2. The four island component discharge holes are equally divided at a central angle of 90 degrees on the virtual circumferential line C4, and the phase angle between the discharge holes arranged at C1 and C2 is 26.6 degrees. The phase angle between the ejection holes arranged at C4 is arranged at 45 degrees. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.894 mm, and the virtual circumferential line C4 has a radius R4 of 0.566 mm, and R4 is out of the range of equation (1). As shown in Table 1, the island component polymer was merged, the fiber diameter variation was 26%, and the irregularity variation was 27%, and a multifilament having a uniform square cross section could not be obtained.
[Comparative Example 3]
As shown in FIG. 11, except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed, the same composite base as in Example 2 was used, and the same polymer, sea island ratio, Multifilaments were collected by spinning at the same fineness and spinning conditions. Here, the hole arrangement in FIG. 11 is devised by the present inventors so that the island component has a parallelogram-shaped cross section as a deformation pattern of a square cross section. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.566 mm, and the virtual circumferential line C4 A radius R4 is drilled at 0.8 mm, and R4 is out of the range of the formula (1). As shown in Table 1, the island component polymer merged, and a multifilament having a parallelogram cross section could not be obtained.
[Comparative Example 4]
As shown in FIG. 12, the same composite base as in Example 3 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 3 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
[比較例3]
図11に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置を変更した以外は実施例2と同じ複合口金を用い、実施例2と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。ここで、図11の孔配置は、本発明者らが、島成分が四角形断面の変形パターンとして、平行四辺形の断面となるように考案したものである。島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.566mm、仮想円周線C4の半径R4が0.8mmにて穿孔されており、R4が式(1)の範囲から外れている。表1に記載のとおり、島成分ポリマーの合流が発生し、平行四辺形の断面となるマルチフィラメントを得ることができなかった。
[比較例4]
図12に示すように、最下層分配板の島成分吐出孔、および海成分吐出孔の配置パターンを変更した以外は実施例3と同じ複合口金を用い、実施例3と同等のポリマー、海島比率、同等の繊度、紡糸条件で紡糸してマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 2, four sea component discharge holes are equally arranged at a central angle of 90 degrees on the virtual circumferential line C1, and eight sea component discharges are performed on the virtual circumferential line C2. The four island component discharge holes are equally divided at a central angle of 90 degrees on the virtual circumferential line C4, and the phase angle between the discharge holes arranged at C1 and C2 is 26.6 degrees. The phase angle between the ejection holes arranged at C4 is arranged at 45 degrees. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.894 mm, and the virtual circumferential line C4 has a radius R4 of 0.566 mm, and R4 is out of the range of equation (1). As shown in Table 1, the island component polymer was merged, the fiber diameter variation was 26%, and the irregularity variation was 27%, and a multifilament having a uniform square cross section could not be obtained.
[Comparative Example 3]
As shown in FIG. 11, except that the arrangement of the island component discharge holes and the sea component discharge holes of the lowermost layer distribution plate was changed, the same composite base as in Example 2 was used, and the same polymer, sea island ratio, Multifilaments were collected by spinning at the same fineness and spinning conditions. Here, the hole arrangement in FIG. 11 is devised by the present inventors so that the island component has a parallelogram-shaped cross section as a deformation pattern of a square cross section. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.566 mm, and the virtual circumferential line C4 A radius R4 is drilled at 0.8 mm, and R4 is out of the range of the formula (1). As shown in Table 1, the island component polymer merged, and a multifilament having a parallelogram cross section could not be obtained.
[Comparative Example 4]
As shown in FIG. 12, the same composite base as in Example 3 was used except that the arrangement pattern of the island component discharge holes and the sea component discharge holes in the lowermost layer distribution plate was changed, and the same polymer and sea island ratio as in Example 3 were used. Multifilaments were collected by spinning at the same fineness and spinning conditions.
ここで、比較例4に用いた複合口金には、仮想円周線C1上に6つの海成分吐出孔が中心角60度にて等分配置、仮想円周線C2上に6つの海成分吐出孔が中心角60度にて配置、仮想円周線C4上に6つの島成分吐出孔が中心角60度にて等分配置され、C1とC2に配置された吐出孔間の位相角が30度、C1とC4に配置された吐出孔間の位相角が0度にて配置されている。そして、島成分吐出孔、および海成分吐出孔の孔直径0.2mmが、仮想円周線C1の半径R1が0.4mm、仮想円周線C2の半径R2が0.693mm、仮想円周線C4の半径R4が0.8mmにて穿孔されており、R4が式(1)の範囲から外れている。表1に記載のとおり、島成分が六角形断面(直線部6箇所 交点の角度120゜)となり、島成分ポリマー同士の合流は無く、繊維径バラツキは5.9%、異形度1.22、異形度バラツキ4.2%であったが、繊維径は1.4μmとなり、ナノオーダーのマルチフィラメントを得ることができなかった。
[参考例1]
島成分として、極限粘度[η]0.65のポリエチレンテレフタレート(PET)と、海成分ポリマーとして、極限粘度[η]0.58の5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET)を285℃で別々に溶融後、計量し、図33に示した複合口金が組み込まれた紡糸パックに流入させ、口金吐出孔から芯鞘型海島複合ポリマー流を吐出した。なお、下層板には、島成分ポリマー用として、1つの吐出導入孔に対して、1800の島成分吐出孔が等間隔に穿孔されている。海/島成分の複合比は、30/70とし、吐出された複合ポリマー流を冷却固化後油剤付与し、紡糸速度1500m/minで巻き取り、150dtex-15フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で3.0倍延伸を行い、50dtex-15フィラメントの延伸繊維とし、前述した方法で、海成分を99%以上溶解し、27000本の極細繊維からなるマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 4, six sea component discharge holes are equally arranged at a central angle of 60 degrees on the virtual circumferential line C1, and six sea component discharges are performed on the virtual circumferential line C2. The holes are arranged at a central angle of 60 degrees, the six island component discharge holes are equally arranged at a central angle of 60 degrees on the virtual circumference C4, and the phase angle between the discharge holes arranged at C1 and C2 is 30. The phase angle between the ejection holes arranged at C1 and C4 is arranged at 0 degree. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.693 mm, and the virtual circumferential line C4 has a radius R4 of 0.8 mm, and R4 is out of the range of equation (1). As shown in Table 1, the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.22, Although the irregularity variation was 4.2%, the fiber diameter was 1.4 μm, and nano-order multifilaments could not be obtained.
[Reference Example 1]
Polyethylene terephthalate (PET) having an intrinsic viscosity [η] 0.65 as an island component, and PET (copolymerized as 5.0 mol% 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] 0.58 as a sea component polymer) Copolymerized PET) was melted separately at 285 ° C., weighed, and poured into a spin pack incorporating the composite die shown in FIG. 33, and a core-sheath sea-island composite polymer flow was discharged from the die discharge hole. In the lower layer plate, 1800 island component discharge holes are formed at equal intervals for one discharge introduction hole for the island component polymer. The composite ratio of the sea / island component was 30/70, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and 150 dtex-15 filament (single hole discharge amount 2.25 g / min) undrawn fiber was collected. The wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 50 dtex-15 filaments. Multifilaments made of ultrafine fibers were collected.
[参考例1]
島成分として、極限粘度[η]0.65のポリエチレンテレフタレート(PET)と、海成分ポリマーとして、極限粘度[η]0.58の5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET)を285℃で別々に溶融後、計量し、図33に示した複合口金が組み込まれた紡糸パックに流入させ、口金吐出孔から芯鞘型海島複合ポリマー流を吐出した。なお、下層板には、島成分ポリマー用として、1つの吐出導入孔に対して、1800の島成分吐出孔が等間隔に穿孔されている。海/島成分の複合比は、30/70とし、吐出された複合ポリマー流を冷却固化後油剤付与し、紡糸速度1500m/minで巻き取り、150dtex-15フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で3.0倍延伸を行い、50dtex-15フィラメントの延伸繊維とし、前述した方法で、海成分を99%以上溶解し、27000本の極細繊維からなるマルチフィラメントを採取した。 Here, in the composite base used in Comparative Example 4, six sea component discharge holes are equally arranged at a central angle of 60 degrees on the virtual circumferential line C1, and six sea component discharges are performed on the virtual circumferential line C2. The holes are arranged at a central angle of 60 degrees, the six island component discharge holes are equally arranged at a central angle of 60 degrees on the virtual circumference C4, and the phase angle between the discharge holes arranged at C1 and C2 is 30. The phase angle between the ejection holes arranged at C1 and C4 is arranged at 0 degree. The diameter of the island component discharge hole and the sea component discharge hole is 0.2 mm, the radius R1 of the virtual circumferential line C1 is 0.4 mm, the radius R2 of the virtual circumferential line C2 is 0.693 mm, and the virtual circumferential line C4 has a radius R4 of 0.8 mm, and R4 is out of the range of equation (1). As shown in Table 1, the island component has a hexagonal cross section (six straight-line portions at an intersection angle of 120 °), there is no merging of the island component polymers, the fiber diameter variation is 5.9%, the degree of deformity is 1.22, Although the irregularity variation was 4.2%, the fiber diameter was 1.4 μm, and nano-order multifilaments could not be obtained.
[Reference Example 1]
Polyethylene terephthalate (PET) having an intrinsic viscosity [η] 0.65 as an island component, and PET (copolymerized as 5.0 mol% 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] 0.58 as a sea component polymer) Copolymerized PET) was melted separately at 285 ° C., weighed, and poured into a spin pack incorporating the composite die shown in FIG. 33, and a core-sheath sea-island composite polymer flow was discharged from the die discharge hole. In the lower layer plate, 1800 island component discharge holes are formed at equal intervals for one discharge introduction hole for the island component polymer. The composite ratio of the sea / island component was 30/70, and the discharged composite polymer stream was cooled and solidified and then applied with oil, wound at a spinning speed of 1500 m / min, and 150 dtex-15 filament (single hole discharge amount 2.25 g / min) undrawn fiber was collected. The wound unstretched fiber is stretched 3.0 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 50 dtex-15 filaments. Multifilaments made of ultrafine fibers were collected.
ここで、参考例1に用いた複合口金は、図17に示すように、分配孔が穿孔された分配板と、分配溝が穿孔された分配板を交互に積層することで、2分岐となるトーナメント方式の流路を形成し、その下流側に上層板、中層板、下層板が順に積層されている。これらの板厚み0.1mm、孔直径0.2mm、溝幅0.3mm、溝深さ0.1mm、最小孔間ピッチ0.4mmにて穿孔されている。そして、1枚の分配板に穿孔されている分配溝の溝長は等しくすることで、上端の分配孔から島成分吐出孔至るポリマーの通流経路の流路圧損が均等になるようにしている。表2に記載のとおり、紡糸開始時、および72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時5.8%、72時間経過後5.9%となった。
[参考例2]
図30に示すように、上層板に穿孔された島成分吐出孔の孔群の領域内の一部に海成分吐出孔を穿孔する以外は参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時、および72時間経過後共に、4.5%となった。
[参考例3]
図26に示すように、上層板には上層突出部を形成し、上層突出部の端部周りに海成分ポリマーを供給する外端部孔が形成された複合口金を用いて、参考例1の同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。 Here, as shown in FIG. 17, the composite base used in Reference Example 1 is bifurcated by alternately stacking a distribution plate with a distribution hole and a distribution plate with a distribution groove. A tournament type flow path is formed, and an upper layer plate, a middle layer plate, and a lower layer plate are sequentially laminated on the downstream side thereof. These plates are perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum inter-hole pitch of 0.4 mm. The distribution groove perforated in one distribution plate is made equal in length so that the pressure loss of the polymer flow path from the distribution hole at the upper end to the island component discharge hole becomes uniform. . As shown in Table 2, at the start of spinning and after 72 hours, the island component polymer was not merged, and the fiber diameter variation was 5.8% at the start of spinning and 5.9% after 72 hours. became.
[Reference Example 2]
As shown in FIG. 30, the same composite base as in Reference Example 1 was used except that sea component discharge holes were drilled in part of the area of the hole group of island component discharge holes drilled in the upper layer plate. Sea-island type composite fibers were produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions. As shown in Table 2, the island component polymer was not merged at the start of spinning and after 72 hours, and the fiber diameter variation was 4.5% both at the start of spinning and after 72 hours. .
[Reference Example 3]
As shown in FIG. 26, an upper layer protrusion is formed on the upper layer plate, and a composite base having an outer end hole for supplying a sea component polymer around the end of the upper layer protrusion is used. Sea-island type composite fibers were produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions.
[参考例2]
図30に示すように、上層板に穿孔された島成分吐出孔の孔群の領域内の一部に海成分吐出孔を穿孔する以外は参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時、および72時間経過後共に、4.5%となった。
[参考例3]
図26に示すように、上層板には上層突出部を形成し、上層突出部の端部周りに海成分ポリマーを供給する外端部孔が形成された複合口金を用いて、参考例1の同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。 Here, as shown in FIG. 17, the composite base used in Reference Example 1 is bifurcated by alternately stacking a distribution plate with a distribution hole and a distribution plate with a distribution groove. A tournament type flow path is formed, and an upper layer plate, a middle layer plate, and a lower layer plate are sequentially laminated on the downstream side thereof. These plates are perforated with a thickness of 0.1 mm, a hole diameter of 0.2 mm, a groove width of 0.3 mm, a groove depth of 0.1 mm, and a minimum inter-hole pitch of 0.4 mm. The distribution groove perforated in one distribution plate is made equal in length so that the pressure loss of the polymer flow path from the distribution hole at the upper end to the island component discharge hole becomes uniform. . As shown in Table 2, at the start of spinning and after 72 hours, the island component polymer was not merged, and the fiber diameter variation was 5.8% at the start of spinning and 5.9% after 72 hours. became.
[Reference Example 2]
As shown in FIG. 30, the same composite base as in Reference Example 1 was used except that sea component discharge holes were drilled in part of the area of the hole group of island component discharge holes drilled in the upper layer plate. Sea-island type composite fibers were produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions. As shown in Table 2, the island component polymer was not merged at the start of spinning and after 72 hours, and the fiber diameter variation was 4.5% both at the start of spinning and after 72 hours. .
[Reference Example 3]
As shown in FIG. 26, an upper layer protrusion is formed on the upper layer plate, and a composite base having an outer end hole for supplying a sea component polymer around the end of the upper layer protrusion is used. Sea-island type composite fibers were produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions.
ここで、参考例3に用いた複合口金は、図4に示すように、島成分吐出孔は丸形状、吐出孔は十字形状となるように穿孔されており、上層突出部の下面と、下層板の上面の一部は拡散接合により圧着固定され、そして、非圧着部の外端部孔から、海成分ポリマーが供給されている。表2に記載のとおり、紡糸開始時、および72時間経過後共に、島成分ポリマーの合流は無く、得られた島成分断面は、十字型となった。また、繊維径バラツキは、紡糸開始時7.2%、72時間経過後7.3%となった。
[参考例4]
1枚の分配板に穿孔されている分配溝の最長長さと最短長さとの比が1.2(分配溝長さが同じ場合は1.0)である以外は、参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時9.5%、および72時間経過後共9.6%となった。
[参考例5]
1枚の分配板に穿孔されている分配溝の最長長さと最短長さとの比が1.5(分配溝長さが同じ場合は1.0)である以外は、参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時10.2%、および72時間経過後共10.6%となった。
[参考例6]
分配板が無く、計量板に配設された孔が、上層板の海成分吐出孔、および島成分吐出孔に連通している以外は参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流が発生し、また、繊維径バラツキは、紡糸開始時22.1%、72時間経過後24%となり、繊維所望の断面の複合繊維を得ることができなかった。
[参考例7]
島成分ポリマーとして、極限粘度[η]0.65のポリエチレンテレフタレート(PET)と、海成分ポリマーとして、極限粘度[η]0.58の5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET)を285℃で別々に溶融し、複合口金18を用いて、海/島成分の吐出比を30/70にて吐出後、冷却装置17で冷却し、その後、給油、交絡処理、熱延伸を行い、巻取ローラで1500m/分の速度で巻き取り、150dtex-10フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で2.5倍延伸を行い、60dtex-10フィラメントの延伸繊維を得た。 Here, as shown in FIG. 4, the composite base used in Reference Example 3 has the island component discharge holes drilled in a round shape and the discharge holes in a cross shape. A part of the upper surface of the plate is crimped and fixed by diffusion bonding, and the sea component polymer is supplied from the outer end hole of the non-crimped part. As shown in Table 2, at the start of spinning and after 72 hours had passed, there was no merging of island component polymers, and the resulting island component cross-section became a cross shape. The fiber diameter variation was 7.2% at the start of spinning and 7.3% after 72 hours.
[Reference Example 4]
The same composite base as in Reference Example 1 except that the ratio of the longest length to the shortest length of the distribution groove perforated in one distribution plate is 1.2 (1.0 when the distribution groove length is the same). Was used to produce a sea-island type composite fiber by spinning under the same polymer, discharge ratio, equivalent fineness and spinning conditions as in Reference Example 1. As shown in Table 2, at the start of spinning, after 72 hours, the island component polymer was not merged, and the fiber diameter variation was 9.5% at the start of spinning and 9.6% after 72 hours. It became.
[Reference Example 5]
The same composite base as in Reference Example 1 except that the ratio of the longest length to the shortest length of the distribution groove perforated in one distribution plate is 1.5 (1.0 when the distribution groove length is the same). Was used to produce a sea-island type composite fiber by spinning under the same polymer, discharge ratio, equivalent fineness and spinning conditions as in Reference Example 1. As shown in Table 2, the island component polymer was not merged at the start of spinning and after 72 hours, and the fiber diameter variation was 10.2% at the start of spinning and 10.6% after 72 hours. It became.
[Reference Example 6]
The same composite base as in Reference Example 1 is used except that there is no distribution plate and the holes arranged in the measuring plate communicate with the sea component discharge holes and island component discharge holes of the upper layer plate. A sea-island type composite fiber was produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions. As shown in Table 2, the island component polymer merged at the start of spinning and after 72 hours, and the fiber diameter variation was 22.1% at the start of spinning and 24% after 72 hours. A composite fiber having a desired cross section could not be obtained.
[Reference Example 7]
Polyethylene terephthalate (PET) with intrinsic viscosity [η] 0.65 as the island component polymer and PET copolymerized with 5.0 mol% 5-sodium sulfoisophthalic acid with intrinsic viscosity [η] 0.58 as the sea component polymer (Copolymerized PET) is melted separately at 285 ° C., and the discharge ratio of the sea / island component is discharged at 30/70 using the composite die 18, then cooled by the coolingdevice 17, and then refueling and entanglement treatment The film was hot-drawn and wound up at a speed of 1500 m / min with a winding roller, and undrawn fibers of 150 dtex-10 filament (single-hole discharge rate 2.25 g / min) were collected. The wound unstretched fiber was stretched 2.5 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 60 dtex-10 filament.
[参考例4]
1枚の分配板に穿孔されている分配溝の最長長さと最短長さとの比が1.2(分配溝長さが同じ場合は1.0)である以外は、参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時9.5%、および72時間経過後共9.6%となった。
[参考例5]
1枚の分配板に穿孔されている分配溝の最長長さと最短長さとの比が1.5(分配溝長さが同じ場合は1.0)である以外は、参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無く、また、繊維径バラツキは、紡糸開始時10.2%、および72時間経過後共10.6%となった。
[参考例6]
分配板が無く、計量板に配設された孔が、上層板の海成分吐出孔、および島成分吐出孔に連通している以外は参考例1と同じ複合口金を用い、参考例1と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。表2に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流が発生し、また、繊維径バラツキは、紡糸開始時22.1%、72時間経過後24%となり、繊維所望の断面の複合繊維を得ることができなかった。
[参考例7]
島成分ポリマーとして、極限粘度[η]0.65のポリエチレンテレフタレート(PET)と、海成分ポリマーとして、極限粘度[η]0.58の5-ナトリウムスルホイソフタル酸5.0モル%共重合したPET(共重合PET)を285℃で別々に溶融し、複合口金18を用いて、海/島成分の吐出比を30/70にて吐出後、冷却装置17で冷却し、その後、給油、交絡処理、熱延伸を行い、巻取ローラで1500m/分の速度で巻き取り、150dtex-10フィラメント(単孔吐出量2.25g/min)の未延伸繊維を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラ間で2.5倍延伸を行い、60dtex-10フィラメントの延伸繊維を得た。 Here, as shown in FIG. 4, the composite base used in Reference Example 3 has the island component discharge holes drilled in a round shape and the discharge holes in a cross shape. A part of the upper surface of the plate is crimped and fixed by diffusion bonding, and the sea component polymer is supplied from the outer end hole of the non-crimped part. As shown in Table 2, at the start of spinning and after 72 hours had passed, there was no merging of island component polymers, and the resulting island component cross-section became a cross shape. The fiber diameter variation was 7.2% at the start of spinning and 7.3% after 72 hours.
[Reference Example 4]
The same composite base as in Reference Example 1 except that the ratio of the longest length to the shortest length of the distribution groove perforated in one distribution plate is 1.2 (1.0 when the distribution groove length is the same). Was used to produce a sea-island type composite fiber by spinning under the same polymer, discharge ratio, equivalent fineness and spinning conditions as in Reference Example 1. As shown in Table 2, at the start of spinning, after 72 hours, the island component polymer was not merged, and the fiber diameter variation was 9.5% at the start of spinning and 9.6% after 72 hours. It became.
[Reference Example 5]
The same composite base as in Reference Example 1 except that the ratio of the longest length to the shortest length of the distribution groove perforated in one distribution plate is 1.5 (1.0 when the distribution groove length is the same). Was used to produce a sea-island type composite fiber by spinning under the same polymer, discharge ratio, equivalent fineness and spinning conditions as in Reference Example 1. As shown in Table 2, the island component polymer was not merged at the start of spinning and after 72 hours, and the fiber diameter variation was 10.2% at the start of spinning and 10.6% after 72 hours. It became.
[Reference Example 6]
The same composite base as in Reference Example 1 is used except that there is no distribution plate and the holes arranged in the measuring plate communicate with the sea component discharge holes and island component discharge holes of the upper layer plate. A sea-island type composite fiber was produced by spinning under the same polymer, discharge ratio, equivalent fineness, and spinning conditions. As shown in Table 2, the island component polymer merged at the start of spinning and after 72 hours, and the fiber diameter variation was 22.1% at the start of spinning and 24% after 72 hours. A composite fiber having a desired cross section could not be obtained.
[Reference Example 7]
Polyethylene terephthalate (PET) with intrinsic viscosity [η] 0.65 as the island component polymer and PET copolymerized with 5.0 mol% 5-sodium sulfoisophthalic acid with intrinsic viscosity [η] 0.58 as the sea component polymer (Copolymerized PET) is melted separately at 285 ° C., and the discharge ratio of the sea / island component is discharged at 30/70 using the composite die 18, then cooled by the cooling
複合口金の最下層分配板は、図19に示す構成とした。島成分吐出孔1は、孔数1200個、孔充填密度2.0孔/mm2、直径φ0.2mm、長い方の周期0.6mm、短い方の周期0.45mmとした。そして、隣接する2つの島成分吐出孔1(図19での基準の島成分吐出孔1と島成分吐出孔53a、基準の島成分吐出孔1と島成分吐出孔53b)と、この2つの島成分吐出孔1の2本の共通外接線54とで囲まれる領域内に、2つの海成分吐出孔4のそれぞれ少なくとも一部を存在させ、隣接する2つの島成分吐出孔1の中心を結ぶ線分を線対象軸として、2つの海成分吐出孔4を線対象で配置した。海成分吐出孔4の直径はφ0.2mmとした。2つの島成分吐出孔1の最小間隙DAと、2つの海成分吐出孔4の最小間隙DBとの比DB/DAは0.35とした。なお、基準の島成分吐出孔1と島成分吐出孔53aとの最小間隔をDAとした場合と、基準の島成分吐出孔1と島成分吐出孔2bとの最小間隔をDAとした場合のいずれもDB/DA=0.35とした。
The lowermost layer distribution plate of the composite base was configured as shown in FIG. The island component discharge holes 1 had 1200 holes, a hole packing density of 2.0 holes / mm 2 , a diameter of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.45 mm. Two adjacent island component discharge holes 1 (reference island component discharge hole 1 and island component discharge hole 53a in FIG. 19, reference island component discharge hole 1 and island component discharge hole 53b), and these two islands A line connecting at least a part of each of the two sea component discharge holes 4 and connecting the centers of two adjacent island component discharge holes 1 in a region surrounded by the two common outer tangent lines 54 of the component discharge holes 1 Two sea component discharge holes 4 are arranged as line targets with the minute as a line target axis. The diameter of the sea component discharge hole 4 was φ0.2 mm. The ratio DB / DA between the minimum gap DA of the two island component discharge holes 1 and the minimum gap DB of the two sea component discharge holes 4 was 0.35. Either the case where the minimum distance between the reference island component discharge hole 1 and the island component discharge hole 53a is DA, or the case where the minimum distance between the reference island component discharge hole 1 and the island component discharge hole 2b is DA. Also, DB / DA = 0.35.
表3に記載のとおり、紡糸開始時、および72時間経過後共に、島成分ポリマーの合流は無かった。
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
[参考例8]
島成分吐出孔1を、孔数2400個、孔充填密度4.0孔/mm2、長い方の周期0.5mm、短い方の周期0.35mmとする以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 8]
The same composite die as in Reference Example 7 was used except that the island component discharge holes 1 had 2400 holes, a hole filling density of 4.0 holes / mm 2 , a longer cycle of 0.5 mm, and a shorter cycle of 0.35 mm. Using the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7, a sea-island type composite fiber was produced.
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
島成分吐出孔1を、孔数2400個、孔充填密度4.0孔/mm2、長い方の周期0.5mm、短い方の周期0.35mmとする以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 8]
The same composite die as in Reference Example 7 was used except that the island component discharge holes 1 had 2400 holes, a hole filling density of 4.0 holes / mm 2 , a longer cycle of 0.5 mm, and a shorter cycle of 0.35 mm. Using the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7, a sea-island type composite fiber was produced.
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
[参考例9]
海成分吐出孔4の位置を変えてDB/DA=0.6とする以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 9]
The same composite base as in Reference Example 7 is used except that the position of the seacomponent discharge hole 4 is changed to DB / DA = 0.6, and spinning is performed with the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7. As a result, a sea-island type composite fiber was produced.
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
海成分吐出孔4の位置を変えてDB/DA=0.6とする以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 9]
The same composite base as in Reference Example 7 is used except that the position of the sea
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
[参考例10]
複合口金の最下分配板は、図35に示す構成とした。島成分吐出孔1は孔数1020個、孔充填密度は1.7孔/mm2、直径φ0.2mm、長い方の周期0.6mm、短い方の周期0.5mmとした。隣接する2つの島成分吐出孔1(図35での基準の島成分吐出孔1と島成分吐出孔53a、基準の島成分吐出孔1と島成分吐出孔53b)と、この2つの島成分吐出孔1の2本の共通外接線54とで囲まれる領域内を完全に塞ぐように1つの海成分吐出孔4を設けた。海成分吐出孔の直径はφ0.2mmとした。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 10]
The lowermost distribution plate of the composite base was configured as shown in FIG. The island component discharge holes 1 had 1020 holes, a hole filling density of 1.7 holes / mm 2 , a diameter φ of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.5 mm. Two adjacent island component discharge holes 1 (reference islandcomponent discharge hole 1 and island component discharge hole 53a, reference island component discharge hole 1 and island component discharge hole 53b in FIG. 35), and these two island component discharge holes One sea component discharge hole 4 is provided so as to completely block the region surrounded by the two common outer tangents 54 of the hole 1. The diameter of the sea component discharge hole was φ0.2 mm.
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
複合口金の最下分配板は、図35に示す構成とした。島成分吐出孔1は孔数1020個、孔充填密度は1.7孔/mm2、直径φ0.2mm、長い方の周期0.6mm、短い方の周期0.5mmとした。隣接する2つの島成分吐出孔1(図35での基準の島成分吐出孔1と島成分吐出孔53a、基準の島成分吐出孔1と島成分吐出孔53b)と、この2つの島成分吐出孔1の2本の共通外接線54とで囲まれる領域内を完全に塞ぐように1つの海成分吐出孔4を設けた。海成分吐出孔の直径はφ0.2mmとした。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸して海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流は無かった。 [Reference Example 10]
The lowermost distribution plate of the composite base was configured as shown in FIG. The island component discharge holes 1 had 1020 holes, a hole filling density of 1.7 holes / mm 2 , a diameter φ of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.5 mm. Two adjacent island component discharge holes 1 (reference island
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer did not merge at the start of spinning and after 72 hours had passed.
[参考例11]
海成分吐出孔4を無くす以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時には島成分ポリマーの合流は無かったが、72時間経過後には、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 11]
A sea-island type composite fiber was produced using the same composite base as in Reference Example 7 except that the seacomponent discharge hole 4 was eliminated, and spinning with the same polymer, discharge ratio, equivalent fineness and spinning conditions as in Reference Example 7.
As shown in Table 3, the island component polymer did not merge at the start of spinning, but after 72 hours, the island component polymer merged, and a composite fiber having a desired cross section could not be obtained.
海成分吐出孔4を無くす以外は参考例7と同じ複合口金を用い、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時には島成分ポリマーの合流は無かったが、72時間経過後には、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 11]
A sea-island type composite fiber was produced using the same composite base as in Reference Example 7 except that the sea
As shown in Table 3, the island component polymer did not merge at the start of spinning, but after 72 hours, the island component polymer merged, and a composite fiber having a desired cross section could not be obtained.
[参考例12]
海成分吐出孔4の位置を変えてDB/DA=0.8とする以外は参考例7と同じ複合口金を用いた。ただし、2つの海成分吐出孔4の最小間隔DBが広がったので、隣接する2つの島成分吐出孔1と、この2つの島成分吐出孔の2本の共通外接線3とで囲まれる領域内に、海成分吐出孔4の一部が存在しなくなった。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 12]
The same composite die as in Reference Example 7 was used except that the position of the seacomponent discharge hole 4 was changed to DB / DA = 0.8. However, since the minimum interval DB between the two sea component discharge holes 4 has increased, the area between the two adjacent island component discharge holes 1 and the two common circumscribing lines 3 of the two island component discharge holes 3 In addition, a part of the sea component discharge hole 4 no longer exists.
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer merged at the start of spinning and after 72 hours had elapsed, and a composite fiber having a desired cross section could not be obtained.
海成分吐出孔4の位置を変えてDB/DA=0.8とする以外は参考例7と同じ複合口金を用いた。ただし、2つの海成分吐出孔4の最小間隔DBが広がったので、隣接する2つの島成分吐出孔1と、この2つの島成分吐出孔の2本の共通外接線3とで囲まれる領域内に、海成分吐出孔4の一部が存在しなくなった。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時、72時間経過後共に、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 12]
The same composite die as in Reference Example 7 was used except that the position of the sea
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer merged at the start of spinning and after 72 hours had elapsed, and a composite fiber having a desired cross section could not be obtained.
[参考例13]
複合口金の最下分配板は、図19に示す構成とした。島成分吐出孔1は、孔数900個、孔充填密度1.5孔/mm2、直径φ0.2mm、長い方の周期0.6mm、短い方の周期0.55mmとした。DB/DA=0.35となるように海成分吐出孔4を配置した。海成分吐出孔の直径はφ0.2mmとした。隣接する2つの島成分吐出孔1と、この2つの島成分吐出孔の2本の共通外接線54とで囲まれる領域内に、海成分吐出孔4の一部は存在しなかった。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時には島成分ポリマーの合流は無かったが、72時間経過後には、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 13]
The lowermost distribution plate of the composite base was configured as shown in FIG. The island component discharge holes 1 had 900 holes, a hole filling density of 1.5 holes / mm 2 , a diameter of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.55 mm. The sea component discharge holes 4 were arranged so that DB / DA = 0.35. The diameter of the sea component discharge hole was φ0.2 mm. A part of the seacomponent discharge hole 4 did not exist in a region surrounded by the two adjacent island component discharge holes 1 and the two common outer tangent lines 54 of the two island component discharge holes.
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer did not merge at the start of spinning, but after 72 hours, the island component polymer merged, and a composite fiber having a desired cross section could not be obtained.
複合口金の最下分配板は、図19に示す構成とした。島成分吐出孔1は、孔数900個、孔充填密度1.5孔/mm2、直径φ0.2mm、長い方の周期0.6mm、短い方の周期0.55mmとした。DB/DA=0.35となるように海成分吐出孔4を配置した。海成分吐出孔の直径はφ0.2mmとした。隣接する2つの島成分吐出孔1と、この2つの島成分吐出孔の2本の共通外接線54とで囲まれる領域内に、海成分吐出孔4の一部は存在しなかった。
この複合口金を使用して、参考例7と同等のポリマー、吐出比、同等の繊度、紡糸条件で紡糸し海島型複合繊維を製造した。
表3に記載のとおり、紡糸開始時には島成分ポリマーの合流は無かったが、72時間経過後には、島成分ポリマーの合流が発生し、所望の断面の複合繊維を得ることができなかった。 [Reference Example 13]
The lowermost distribution plate of the composite base was configured as shown in FIG. The island component discharge holes 1 had 900 holes, a hole filling density of 1.5 holes / mm 2 , a diameter of 0.2 mm, a longer period of 0.6 mm, and a shorter period of 0.55 mm. The sea component discharge holes 4 were arranged so that DB / DA = 0.35. The diameter of the sea component discharge hole was φ0.2 mm. A part of the sea
Using this composite die, spinning was performed under the same polymer, discharge ratio, equivalent fineness, and spinning conditions as in Reference Example 7 to produce a sea-island type composite fiber.
As shown in Table 3, the island component polymer did not merge at the start of spinning, but after 72 hours, the island component polymer merged, and a composite fiber having a desired cross section could not be obtained.
本発明は、一般的な溶液紡糸法に用いられる複合口金に限らず、メルトブロー法およびスパンボンド法に適用可能であるし、湿式紡糸法や、乾湿式紡糸法に用いられる口金にも応用することができるが、その応用範囲が、これらに限られるものではない。
The present invention is not limited to a composite die used for a general solution spinning method, but can be applied to a melt blow method and a spun bond method, and also to a die used for a wet spinning method and a dry and wet spinning method. However, the application range is not limited to these.
1 島成分吐出孔
2 仮想円周線C1
3 仮想円周線C4
4 海成分吐出孔
5 最下層分配板
6 分配板
7 分配孔
8 分配溝
9 計量板
10 吐出板
11 吐出導入孔
12 縮小孔
13 島成分ポリマー(島部分)
14 外接円
15 紡糸パック
16 スピンブロック
17 冷却装置
18 複合口金
19 内接円
20 海成分ポリマー(海部分)
21 島成分吐出部
22 延長線
23 仮想円周線C2
24 海成分吐出部
25 吐出孔
26 共通外接線
27 放射状溝
28 同心円上溝
29 上層板
30 パイプ
31 海成分ポリマー導入流路
32 島成分ポリマー導入流路
33 上口金板
34 中口金板
35 下口金板
36 中層板
37 下層板
38 上層突出部
39 仮想外接線
40 海成分ポリマー分配室
41 パイプ挿入孔
42 口金吐出孔
α 縮小角度
L 助走区間
43 多層板
44 分割板
45 配列板
46 上層突出部の下面
47 下層板の上面
48 合流室
49 仮想内接円
50 外周端部孔
51 交点
52 仮想円
53a 基準の島成分吐出孔と短い方の周期で隣接する島成分吐出孔
53b 基準の島成分吐出孔と長い方の周期で隣接する島成分吐出孔
54 共通外接線 1 Islandcomponent discharge hole 2 Virtual circumference line C1
3 virtual circumference line C4
4 Seacomponent discharge hole 5 Lowermost layer distribution plate 6 Distribution plate 7 Distribution hole 8 Distribution groove 9 Metering plate 10 Discharge plate 11 Discharge introduction hole 12 Reduction hole 13 Island component polymer (island part)
14 circumscribedcircle 15 spinning pack 16 spin block 17 cooling device 18 composite base 19 inscribed circle 20 sea component polymer (sea part)
21 Islandcomponent discharge part 22 Extension line 23 Virtual circumference line C2
24 Seacomponent discharge section 25 Discharge hole 26 Common outer tangent line 27 Radial groove 28 Concentric upper groove 29 Upper layer plate 30 Pipe 31 Sea component polymer introduction flow path 32 Island component polymer introduction flow path 33 Upper mouth plate 34 Middle mouth plate 35 Lower mouth plate 36 Middle layer plate 37 Lower layer plate 38 Upper layer protrusion 39 Virtual outer tangent line 40 Sea component polymer distribution chamber 41 Pipe insertion hole 42 Base discharge hole α Reduction angle L Running section 43 Multilayer plate 44 Dividing plate 45 Array plate 46 Lower surface 47 of upper layer protrusion Upper surface 48 of the plate 48 Confluence chamber 49 Virtual inscribed circle 50 Outer peripheral edge hole 51 Intersection 52 Virtual circle 53a Island component discharge hole 53b adjacent to the reference island component discharge hole in a shorter cycle The longer one with the reference island component discharge hole Island component discharge holes 54 adjacent to each other with a period of
2 仮想円周線C1
3 仮想円周線C4
4 海成分吐出孔
5 最下層分配板
6 分配板
7 分配孔
8 分配溝
9 計量板
10 吐出板
11 吐出導入孔
12 縮小孔
13 島成分ポリマー(島部分)
14 外接円
15 紡糸パック
16 スピンブロック
17 冷却装置
18 複合口金
19 内接円
20 海成分ポリマー(海部分)
21 島成分吐出部
22 延長線
23 仮想円周線C2
24 海成分吐出部
25 吐出孔
26 共通外接線
27 放射状溝
28 同心円上溝
29 上層板
30 パイプ
31 海成分ポリマー導入流路
32 島成分ポリマー導入流路
33 上口金板
34 中口金板
35 下口金板
36 中層板
37 下層板
38 上層突出部
39 仮想外接線
40 海成分ポリマー分配室
41 パイプ挿入孔
42 口金吐出孔
α 縮小角度
L 助走区間
43 多層板
44 分割板
45 配列板
46 上層突出部の下面
47 下層板の上面
48 合流室
49 仮想内接円
50 外周端部孔
51 交点
52 仮想円
53a 基準の島成分吐出孔と短い方の周期で隣接する島成分吐出孔
53b 基準の島成分吐出孔と長い方の周期で隣接する島成分吐出孔
54 共通外接線 1 Island
3 virtual circumference line C4
4 Sea
14 circumscribed
21 Island
24 Sea
Claims (11)
- 島成分ポリマーと海成分ポリマーによって構成される複合ポリマー流を吐出するための複合口金であって、各ポリマー成分を分配するための分配孔および分配溝が形成された1枚以上の分配板と、前記分配板のポリマーの紡出経路方向の下流側に位置し、複数の島成分吐出孔と複数の海成分吐出孔とが形成された最下層分配板とで構成され、前記島成分吐出孔を中心とした半径R1の仮想円周線C1上に配置された前記海成分吐出孔と、半径R2の仮想円周線C2上に配置された前記海成分吐出孔と、半径R4の仮想円周線C4上に配置された前記島成分吐出孔とが存在し、次の式(1)を満足し、且つ次の(2)の条件イ~ニのいずれかの配置となる複合口金。
(1)R2≧R4≧√3×R1
(2)条件イ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ロ.C1:3つの海成分吐出孔が中心角120度にて等分配置
C2:3つの海成分吐出孔が中心角120度にて等分配置
C4:3つの島成分吐出孔が中心角120度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が60度
θ5:C1とC4に配置された吐出孔間の位相角が0度
条件ハ.C1:6つの海成分吐出孔が中心角60度にて等分配置
C2:6つの海成分吐出孔が中心角60度にて等分配置
C4:6つの島成分吐出孔が中心角60度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が0度
θ5:C1とC4に配置された吐出孔間の位相角が30度
条件ニ.C1:4つの海成分吐出孔が中心角90度にて等分配置
C2:8つの海成分吐出孔が配置
C4:4つの島成分吐出孔が中心角90度にて等分配置
θ3:C1とC2に配置された吐出孔間の位相角が26.6度
θ5:C1とC4に配置された吐出孔間の位相角が0度 A composite base for discharging a composite polymer flow composed of an island component polymer and a sea component polymer, and one or more distribution plates formed with distribution holes and distribution grooves for distributing each polymer component; The distribution plate is located on the downstream side of the polymer spinning path direction, and includes a lowermost layer distribution plate in which a plurality of island component discharge holes and a plurality of sea component discharge holes are formed. The sea component discharge hole disposed on the virtual circumference line C1 having the radius R1 as the center, the sea component discharge hole disposed on the virtual circumference line C2 having the radius R2, and the virtual circumference line having the radius R4 A composite die having the island component discharge holes arranged on C4, satisfying the following formula (1), and having any one of the following conditions (a) to (d):
(1) R2 ≧ R4 ≧ √3 × R1
(2) Condition a. C1: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C2: Three sea component discharge holes are equally distributed at a central angle of 120 degrees C4: Six island component discharge holes are at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 30 degrees. C1: Three sea component discharge holes equally divided at a central angle of 120 degrees C2: Three sea component discharge holes equally divided at a central angle of 120 degrees C4: Three island component discharge holes at a central angle of 120 degrees Θ3: The phase angle between the discharge holes arranged in C1 and C2 is 60 degrees. Θ5: The phase angle between the discharge holes arranged in C1 and C4 is 0 degrees. C1: Six sea component discharge holes equally divided at a central angle of 60 degrees C2: Six sea component discharge holes equally divided at a central angle of 60 degrees C4: Six island component discharge holes at a central angle of 60 degrees Θ3: The phase angle between the discharge holes arranged at C1 and C2 is 0 degree. Θ5: The phase angle between the discharge holes arranged at C1 and C4 is 30 degrees. C1: Four sea component discharge holes are equally divided at a central angle of 90 degrees C2: Eight sea component discharge holes are equally distributed at a central angle of 90 degrees C4: Four sea component discharge holes are equally divided at a central angle of 90 degrees Phase angle between discharge holes arranged in C2 is 26.6 degrees θ5: Phase angle between discharge holes arranged in C1 and C4 is 0 degree - 前記分配板を複数有し、前記分配板において、前記ポリマーの紡出経路方向の下流側に向かい前記分配孔の孔数が増加し、前記ポリマーの紡出経路方向の上流側に位置する前記分配孔と、前記ポリマーの紡出経路方向の下流側に位置する前記分配孔とを連通するように前記分配溝が形成され、前記分配溝の端部に連通する複数個の分配孔を構成することを特徴とする請求項1に記載の複合口金。 The distribution plate has a plurality of distribution plates, and in the distribution plate, the number of the distribution holes increases toward the downstream side in the polymer spinning path direction, and the distribution plate is located on the upstream side in the polymer spinning path direction. The distribution groove is formed so as to connect the hole and the distribution hole located on the downstream side in the direction of spinning the polymer, and a plurality of distribution holes communicating with the end of the distribution groove are formed. The composite base according to claim 1.
- 前記分配孔および前記分配溝によって形成された前記分配板内部の複数のポリマー通流経路について、前記分配板の上端から最下層分配板に至るまでの前記ポリマー通流経路の長さが相対的に長い経路における前記分配孔の孔径を相対的に短い経路における前記分配孔の孔径より大きくすることを特徴とする請求項1または2に記載の複合口金。 Regarding the plurality of polymer flow paths inside the distribution plate formed by the distribution holes and the distribution grooves, the length of the polymer flow path from the upper end of the distribution plate to the lowermost distribution plate is relatively The composite base according to claim 1 or 2, wherein a diameter of the distribution hole in the long path is larger than a diameter of the distribution hole in the relatively short path.
- 隣接する2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、前記海成分吐出孔の少なくとも一部が存在することを特徴とする請求項1から3のいずれかに記載の複合口金。 The at least one part of the said sea component discharge hole exists in the area | region enclosed by two common outer tangents of two adjacent island component discharge holes, The said any one of Claim 1 to 3 characterized by the above-mentioned. Composite base.
- 前記隣接する2つの島成分吐出孔の2本の共通外接線とで囲まれる領域内に、少なくとも2つの前記海成分吐出孔のそれぞれ少なくとも一部が存在し、該2つの島成分吐出孔の中心を結ぶ線分を挟んで、該2つの海成分吐出孔が配置されている、請求項4に記載の複合口金。 At least a part of each of the at least two sea component discharge holes exists in a region surrounded by two common outer tangents of the two adjacent island component discharge holes, and the centers of the two island component discharge holes The composite base according to claim 4, wherein the two sea component discharge holes are arranged across a line segment connecting the two.
- 前記ポリマーの紡出経路方向の上流側ほど、分配溝を構成する分配板の厚みが大きいことを特徴する請求項1から5のいずれかに記載の複合口金。 The composite die according to any one of claims 1 to 5, wherein the distribution plate constituting the distribution groove is thicker toward the upstream side in the polymer spinning path direction.
- 前記分配板、または前記最下層分配板に形成された最小孔の直径DMINと、前記最小孔が形成された板厚みBTが、以下の式を満たすことを特徴とする請求項1から6のいずれかに記載の複合口金。
BT/DMIN≦2
但し、DMIN:分配板、または最下層分配板に形成された最小孔の直径(mm)、BT:最小孔が形成された分配板、または最下層分配板の厚み(mm)を示す。 The diameter DMIN of the minimum hole formed in the said distribution plate or the said lowermost layer distribution plate, and plate | board thickness BT in which the said minimum hole was formed satisfy | fill the following formula | equation, Any one of Claim 1 to 6 characterized by the above-mentioned. Compound base as described in Crab.
BT / DMIN ≦ 2
DMIN: diameter of the smallest hole formed in the distribution plate or the lowermost layer distribution plate (mm), BT: thickness of the distribution plate in which the smallest hole is formed, or the lowermost layer distribution plate (mm). - 前記分配板、または前記最下層分配板の板厚みが0.1~0.5mmの範囲となることを特徴とする請求項1から7のいずれかに記載の複合口金。 The composite die according to any one of claims 1 to 7, wherein a thickness of the distribution plate or the lowermost layer distribution plate is in a range of 0.1 to 0.5 mm.
- 前記島成分吐出孔の孔充填密度が0.5孔/mm2以上である請求項1から8のいずれかに記載の複合口金。 The composite die according to any one of claims 1 to 8, wherein a hole filling density of the island component discharge holes is 0.5 hole / mm 2 or more.
- 請求項1から9のいずれかに記載の複合口金において、前記分配板から前記最下層分配板の前記島成分吐出孔に至る各流路における流路圧損が等しく、前記分配板から前記最下層分配板の前記海成分吐出孔に至る各流路における流路圧損が等しくなる複合口金を用いた複合紡糸機により溶融紡糸を行う複合繊維の製造方法。 The composite base according to any one of claims 1 to 9, wherein flow path pressure loss in each flow path from the distribution plate to the island component discharge hole of the lowermost layer distribution plate is equal, and the lowermost layer distribution from the distribution plate. A method for producing a composite fiber, in which melt spinning is performed by a composite spinning machine using a composite base in which flow path pressure loss in each flow path to the sea component discharge hole of the plate is equal.
- 請求項1から9のいずれかに記載の複合口金を用いた複合紡糸機により、島成分ポリマー比率を50%以上にて溶融紡糸を行う複合繊維の製造方法。 A method for producing a composite fiber, in which melt spinning is performed with a composite spinning machine using the composite die according to any one of claims 1 to 9 at an island component polymer ratio of 50% or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180063082.9A CN103261494B (en) | 2010-12-27 | 2011-07-22 | The manufacture method of composite spinning jete and composite fibre |
EP11853367.8A EP2660369B1 (en) | 2010-12-27 | 2011-07-22 | Composite spinneret and method of manufacturing composite fiber |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-289980 | 2010-12-27 | ||
JP2010289980A JP5728936B2 (en) | 2010-12-27 | 2010-12-27 | Composite base and composite fiber manufacturing method |
JP2011129780 | 2011-06-10 | ||
JP2011-129780 | 2011-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090538A1 true WO2012090538A1 (en) | 2012-07-05 |
Family
ID=46382664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066697 WO2012090538A1 (en) | 2010-12-27 | 2011-07-22 | Composite spinneret and method of manufacturing composite fiber |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2660369B1 (en) |
CN (1) | CN103261494B (en) |
TW (1) | TW201226643A (en) |
WO (1) | WO2012090538A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133056A1 (en) * | 2012-03-09 | 2013-09-12 | 東レ株式会社 | Manufacturing method for composite spinneret and composite fiber |
JPWO2014077359A1 (en) * | 2012-11-19 | 2017-01-05 | 東レ株式会社 | Composite base, composite fiber, and method for manufacturing composite fiber |
CN109306532A (en) * | 2018-12-07 | 2019-02-05 | 常州纺兴精密机械有限公司 | A kind of composite conducting fiber and its spinning component |
CN111763998A (en) * | 2020-07-16 | 2020-10-13 | 常州纺兴精密机械有限公司 | Three-component parallel composite fiber and spinning assembly thereof |
CN112725912A (en) * | 2020-12-04 | 2021-04-30 | 江苏立新化纤科技有限公司 | Polyester-polyamide composite spinning pack with 144 holes prepared within 104mm of diameter |
CN114917686A (en) * | 2022-05-17 | 2022-08-19 | 苏州工业园区拓朴环保净化有限公司 | Preparation method of long fiber composite filter element, filter element and mold thereof |
US11525191B2 (en) | 2017-06-28 | 2022-12-13 | Toray Industries, Inc. | Pack for spinning and method for producing fiber |
WO2023171363A1 (en) * | 2022-03-11 | 2023-09-14 | 東レ株式会社 | Method for manufacturing bicomponent fiber, and bicomponent spinneret |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1024623B1 (en) * | 2016-09-30 | 2018-05-24 | Nv Michel Van De Wiele | SPIN PLATE |
CN109112651A (en) * | 2018-10-19 | 2019-01-01 | 江苏尚科聚合新材料有限公司 | A kind of island composite spining module and a kind of composite fibre |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989002938A1 (en) | 1987-10-02 | 1989-04-06 | Hills Research & Development, Inc. | Profiled multi-component fibers and method and apparatus for making same |
JPH0726420A (en) | 1993-03-31 | 1995-01-27 | Basf Corp | Composite fiber, microfiber formed thereof and preparation thereof |
JPH07118913A (en) | 1993-10-25 | 1995-05-09 | Mitsubishi Rayon Co Ltd | Spinneret device for sea-island fiber |
JP2000110028A (en) | 1998-10-02 | 2000-04-18 | Kuraray Co Ltd | Sea island structure fiber and its production |
JP2000265316A (en) * | 1999-03-17 | 2000-09-26 | Toray Ind Inc | Spinning pack |
JP2006183153A (en) | 2004-12-24 | 2006-07-13 | Japan Vilene Co Ltd | Spinneret device for sea-island type conjugate fiber and method for producing sea-island type conjugate fiber by using the same |
JP2007100243A (en) | 2005-10-04 | 2007-04-19 | Teijin Fibers Ltd | Sea-island type conjugate fiber for ultrafine fiber with high toughness |
JP2008038275A (en) | 2006-08-03 | 2008-02-21 | Teijin Fibers Ltd | Composite spinneret for splittable conjugate fiber |
JP2009091680A (en) | 2007-10-05 | 2009-04-30 | Teijin Fibers Ltd | Spinneret for sea-island-type conjugate fiber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1252556B (en) * | 1991-12-19 | 1995-06-19 | Savio Spa | DISTRIBUTOR DISC OF THERMOPLASTIC MATERIAL CAST FOR A SPINNING HEAD |
US6478563B1 (en) * | 2000-10-31 | 2002-11-12 | Nordson Corporation | Apparatus for extruding multi-component liquid filaments |
ES2252587T3 (en) * | 2003-06-13 | 2006-05-16 | REIFENHAUSER GMBH & CO. KG MASCHINENFABRIK | DEVICE FOR THE MANUFACTURE OF FILAMENTS. |
JP2007039858A (en) * | 2005-08-03 | 2007-02-15 | Hiroshi Tabata | Method for forming extremely fine structural fiber with regularity |
WO2009112082A1 (en) * | 2008-03-14 | 2009-09-17 | Oerlikon Textile Gmbh & Co. Kg | Device for melt spinning multi-component fibers |
CN201268733Y (en) * | 2008-09-27 | 2009-07-08 | 宁波荣溢化纤科技有限公司 | Spinneret component for gel spinning |
KR100953437B1 (en) * | 2009-02-13 | 2010-04-20 | 웅진케미칼 주식회사 | Spinneret for manufacturing sea-island fiber |
-
2011
- 2011-07-22 WO PCT/JP2011/066697 patent/WO2012090538A1/en active Application Filing
- 2011-07-22 EP EP11853367.8A patent/EP2660369B1/en active Active
- 2011-07-22 CN CN201180063082.9A patent/CN103261494B/en active Active
- 2011-07-27 TW TW100126500A patent/TW201226643A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989002938A1 (en) | 1987-10-02 | 1989-04-06 | Hills Research & Development, Inc. | Profiled multi-component fibers and method and apparatus for making same |
JPH0726420A (en) | 1993-03-31 | 1995-01-27 | Basf Corp | Composite fiber, microfiber formed thereof and preparation thereof |
JPH07118913A (en) | 1993-10-25 | 1995-05-09 | Mitsubishi Rayon Co Ltd | Spinneret device for sea-island fiber |
JP2000110028A (en) | 1998-10-02 | 2000-04-18 | Kuraray Co Ltd | Sea island structure fiber and its production |
JP2000265316A (en) * | 1999-03-17 | 2000-09-26 | Toray Ind Inc | Spinning pack |
JP2006183153A (en) | 2004-12-24 | 2006-07-13 | Japan Vilene Co Ltd | Spinneret device for sea-island type conjugate fiber and method for producing sea-island type conjugate fiber by using the same |
JP2007100243A (en) | 2005-10-04 | 2007-04-19 | Teijin Fibers Ltd | Sea-island type conjugate fiber for ultrafine fiber with high toughness |
JP2008038275A (en) | 2006-08-03 | 2008-02-21 | Teijin Fibers Ltd | Composite spinneret for splittable conjugate fiber |
JP2009091680A (en) | 2007-10-05 | 2009-04-30 | Teijin Fibers Ltd | Spinneret for sea-island-type conjugate fiber |
Non-Patent Citations (1)
Title |
---|
See also references of EP2660369A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133056A1 (en) * | 2012-03-09 | 2013-09-12 | 東レ株式会社 | Manufacturing method for composite spinneret and composite fiber |
EP2824225B1 (en) * | 2012-03-09 | 2019-07-03 | Toray Industries, Inc. | Composite spinneret and method of manufacturing composite fiber |
JPWO2014077359A1 (en) * | 2012-11-19 | 2017-01-05 | 東レ株式会社 | Composite base, composite fiber, and method for manufacturing composite fiber |
US11525191B2 (en) | 2017-06-28 | 2022-12-13 | Toray Industries, Inc. | Pack for spinning and method for producing fiber |
CN109306532A (en) * | 2018-12-07 | 2019-02-05 | 常州纺兴精密机械有限公司 | A kind of composite conducting fiber and its spinning component |
CN111763998A (en) * | 2020-07-16 | 2020-10-13 | 常州纺兴精密机械有限公司 | Three-component parallel composite fiber and spinning assembly thereof |
CN112725912A (en) * | 2020-12-04 | 2021-04-30 | 江苏立新化纤科技有限公司 | Polyester-polyamide composite spinning pack with 144 holes prepared within 104mm of diameter |
CN112725912B (en) * | 2020-12-04 | 2022-05-10 | 江苏立新化纤科技有限公司 | Polyester-polyamide composite spinning pack with 144 holes prepared within 104mm of diameter |
WO2023171363A1 (en) * | 2022-03-11 | 2023-09-14 | 東レ株式会社 | Method for manufacturing bicomponent fiber, and bicomponent spinneret |
CN114917686A (en) * | 2022-05-17 | 2022-08-19 | 苏州工业园区拓朴环保净化有限公司 | Preparation method of long fiber composite filter element, filter element and mold thereof |
CN114917686B (en) * | 2022-05-17 | 2024-04-02 | 苏州工业园区拓朴环保净化有限公司 | Preparation method of long-fiber composite filter element, filter element and die thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103261494B (en) | 2015-08-12 |
EP2660369A1 (en) | 2013-11-06 |
EP2660369A4 (en) | 2015-01-07 |
EP2660369B1 (en) | 2016-05-18 |
CN103261494A (en) | 2013-08-21 |
TW201226643A (en) | 2012-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821714B2 (en) | Composite base and composite fiber manufacturing method | |
WO2012090538A1 (en) | Composite spinneret and method of manufacturing composite fiber | |
JP5505030B2 (en) | Composite base and composite fiber manufacturing method | |
JP5900041B2 (en) | Composite base and composite fiber manufacturing method | |
JP5703785B2 (en) | Compound base | |
TWI551738B (en) | Sea-island type composite fiber, ultrafine fiber and composite spinneret | |
JP5472479B2 (en) | Composite fiber | |
US20180320290A1 (en) | Composite spinneret that produces multicomponent fibers | |
JP5728936B2 (en) | Composite base and composite fiber manufacturing method | |
JP5740877B2 (en) | Extra fine fiber | |
JP5630254B2 (en) | Composite fiber | |
JP6206215B2 (en) | Composite base and composite fiber manufactured using composite base | |
JP6398562B2 (en) | Composite base, composite fiber, and method for producing composite fiber | |
WO2023171363A1 (en) | Method for manufacturing bicomponent fiber, and bicomponent spinneret | |
JP2020165026A (en) | Spinneret for sea-island type conjugate fiber | |
JP7147750B2 (en) | Spinneret and fibrous web manufacturing method | |
JP6015300B2 (en) | Composite base and composite fiber manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011853367 Country of ref document: EP |