JP2018168510A - Porous hollow fiber - Google Patents

Porous hollow fiber Download PDF

Info

Publication number
JP2018168510A
JP2018168510A JP2017067887A JP2017067887A JP2018168510A JP 2018168510 A JP2018168510 A JP 2018168510A JP 2017067887 A JP2017067887 A JP 2017067887A JP 2017067887 A JP2017067887 A JP 2017067887A JP 2018168510 A JP2018168510 A JP 2018168510A
Authority
JP
Japan
Prior art keywords
island
sea
fiber
component
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017067887A
Other languages
Japanese (ja)
Inventor
中島 卓
Taku Nakajima
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2017067887A priority Critical patent/JP2018168510A/en
Publication of JP2018168510A publication Critical patent/JP2018168510A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

To provide a porous hollow fiber uniform in diameter of a hollow part even when percentage of the hollow part is large, having light weight and high in heat insulation property.SOLUTION: There is provided a porous hollow fiber obtained by removing an island component from a plurality of sea-island-type composite fibers containing an alkali solution easily soluble polymer as the island component and low soluble polymer as a sea component, in which the number of the hollow part observed in a fiber cross section with right angle to a length direction of the fiber is 100 or more per 1 porous hollow fiber, intervals of neighboring hollow parts are 100 nm or more, diameters of each hollow part are in a range of 10 to 1000 nm, variation of diameter of the hollow part (CV value) is 30% or less, the low soluble polymer contains a specific metal salt compound, the content of the same is 0.1 to 3.0 mol% based on 100 mol% of the low soluble polymer.SELECTED DRAWING: Figure 3

Description

本発明は、多孔中空繊維およびその製造に用いる海島型複合繊維に関する。   The present invention relates to a porous hollow fiber and a sea-island type composite fiber used for the production thereof.

ポリエステル繊維は、機械的特性をはじめ様々な優れた特性を有しており、衣料用途をはじめとして各種の用途や分野に利用されている。しかし、ポリエステル繊維は、天然繊維に比べて風合い的に硬い、吸水性がない、触感の点で好ましくないと言われ、繊維の断面形状を変えることによって、これらの問題の解決が図られてきた。   Polyester fibers have various excellent properties including mechanical properties, and are used in various applications and fields including clothing applications. However, polyester fibers are said to be harder in texture than natural fibers, have no water absorption, and are not preferable in terms of touch, and these problems have been solved by changing the cross-sectional shape of the fibers. .

衣料用途においては、軽量でありながら高い布帛強度を得るために、断面形状を中空にした中空繊維が用いられている。中空繊維を得るためには、紡糸口金を中空形状にしたり、複合繊維(通常コンジュゲート紡糸と呼ばれている)装置を用いて、繊維中心部(芯部)にポリビニールアルコール樹脂を用い、繊維外周部(鞘部)にポリエステル樹脂を用いる芯鞘構造の複合繊維とし、紡糸捲取後に芯部のポリビニールアルコール樹脂を溶出させ、鞘部のポリエステル繊維を残すことで高い中空率の中空繊維を得ることが提案されている(例えば、特許文献1)。しかし、紡糸口金を中空形状にすることによって中空繊維を得る方法では、紡糸断糸が発生しやすく、安定して生産を行うことが難しい。他方、芯鞘構造の複合繊維から中空繊維を得る方法では、中空率を高くすることは比較的容易でありながらも、紡糸口金の一吐出孔あたりの面積が巨大になってしまう他、芯部の樹脂成分の位置をコントロールすることが難しく、均一な繊維を得ることが困難である。特に、長繊維では芯部の樹脂成分の溶出を完全に行うことが難しい。これまで、糸長方向および糸断面方向に均一に多くの中空部を形成した良好な多孔中空繊維は得られていない。   In clothing applications, in order to obtain high fabric strength while being lightweight, hollow fibers having a hollow cross-sectional shape are used. In order to obtain hollow fibers, the spinneret is made into a hollow shape, or using a composite fiber (usually called conjugate spinning) device, polyvinyl alcohol resin is used at the fiber center (core), and the fibers A core-sheath composite fiber using a polyester resin on the outer periphery (sheath part) is made into a hollow fiber having a high hollow ratio by eluting the polyvinyl alcohol resin in the core part after spinning and leaving the polyester fiber in the sheath part. It has been proposed to obtain (for example, Patent Document 1). However, in the method of obtaining hollow fibers by forming the spinneret into a hollow shape, spun yarn is likely to occur, and it is difficult to perform stable production. On the other hand, in the method of obtaining hollow fibers from the core-sheath composite fiber, it is relatively easy to increase the hollow ratio, but the area per discharge hole of the spinneret becomes enormous, and the core portion It is difficult to control the position of the resin component, and it is difficult to obtain uniform fibers. In particular, with long fibers, it is difficult to completely elute the resin component in the core. So far, a good porous hollow fiber in which many hollow portions are uniformly formed in the yarn length direction and the yarn cross-sectional direction has not been obtained.

ところで、特開平9−241941号公報(特許文献2)および特開2001−115334号公報(特許文献3)には、繊維軸に対して直交する断面が中空であるコアー部と、該コアー部外表面から突出し且つ該コアー部の長さ方向に沿って延在するフィン部とからなる形状の中空糸が提案されている。しかし、この形状では、マルチフィラメントの状態での空隙率は低くなり、結果的に軽量性が劣ることになる。   By the way, Japanese Patent Application Laid-Open No. 9-241194 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2001-115334 (Patent Document 3) describe a core part having a hollow cross section perpendicular to the fiber axis and an outside of the core part. A hollow fiber having a shape including a fin portion protruding from the surface and extending along the length direction of the core portion has been proposed. However, with this shape, the porosity in the multifilament state is low, resulting in inferior lightness.

また、特開2008−57060号公報(特許文献4)にも中空繊維が記載されているが、この中空繊維はフィンの枚数が少なく、高度に異型化された断面であるために、繊維のシルクファクター(強度×√伸度)が低くなり、延伸工程における毛羽の発生が多く、繊維断面の変形により中空率と空隙率が大きく低下する。   Moreover, although hollow fiber is described also in Unexamined-Japanese-Patent No. 2008-57060 (patent document 4), since this hollow fiber has few number of fins and is a highly atypical cross section, it is silk of a fiber. The factor (strength × √elongation) is low, fluff is frequently generated in the drawing process, and the hollowness and porosity are greatly reduced due to deformation of the fiber cross section.

特開2002−173824号公報JP 2002-173824 A 特開平9−241941号公報JP-A-9-241941 特開2001−115334号公報JP 2001-115334 A 特開2008−57060号公報JP 2008-57060 A

本発明は、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を提供することを目的とする。   An object of the present invention is to provide a porous hollow fiber that has a uniform hollow portion diameter even if the proportion of the hollow portion is large, is lightweight, and has high heat retention.

本発明はまた、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を得るために用いる海島型複合繊維であって、海島型複合繊維における島成分の含有比率が高くても島成分を容易に除去でき、実用に耐える十分な機械的強度を有し、中空部の数が極めて多い多孔中空繊維を得ることができる、海島型複合繊維を提供することを目的とする。   The present invention is also a sea-island composite fiber used for obtaining a porous hollow fiber having a uniform hollow part diameter, light weight and high heat retention even when the proportion of the hollow part is large. Providing sea-island composite fibers that can easily remove island components even when the component content is high, have sufficient mechanical strength to withstand practical use, and obtain porous hollow fibers with an extremely large number of hollow portions The purpose is to do.

〔多孔中空繊維〕
すなわち本発明は、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする複数本の海島型複合繊維から該島成分を除去して得られる多孔中空繊維であって、該繊維の長さ方向に対して直角な繊維断面において観察される中空部の数が多孔中空繊維の1本あたり100以上であり、互に隣り合う中空部の間隔が100nm以上であり、中空部のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーが下記式で表される金属塩化合物を含有し、その含有量が難溶性ポリマー100重量%あたり0.1〜3.0重量%であることを特徴とする多孔中空繊維である。
[Porous hollow fiber]
That is, the present invention is a porous hollow fiber obtained by removing the island component from a plurality of sea-island type composite fibers having an easily soluble polymer as an island component and a hardly soluble polymer as a sea component, The number of hollow portions observed in the fiber cross section perpendicular to the length direction is 100 or more per porous hollow fiber, the interval between adjacent hollow portions is 100 nm or more, and each of the hollow portions The diameter is in the range of 10 to 1000 nm, the variation in the diameter of the hollow part (CV value) is 30% or less, and the hardly soluble polymer contains a metal salt compound represented by the following formula. The porous hollow fiber is characterized in that the amount is 0.1 to 3.0% by weight per 100% by weight of the hardly soluble polymer.

Figure 2018168510
Figure 2018168510

〔海島型複合繊維〕
本発明はまた、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする海島型複合繊維であって、この複合繊維の繊維長さ方向に対して直角な繊維断面において観察される島成分の数が100以上であり、互に隣り合う島成分の間隔が100nm以上であり、かつ島成分のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーが下記式で表される金属塩化合物を含有し、その含有量が難溶性ポリマー100重量%あたり0.1〜3.0重量%であることを特徴とする海島型複合繊維である。
[Sea-island type composite fiber]
The present invention is also a sea-island type composite fiber having an easily soluble polymer as an island component and a hardly soluble polymer as a sea component, and is observed in a fiber cross section perpendicular to the fiber length direction of the composite fiber. The number of island components is 100 or more, the interval between adjacent island components is 100 nm or more, and the diameter of each island component is in the range of 10 to 1000 nm. ) Is 30% or less, and the hardly soluble polymer contains a metal salt compound represented by the following formula, and the content thereof is 0.1 to 3.0% by weight per 100% by weight of the hardly soluble polymer. This is a sea-island type composite fiber.

Figure 2018168510
Figure 2018168510

本発明によれば、中空部の割合が大きくても中空部の直径が均一であり、軽量で保温性の高い多孔中空繊維を提供することができる。   According to the present invention, it is possible to provide a porous hollow fiber that has a uniform hollow portion diameter and is lightweight and has high heat retention even when the proportion of the hollow portion is large.

本発明はまた、多孔中空繊維を得るために用い、海島型複合繊維における島成分の含有比率が高くても島成分を容易に除去することができ、実用に耐える十分な機械的強度を有し、中空部の数が極めて多い多孔中空繊維を得ることができる、海島型複合繊維を提供することができる。   The present invention is also used to obtain porous hollow fibers, and can easily remove island components even when the content ratio of island components in sea-island composite fibers is high, and has sufficient mechanical strength to withstand practical use. It is possible to provide a sea-island type composite fiber that can obtain a porous hollow fiber having an extremely large number of hollow portions.

本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。FIG. 2 is a cross-sectional explanatory view of a part of a spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。FIG. 2 is a cross-sectional explanatory view of a part of a spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維の一例の横断面説明図である。It is a cross-sectional explanatory drawing of an example of the sea-island type composite fiber of this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

〔多孔中空繊維〕
本発明の多孔中空繊維において繊維の長さ方向に対して直角な繊維断面において観察される中空部の数は繊維1本あたり100以上、好ましくは500以上である。中空部の数が100未満であると、多孔中空繊維の軽量性、保温性およびソフト感について十分な性能を得ることができない。なお、中空部の数をあまりに多くしすぎると、紡糸口金の製造コストが高くなる他、紡糸口金の加工精度自体も低下しやすくなるので、中空部の数を1000以下とすることが好ましい。
[Porous hollow fiber]
In the porous hollow fiber of the present invention, the number of hollow portions observed in the fiber cross section perpendicular to the fiber length direction is 100 or more, preferably 500 or more per fiber. If the number of hollow portions is less than 100, sufficient performance cannot be obtained with respect to lightness, heat retention and soft feeling of the porous hollow fiber. If the number of hollow portions is excessively large, the manufacturing cost of the spinneret increases, and the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of hollow portions is preferably 1000 or less.

多孔中空繊維の中空部の直径は10〜1000nm、好ましくは100〜700nmである。中空部の直径が10nm未満であると繊維構造自身が不安定で、中空形成性が不安定になり、1000nmを越えると多孔中空繊維特有の保温性が得られない。なお、多孔中空繊維の中空部の直径は均一であるほど繊維の品位が向上する。   The diameter of the hollow part of the porous hollow fiber is 10 to 1000 nm, preferably 100 to 700 nm. If the diameter of the hollow portion is less than 10 nm, the fiber structure itself is unstable and the hollow forming property becomes unstable, and if it exceeds 1000 nm, the heat retention characteristic of the porous hollow fiber cannot be obtained. In addition, the quality of a fiber improves, so that the diameter of the hollow part of a porous hollow fiber is uniform.

繊維の長さ方向に対して直角な繊維断面において観察される互に隣り合う中空部の間隔は100nm以上、好ましくは200nm以上である。100nm未満であると島成分を溶解除去した後に得られる多孔中空繊維の機械的強度を十分に確保することができない。中空部とそれに隣接する中空部との間隔は、多孔中空繊維を製造するときに海島型複合繊維の海成分内に貫通した微細孔を効率的に形成し、均質性の高い多孔中空繊維を得る観点から、500nm未満であることが好ましい。   The interval between the adjacent hollow portions observed in the fiber cross section perpendicular to the fiber length direction is 100 nm or more, preferably 200 nm or more. When the thickness is less than 100 nm, the mechanical strength of the porous hollow fiber obtained after dissolving and removing the island component cannot be sufficiently secured. The space between the hollow part and the adjacent hollow part efficiently forms fine pores penetrating in the sea component of the sea-island composite fiber when producing the porous hollow fiber, thereby obtaining a highly uniform porous hollow fiber. From the viewpoint, it is preferably less than 500 nm.

中空部の直径のばらつき(CV値)は、特に、長繊維において、糸長方向および糸断面方向に均一に中空部を形成する観点から、好ましくは0〜30%、さらに好ましくは0〜20%、さらに好ましくは0〜15%である。このCV値が低いことは、繊度のばらつきが少なく、均一な多孔中空繊維であることを意味する。   The variation (CV value) in the diameter of the hollow part is preferably 0 to 30%, more preferably 0 to 20%, particularly from the viewpoint of forming the hollow part uniformly in the yarn length direction and the yarn cross-sectional direction in long fibers. More preferably, it is 0 to 15%. A low CV value means that there is little variation in fineness and that the porous hollow fiber is uniform.

本発明の多孔中空繊維は、引張り強さが1.0〜6.0cN/dtexであることが好ましい。この範囲の引っ張り強さを備えることで、引張強さを必要とする多くの用途に対応することができる。   The porous hollow fiber of the present invention preferably has a tensile strength of 1.0 to 6.0 cN / dtex. By providing a tensile strength in this range, it is possible to cope with many applications that require a tensile strength.

また、本発明の多孔中空繊維は、切断伸び率が15〜60%であることが好ましい。この範囲の切断伸び率を備えることで、様々な用途に応用展開可能な強度を持つ。   The porous hollow fiber of the present invention preferably has a cutting elongation of 15 to 60%. By having a cut elongation in this range, it has strength that can be applied and developed for various purposes.

〔易溶解性ポリマー〕
本発明の多孔中空繊維を得るために用いる海島型複合繊維の島成分に用いる易溶解性ポリマーとしては、海成分に用いる難溶解性ポリマーよりもアルカリ水溶液に対する溶解性が高く、難溶解性ポリマーよりも容易に溶解するポリマーを用いる。この易溶解性ポリマーは、アルカリ水溶液に容易に溶解するポリマーであり、例えば、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合ポリマー、ポリエチレングリコール化合物共重合ポリエステル、およびポリエチレングリコール化合物と5−ナトリウムスルホイソフタル酸との共重合ポリエステルを用いることができる。
[Easily soluble polymer]
As the easily soluble polymer used for the island component of the sea-island type composite fiber used for obtaining the porous hollow fiber of the present invention, the solubility in an alkaline aqueous solution is higher than that of the hardly soluble polymer used for the sea component, which is higher than the hardly soluble polymer. Also use a polymer that dissolves easily. This easily soluble polymer is a polymer that dissolves easily in an alkaline aqueous solution. For example, polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymerized polyester, and polyethylene glycol compound and 5-sodium sulfoisophthalic acid. Copolyester with can be used.

なかでも、アルカリへの易溶解性と海島断面形成性とを両立させるために、易溶解性ポリマーが、6〜12モル%の5−ナトリウムスルホン酸および94〜88モル%のテレフタル酸をジカルボン酸成分とし、3〜10重量%の分子量4000〜12000のポリエチレングリコールおよび97〜90重量%のジエチレングリコールをジオール成分としてなる共重合ポリエステルであることが好ましい。この共重合ポリエステルは、固有粘度が0.4〜0.6であることが好ましい。   Among these, in order to achieve both easy solubility in alkali and sea-island cross-sectional formability, an easily soluble polymer is obtained by converting 6 to 12 mol% of 5-sodium sulfonic acid and 94 to 88 mol% of terephthalic acid into a dicarboxylic acid. It is preferably a copolyester comprising 3 to 10% by weight of polyethylene glycol having a molecular weight of 4000 to 12000 and 97 to 90% by weight of diethylene glycol as diol components. This copolyester preferably has an intrinsic viscosity of 0.4 to 0.6.

この共重合ポリエステルにおける共重合成分の5−ナトリウムイソフタル酸は、得られる共重合ポリエステルの親水性と溶融粘度の向上に寄与し、ポリエチレングリコールは得られる共重合体の親水性を向上させる。   Copolymerization component 5-sodium isophthalic acid in this copolymerized polyester contributes to improving the hydrophilicity and melt viscosity of the resulting copolymerized polyester, and polyethylene glycol improves the hydrophilicity of the resulting copolymer.

この共重合ポリエステルにおけるポリエチレングリコールの分子量は4000〜12000である。分子量が12000を超えるとその高次構造に起因すると考えられる親水性が高くなるが、ジカルボン酸成分との反応性が低下して、得られる反応生成物はブレンド系になるため、耐熱性・紡糸安定性が不足することになる。他方分子量が4000未満であると親水性が不十分となり島成分の除去が困難になる。   The molecular weight of polyethylene glycol in this copolyester is 4000-12000. When the molecular weight exceeds 12,000, hydrophilicity, which is considered to be due to its higher order structure, is increased, but the reactivity with the dicarboxylic acid component is reduced, and the resulting reaction product becomes a blend system. Stability will be insufficient. On the other hand, if the molecular weight is less than 4000, the hydrophilicity is insufficient and it is difficult to remove the island components.

共重合ポリエステルにおけるポリエチレングリコールの共重合量が3重量%未満であると親水性が不十分であり、島成分をアルカリ水溶液で除去することが困難になりやすく、好ましくない。他方、ポリエチレングリコールの共重合量が10重量%を超えると、ポリエチレングリコールには本来溶融粘度低下作用があるので、得られる共重合体の粘度が低すぎ、多孔中空繊維を提供する本発明の目的を達成することが困難になりやすく、好ましくない。   When the copolymerization amount of polyethylene glycol in the copolymerized polyester is less than 3% by weight, the hydrophilicity is insufficient, and it is difficult to remove the island component with an alkaline aqueous solution, which is not preferable. On the other hand, when the copolymerization amount of polyethylene glycol exceeds 10% by weight, since polyethylene glycol originally has an effect of lowering melt viscosity, the viscosity of the resulting copolymer is too low, and the object of the present invention to provide a porous hollow fiber It is difficult to achieve this, which is not preferable.

〔溶解速度比〕
島成分の易溶解性ポリマーと海成分の難溶解性ポリマーの溶解速度比(島成分/海成分)は、200以上であることが好ましい。この溶解速度比が200未満であると、得られる海島型複合繊維の断面中央部の島成分をアルカリ水溶液で溶解させている間に、繊維断面表層部の海成分もその一部が溶解されることになり、島成分を完全に溶解除去するために海成分も部分的に溶解され繊維が減量されてしまうことになり、難溶解性ポリマーの太さ斑や溶剤浸食による繊維の強度劣化が発生するとともに、毛羽やフィブリルを生じ、繊維を用いた製品の品位を低下させることがあり好ましくない。
[Dissolution rate ratio]
The dissolution rate ratio (island component / sea component) of the easily soluble polymer of the island component and the hardly soluble polymer of the sea component is preferably 200 or more. When the dissolution rate ratio is less than 200, while the island component at the center of the cross section of the obtained sea-island type composite fiber is dissolved with the alkaline aqueous solution, a part of the sea component at the surface of the fiber cross section is dissolved. Therefore, in order to completely dissolve and remove the island component, the sea component is also partially dissolved and the fiber is reduced, resulting in fiber thickness deterioration due to thick spots of hardly soluble polymer and solvent erosion. At the same time, fluff and fibrils are produced, and the quality of the product using the fibers may be lowered, which is not preferable.

〔難溶解性ポリマー〕
本発明の多孔中空繊維を得るために用いる海島型複合繊維の海成分に用いられる難溶解性ポリマーは、アルカリ水溶液に容易に溶解しないポリマーである。この難溶解性ポリマーは、海島型複合繊維において島成分として組み合わせて用いる易溶解性ポリマーとの間で、上記の溶解速度比を満足するものであればいかなるポリマーであってもよいが、糸長方向および糸断面方向に均一に数多くの中空部を形成させるために微細孔形成剤を含有する。この微細孔形成剤として、本発明では下記一般式で表わされる金属塩化合物を用いる。
[Slightly soluble polymer]
The hardly soluble polymer used for the sea component of the sea-island type composite fiber used for obtaining the porous hollow fiber of the present invention is a polymer that is not easily dissolved in an alkaline aqueous solution. The poorly soluble polymer may be any polymer that satisfies the above dissolution rate ratio with the easily soluble polymer used in combination as an island component in the sea-island composite fiber. In order to form a large number of hollow portions uniformly in the direction and the cross-sectional direction of the yarn, it contains a micropore forming agent. As the fine pore forming agent, a metal salt compound represented by the following general formula is used in the present invention.

Figure 2018168510
上記一般式において、M およびM ′は、好ましくはアルカリ金属、アルカリ土類金属、マンガン、コバルト、亜鉛である。
Figure 2018168510
In the above general formula, M 1 and M ′ are preferably alkali metals, alkaline earth metals, manganese, cobalt and zinc.

この一般式の金属塩化合物として、例えば特公昭61−31231号公報に挙げられているものを用いることができ、具体的には、例えば3−カルボメトキシベンゼンスルホン酸ナトリウム−5−カルボン酸ナトリウム、3−ヒドロキシエトキシカルボニルベンゼンスルホン酸ナトリウム−5−カルボン酸1/2マグネシウムを挙げることができる。   As the metal salt compound of this general formula, for example, those described in Japanese Patent Publication No. 61-31231 can be used. Specifically, for example, sodium 3-carbomethoxybenzenesulfonate-5-carboxylate, Mention may be made of sodium 3-hydroxyethoxycarbonylbenzenesulfonate-5-magnesium 1/2 carbonate.

金属塩化合物の難溶解性ポリマーへの添加時期は、溶融紡糸する以前の任意の段階でよく、例えば難溶解性ポリマーの重合原料中に添加してもよく、重合中に添加してもよい。   The metal salt compound may be added to the hardly soluble polymer at any stage before melt spinning. For example, the metal salt compound may be added to the polymerization raw material of the hardly soluble polymer or may be added during the polymerization.

金属塩化合物の難溶解性ポリマーでの含有量は、難溶解性ポリマー100重量%あたり0.1〜3.0重量%、好ましくは0.5〜1.5重量%である。この金属塩化合物には、海島型複合繊維から島成分を溶解除去する際に、同時に海成分の繊維表面に微細孔を形成する作用がある。この範囲で含有することによって、特に長繊維において、糸長方向および糸断面方向に、島成分を除去するための溶剤を浸透させ、島成分を均一に除去し、数多くの中空部を形成させることができる。   The content of the metal salt compound in the hardly soluble polymer is 0.1 to 3.0% by weight, preferably 0.5 to 1.5% by weight, per 100% by weight of the hardly soluble polymer. This metal salt compound has an action of forming fine pores on the fiber surface of the sea component at the same time when the island component is dissolved and removed from the sea-island type composite fiber. By containing in this range, especially in long fibers, the solvent for removing the island component is infiltrated in the yarn length direction and the yarn cross-sectional direction, the island component is uniformly removed, and many hollow portions are formed. Can do.

〔海島型複合繊維〕
本発明はまた、海島型複合繊維である。すなわち、本発明はまた、易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする海島型複合繊維であって、この複合繊維の繊維長さ方向に対して直角な繊維断面において観察される島成分の数が100以上であり、互に隣り合う島成分の間隔が100nm以上であり、かつ島成分のそれぞれの直径が10〜1000nmの範囲内にあることを特徴とする、海島型複合繊維である。
[Sea-island type composite fiber]
The present invention is also a sea-island type composite fiber. That is, the present invention also provides a sea-island type composite fiber having an easily soluble polymer as an island component and a hardly soluble polymer as a sea component, and is observed in a fiber cross section perpendicular to the fiber length direction of the composite fiber. The number of island components is 100 or more, the interval between adjacent island components is 100 nm or more, and the diameter of each island component is in the range of 10 to 1000 nm. It is a composite fiber.

この海島型複合繊維は、上記の多孔中空繊維を得るために用いることができる。この海島型複合繊維において、島成分の数は100以上であることが必要であり、好ましくは500以上である。100未満であると、海島型複合繊維から得られる多孔中空繊維の島成分の数も100未満となり、多孔中空繊維の軽量性、保温性およびソフト感について十分な性能を得ることができない。なお、島成分の数をあまりに多くしすぎると、紡糸口金の製造コストが高くなる他、紡糸口金の加工精度自体も低下しやすくなるので、島成分の数を1000以下とすることが好ましい。   This sea-island type composite fiber can be used to obtain the porous hollow fiber. In this sea-island type composite fiber, the number of island components needs to be 100 or more, preferably 500 or more. When the number is less than 100, the number of island components of the porous hollow fiber obtained from the sea-island composite fiber is also less than 100, and sufficient performance cannot be obtained with respect to the lightness, heat retention and soft feeling of the porous hollow fiber. If the number of island components is too large, the manufacturing cost of the spinneret increases, and the processing accuracy of the spinneret itself tends to decrease. Therefore, the number of island components is preferably 1000 or less.

海島型複合繊維において、互に隣り合う島成分同士の間隔は100nm以上であり、好ましくは200nm以上である。間隔が100nm未満であると得られる多孔中空繊維において互に隣り合う島成分の間隔も100nm未満となり島成分を溶解除去した後に得られる多孔中空繊維の機械的強度を十分に確保することができない。   In the sea-island type composite fiber, the interval between adjacent island components is 100 nm or more, preferably 200 nm or more. In the porous hollow fiber obtained when the interval is less than 100 nm, the interval between the adjacent island components is also less than 100 nm, and the mechanical strength of the porous hollow fiber obtained after dissolving and removing the island components cannot be sufficiently ensured.

島成分のそれぞれの直径は10〜1000nm、好ましくは100〜700nmである。島成分の直径が10nm未満であると海島型複合繊維から得られる多孔中空繊維構造自体が不安定であり中空形成性が不安定になり、1000nmを越えると多孔中空繊維特有の保温性が得られない。なお、多孔中空繊維の中空部の直径は均一であるほど繊維の品位が向上する。   Each of the island components has a diameter of 10 to 1000 nm, preferably 100 to 700 nm. When the diameter of the island component is less than 10 nm, the porous hollow fiber structure itself obtained from the sea-island type composite fiber is unstable and the hollow forming property becomes unstable. When the diameter exceeds 1000 nm, the heat retention characteristic of the porous hollow fiber is obtained. Absent. In addition, the quality of a fiber improves, so that the diameter of the hollow part of a porous hollow fiber is uniform.

海成分の島成分に対する質量比率(海成分:島成分)は、好ましくは30:70〜80:20、さらに好ましくは40:60〜70:30である。この範囲にあれば多孔中空繊維を得るときに島成分を溶解除去することが容易にでき、かつ島成分の溶解除去後に実用に耐え得る十分な機械的強度を有する多孔中空繊維を得ることができる。   The mass ratio of the sea component to the island component (sea component: island component) is preferably 30:70 to 80:20, and more preferably 40:60 to 70:30. Within this range, it is easy to dissolve and remove the island component when obtaining the porous hollow fiber, and it is possible to obtain a porous hollow fiber having sufficient mechanical strength that can withstand practical use after the island component is dissolved and removed. .

海島型複合繊維は、繊維の長さ方向と直角な繊維断面において実用に耐え得る機械的強度を有する多孔中空繊維を得る観点から、島成分の直径(r)と前記繊維断面にその中心を通り互に45度の角間隔をおいて4本の直線を引いたときこの4本の直線上にある島成分の間隔の最小値(Smin)、および繊維直径(R)と前記島成分の間隔の最大値(Smax)が、下記式(I)かつ(II)の関係を満たすことが好ましい。
0.001≦Smin/r≦1.0 (I)
max/R≦0.15 (II)
これらは、下記式(III)かつ(IV)を満たすことがさらに好ましい。
0.01≦Smin/r≦0.7 (III)
max/R≦0.08 (IV)
From the viewpoint of obtaining a porous hollow fiber having mechanical strength that can withstand practical use in a fiber cross section perpendicular to the fiber length direction, the sea-island type composite fiber passes through the center of the island component diameter (r) and the fiber cross section. When four straight lines are drawn at an angular interval of 45 degrees from each other, the minimum value (S min ) of the island component spacing on the four straight lines, and the fiber diameter (R) and the island component spacing It is preferable that the maximum value (S max ) satisfies the relationship of the following formulas (I) and (II).
0.001 ≦ S min /r≦1.0 (I)
S max /R≦0.15 (II)
It is more preferable that these satisfy the following formulas (III) and (IV).
0.01 ≦ S min /r≦0.7 (III)
S max /R≦0.08 (IV)

これらの条件を満足すると、海島型複合繊維を製造するときの高速紡糸性を良好に保ち、延伸倍率を上げることができ、高い機械的強度を得るとともに隣接する島成分同士が互いに膠着することを防止することができる。   If these conditions are satisfied, it is possible to maintain good high-speed spinnability when producing sea-island type composite fibers, increase the draw ratio, obtain high mechanical strength and adhere to each other adjacent island components. Can be prevented.

なお、島成分間の間隔の測定において、海島型複合繊維の中心部分が海成分により形成されている場合には、この中心部分の海成分を介して隣り合う島成分間の間隔は測定から除外する。   In the measurement of the interval between island components, when the central part of the sea-island type composite fiber is formed by the sea component, the interval between the adjacent island components is excluded from the measurement through the sea component of the central part. To do.

〔海島型複合繊維の製造方法〕
本発明の海島型複合繊維は、例えば下記の方法により製造することができる。
[Production method of sea-island type composite fiber]
The sea-island type composite fiber of the present invention can be produced, for example, by the following method.

まず易溶解性ポリマーと難溶解性ポリマーとを、前者が島成分、後者が海成分となるように溶融紡糸する。溶融紡糸に用いる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものを用いることができる。具体的には例えば、中空ピンや微細孔より押し出された島成分流と、その間を埋めるように設計された流路から供給された海成分流とを合流し、この合流体流を次第に細くしながら吐出口より押出して、海島型複合繊維を形成する紡糸口金を用いる。   First, an easily soluble polymer and a hardly soluble polymer are melt-spun so that the former is an island component and the latter is a sea component. As a spinneret used for melt spinning, a spinneret having a hollow pin group or a fine hole group for forming an island component can be used. Specifically, for example, an island component flow pushed out from a hollow pin or a fine hole and a sea component flow supplied from a channel designed to fill the gap are merged, and the combined flow is gradually narrowed. However, a spinneret that is extruded from the discharge port to form a sea-island type composite fiber is used.

好ましく用いられる紡糸口金の一例を図1および2に示す。図1は本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一部分の断面説明図である。図2は本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の他の例の一部分の断面説明図である。   An example of a spinneret that is preferably used is shown in FIGS. FIG. 1 is a cross-sectional explanatory view of a part of a spinneret used for spinning the sea-island type composite fiber of the present invention. FIG. 2 is a cross-sectional explanatory view of a part of another example of the spinneret used for spinning the sea-island type composite fiber of the present invention.

図1に示されている紡糸口金1において、分配前島成分用ポリマー溜め部2内の島成分用ポリマー(溶融体)は、複数の中空ピンにより形成された島成分用ポリマー導入路3中に分配される。他方、海成分用ポリマー導入通路4を通って、海成分用ポリマー(溶融体)が、分配前海成分用ポリマー溜め部5に導入される。島成分用ポリマー導入路3を形成している中空ピンは、それぞれ海成分用ポリマー溜め部5を貫通して、その下に形成された複数の芯鞘型複合流用通路6の各々の入口の中央部分において下向さに開口している。   In the spinneret 1 shown in FIG. 1, the island component polymer (melt) in the pre-distribution island component polymer reservoir 2 is distributed in the island component polymer introduction path 3 formed by a plurality of hollow pins. Is done. On the other hand, the sea component polymer (melt) is introduced into the pre-distribution sea component polymer reservoir 5 through the sea component polymer introduction passage 4. The hollow pin forming the island component polymer introduction path 3 passes through the sea component polymer reservoir 5 and is located at the center of the inlet of each of the plurality of core-sheath type composite flow passages 6 formed thereunder. The part opens downward.

島成分用ポリマー導入路3の下端から、島成分ポリマー流が、芯鞘型複合流用通路6の中心部分に導入され、海成分用ポリマー溜め部5中の海成分用ポリマー流は、芯鞘型複合流用通路6中に、島成分ポリマー流をかこむように導入され、島成分ポリマー流を芯とし、海成分ポリマー流を鞘とする芯鞘型複合流が形成し、複数の芯鞘型複合流がロート状の合流通路7中に導入され、この合流通路7中において、複数の芯鞘型複合流はそれぞれの鞘部が互に接合して、海島型複合流が形成される。この海島型複合流は、ロート状合流通路7中を流下する間に次第にその水平方向の断面積を減少し、合流通路7の下端の吐出口8から吐出される。   From the lower end of the island component polymer introduction path 3, the island component polymer flow is introduced into the central portion of the core-sheath type composite flow passage 6, and the sea component polymer flow in the sea component polymer reservoir 5 is formed as a core-sheath type. An island component polymer flow is introduced into the composite flow passage 6 so as to form a core-sheath type composite flow having the island component polymer flow as a core and a sea component polymer flow as a sheath. It introduce | transduces in the funnel-shaped confluence | merging channel | path 7, In this confluence | merging channel | path 7, a plurality of core-sheath type | mold composite flows mutually join each sheath part, and a sea-island type | mold compound flow is formed. This sea-island type composite flow gradually decreases in the horizontal cross-sectional area while flowing down in the funnel-shaped merge passage 7 and is discharged from the discharge port 8 at the lower end of the merge passage 7.

図2に示されている紡糸口金11においては、島成分ポリマー溜め部2と海成分ポリマー溜め部5とが、複数の透孔からなる島成分ポリマー用導入通路13により連結されていて、島成分ポリマー溜め部2中の島成分ポリマーの溶融体は、複数の島成分ポリマー用導入通路13中に分配され、それを通って、海成分ポリマー溜め部5中に導入され、導入された島成分ポリマー流は、海成分ポリマー溜め部5に収容されている海成分ポリマー(溶融体)中を貫いて、芯鞘型複合流用通路6中に流入し、その中心部分を流下する。   In the spinneret 11 shown in FIG. 2, the island component polymer reservoir 2 and the sea component polymer reservoir 5 are connected by an island component polymer introduction passage 13 composed of a plurality of through holes. The melt of island component polymer in the polymer reservoir 2 is distributed into a plurality of island component polymer introduction passages 13, through which it is introduced into the sea component polymer reservoir 5, and the introduced island component polymer stream is Then, it penetrates the sea component polymer (melt) accommodated in the sea component polymer reservoir 5, flows into the core-sheath type composite flow passage 6, and flows down the central portion thereof.

他方、海成分ポリマー溜め部5中の海成分ポリマーは、芯鞘型複合流用通路6中に、その中心部を流下する島成分ポリマー流のまわりをかこむように流下する。これによって、複数の芯鞘型複合流用通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路7中に流下し、図1の紡糸口金と同様にして海島型複合流を形成し、かつ、その水平方向の断面積を減少しつつ流下し、吐出口8を通って吐出される。   On the other hand, the sea component polymer in the sea component polymer reservoir 5 flows down into the core-sheath type composite flow passage 6 so as to surround the island component polymer flow flowing down the central portion thereof. As a result, a plurality of core-sheath type composite flows are formed in the plurality of core-sheath type composite flow passages 6 and flow down into the funnel-shaped join passage 7, and the sea-island type composite flow is made in the same manner as the spinneret of FIG. It is formed and flows down while reducing its horizontal cross-sectional area, and is discharged through the discharge port 8.

紡糸口金から吐出された海島型断面複合繊維を冷却風によって固化し、好ましくは400〜6000m/分、さらに好ましくは1000〜3500m/分の速度で巻き取り、未延伸の海島型複合繊維を得る。紡糸速度が400m/分以下では生産性が不十分であり好ましくなく、他方、6000m/分以上では紡糸安定性が不良になり好ましくない。   The sea-island cross-section composite fiber discharged from the spinneret is solidified by cooling air, and wound at a speed of preferably 400 to 6000 m / min, more preferably 1000 to 3500 m / min, to obtain an unstretched sea-island composite fiber. When the spinning speed is 400 m / min or less, the productivity is insufficient and is not preferable. On the other hand, when the spinning speed is 6000 m / min or more, the spinning stability is unfavorable.

このため本発明は、海島型複合繊維を製造するために、海島型複合繊維用紡糸口金から、易溶解性ポリマーからなる島成分と、難溶解性ポリマーからなる海成分とを溶融・押出す工程と、この押出された海島型複合繊維を400〜6000m/分の紡糸速度で引き取る工程とをこの順序で含む、海島型複合繊維の製造方法を含む。   Therefore, the present invention is a process for melting and extruding an island component composed of a readily soluble polymer and a sea component composed of a hardly soluble polymer from a spinneret for sea island type composite fiber in order to produce a sea island type composite fiber. And a method of drawing the extruded sea-island type composite fiber at a spinning speed of 400 to 6000 m / min in this order.

得られた未延伸の海島型複合繊維は、別途延伸工程をとおして所望の引張り強さ、切断伸び率および熱収縮特性を有する延伸された海島型複合繊維とするか、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取り、延伸された海島型複合繊維とする。   The obtained unstretched sea-island type composite fiber is made into a stretched sea-island type composite fiber having a desired tensile strength, cutting elongation and heat shrinkage property through a separate stretching process, or is fixed without being wound once. The film is taken up by a roller at a speed, and subsequently wound through a drawing process to obtain a drawn sea-island type composite fiber.

この延伸工程について具体的に説明すると、例えば60〜190℃、好ましくは75〜180℃の温度の予熱ローラー上で海島型複合繊維を予熱し、例えば1.2〜6.0倍、好ましくは2.0〜5.0倍の延伸倍率で延伸する。この際には熱セットすることが好ましく、例えば120〜220℃、好ましくは130〜200℃の温度のセットローラーで熱セットする。   The stretching process will be specifically described. For example, the sea-island type composite fiber is preheated on a preheating roller having a temperature of 60 to 190 ° C., preferably 75 to 180 ° C., for example, 1.2 to 6.0 times, preferably 2 Stretch at a draw ratio of 0.0 to 5.0 times. In this case, it is preferable to perform heat setting, for example, heat setting is performed with a setting roller having a temperature of 120 to 220 ° C, preferably 130 to 200 ° C.

予熱温度不足の場合には、目的とする高倍率延伸を達成することができなくなる。また、熱セット温度が低すぎると、得られる延伸繊維の収縮率が高すぎるため好ましくない。他方、熱セット温度が高すぎると、得られる延伸繊維の物性が著しく低下するため好ましくない。
このようにして、本発明の海島型複合繊維を得ることができる。
In the case where the preheating temperature is insufficient, the desired high-magnification stretching cannot be achieved. Moreover, when the heat setting temperature is too low, the contraction rate of the obtained drawn fiber is too high, which is not preferable. On the other hand, if the heat setting temperature is too high, the physical properties of the obtained drawn fiber are remarkably lowered.
In this way, the sea-island type composite fiber of the present invention can be obtained.

図3は本発明の海島型複合繊維の一例の横断面説明図である。マトリックスを形成する海成分22とその中に互に離間して配置された多数の島成分23とにより構成されている。   FIG. 3 is a cross-sectional explanatory view of an example of the sea-island composite fiber of the present invention. It is composed of a sea component 22 that forms a matrix and a number of island components 23 that are spaced apart from each other.

本発明の海島型複合繊維において島成分間の間隔を測定するためには、図3の横断面21に、その中心24を通り、互に45度の角間隔をおいて4本の直線25−1,25−2,25−3,25−4を引き、この4直線上にある島成分の間隔を測定し、その中から最大間隔Smax、最小間隔Sminを定め、島成分間隔の平均値Saveを算出する。なお、図3においては、4直線上の島成分を主として記載したものであるので、その他の島成分の記載が図3では省略されている。   In order to measure the distance between island components in the sea-island type composite fiber of the present invention, four straight lines 25- are passed through the center 24 of the cross section 21 of FIG. 1, 25-2, 25-3, and 25-4 are subtracted to measure the interval between the island components on the four straight lines, and the maximum interval Smax and the minimum interval Smin are determined from them, and the average value Save of the island component intervals Is calculated. In FIG. 3, island components on the four straight lines are mainly described, and thus other island components are not illustrated in FIG. 3.

〔多孔中空繊維の製造方法〕
本発明の多孔中空繊維は、上記の海島型複合繊維にから島成分を溶解除去する減量処理を行うことによって得ることができる。島成分の溶解除去は、例えば水酸化ナトリウム水溶液に浸漬して行うことができる。水酸化ナトリウム水溶液の濃度は、例えば1〜10重量%、好ましくは2〜6重量%である。海島型複合繊維をこれに浸漬する時の温度は、例えば60〜97℃、好ましくは80〜95℃である。
[Method for producing porous hollow fiber]
The porous hollow fiber of the present invention can be obtained by carrying out a weight reduction treatment by dissolving and removing island components from the sea-island type composite fiber. For example, the island component can be dissolved and removed by immersing in an aqueous sodium hydroxide solution. The concentration of the aqueous sodium hydroxide solution is, for example, 1 to 10% by weight, preferably 2 to 6% by weight. The temperature when the sea-island type composite fiber is immersed in this is, for example, 60 to 97 ° C, preferably 80 to 95 ° C.

本発明を下記実施例によりさらに説明する。測定および評価は、以下の方法で行った。   The invention is further illustrated by the following examples. Measurement and evaluation were performed by the following methods.

(1)溶融粘度
供試ポリマーを乾燥し、溶融紡糸用押出機の溶融温度に設定されたオリフィス中にセットし、5分間溶融状態に保持したのち、所定水準の荷重下に、押出し、このときの剪断速度と溶融粘度とをプロットした。上記操作を、複数水準の荷重下において繰返した。上記データに基づいて、剪断速度一溶融粘度関係曲線を作成した。この曲線上において、剪断速度が1000秒−1のときの溶融粘度を見積った。
(1) Melt viscosity The test polymer is dried, set in an orifice set at the melting temperature of an extruder for melt spinning, held in a molten state for 5 minutes, and then extruded under a predetermined level of load. The shear rate and melt viscosity were plotted. The above operation was repeated under multiple levels of load. Based on the above data, a shear rate-one melt viscosity relationship curve was prepared. On this curve, the melt viscosity at a shear rate of 1000 sec- 1 was estimated.

(2)溶解速度比
海成分用ポリマーおよび島両成分用ポリマーの各々を、10個の孔径0.3mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金を通して押し出し(以下、「溶融紡糸工程」という)、1000〜2000m/分の速度で巻取った。この繊維を延伸しその切断伸び率が30〜60%の範囲になるようにコントロールして50dtex/10fのマルチフィラメンドを製造した。このマルチフィラメントを用いて筒編みを作成した。筒編みを4重量%NaOH水溶液の液温95℃中に浸漬し、このときの溶解時間と溶解量から、減量速度比(溶解速度比)を算出した。海島型複合繊維における島成分用ポリマーの海成分用ポリマーに対する溶解速度比が200以上であるとき「良好」と評価し、200未満であるとき「不良」と評価した。
(2) Dissolution rate ratio Each of the sea component polymer and the island component polymer is extruded through a spinneret for the production of sea-island type composite fibers having 10 holes 0.3 mm in diameter and 0.6 mm in land length (hereinafter referred to as “spinner”). , “Melt spinning step”), and wound at a speed of 1000 to 2000 m / min. This fiber was drawn and controlled so that the elongation at break was in the range of 30 to 60% to produce a multifilament of 50 dtex / 10f. Cylinder knitting was made using this multifilament. The tubular knitting was immersed in a liquid temperature of 95 ° C. in a 4 wt% NaOH aqueous solution, and the weight loss rate ratio (dissolution rate ratio) was calculated from the dissolution time and the dissolution amount at this time. When the dissolution rate ratio of the island component polymer to the sea component polymer in the sea-island composite fiber was 200 or more, it was evaluated as “good”, and when it was less than 200, it was evaluated as “bad”.

(3)紡糸性
前記(2)の溶融紡糸工程において7時間以上連続操業できた場合を「良好」と評価表記し、その他の場合を「不良」と評価した。
(3) Spinnability In the melt spinning step of (2), the case where continuous operation was possible for 7 hours or more was evaluated as “good”, and the other cases were evaluated as “bad”.

(4)糸物性
海島複合繊維を用いて質量1g以上の筒編み布を作製した。この編布を4重量%NaOH水溶液の液温95℃中に浸漬処理して島成分を除去した。筒編をほどき繊維束を得た。得られた繊維束の荷重−伸長曲線チャートを、室温で初期試料長100mm、引張速度200m/分の条件で作成した。このチャートから繊維束の引張強さ(cN/dtex)および切断伸び率(%)を求めた。引張強さが1.5cN/dtex以上かつ切断伸び率が15%以上である場合を「良好」、引張強さが1.5cN/dtex未満または切断伸び率が15%未満となる場合を「不良」と判定した。
(4) Thread properties A tubular knitted fabric having a mass of 1 g or more was produced using sea-island composite fibers. This knitted fabric was immersed in a 4 wt% NaOH aqueous solution at a temperature of 95 ° C. to remove island components. The tube was unwound to obtain a fiber bundle. A load-elongation curve chart of the obtained fiber bundle was prepared under the conditions of an initial sample length of 100 mm and a tensile speed of 200 m / min at room temperature. From this chart, the tensile strength (cN / dtex) and the breaking elongation (%) of the fiber bundle were determined. “Good” when the tensile strength is 1.5 cN / dtex or more and the breaking elongation is 15% or more, and “bad” when the tensile strength is less than 1.5 cN / dtex or the breaking elongation is less than 15%. Was determined.

(5)固有粘度
オルソクロロフェノールを溶媒として使用して35℃で測定した。
(5) Intrinsic viscosity Measured at 35 ° C. using orthochlorophenol as a solvent.

(6)糸の断面観察
供試繊維を長さ方向に対して直角な断面が得られるように切断し、断面を透過型電子顕微鏡TEMを用い倍率30000倍において写真撮影した。この電子顕微鏡写真を用いて、複合繊維の直径Rおよび島成分の直径rを測定した。電子顕微鏡写真において、複合繊維の中心点を通り互に45度の角度をもって交差する4本の直線を引き、前記直線上にある島成分間の最大間隔Sminおよび最大間隔Smaxを測定し、島成分間の平均間隔Saveを算出した。
(6) Cross section observation of yarn The test fiber was cut so that a cross section perpendicular to the length direction was obtained, and the cross section was photographed at a magnification of 30000 using a transmission electron microscope TEM. Using this electron micrograph, the diameter R of the composite fiber and the diameter r of the island component were measured. In the electron micrograph, draw four straight lines passing through the center point of the composite fiber and intersecting each other at an angle of 45 degrees, and measuring the maximum distance S min and the maximum distance S max between the island components on the straight line, The average interval S ave between the island components was calculated.

(7)多孔中空部の直径のばらつき(CV値)
供試海島型複合繊維から溶剤を用いて島成分を除去し、得られた多孔中空繊維束を透過型電子顕微鏡(TEM)を用い30000倍の倍率で観察し多孔中空部の直径を測定し、この標準偏差(σ)と中空部平均直径(r)を算出し、下記式によりばらつき(CV値)を算出した。
CV値=(標準偏差σ/中空部平均直径r)×100(%)
中空部平均径(r)は、中空繊維の断面をTEMを用い、倍率30000倍で観察し、測定された中空部の長径と、短径の平均値である。
(7) Variation in diameter of porous hollow part (CV value)
The island component was removed from the sea-island type composite fiber using a solvent, and the resulting porous hollow fiber bundle was observed with a transmission electron microscope (TEM) at a magnification of 30000 times to measure the diameter of the porous hollow part. The standard deviation (σ) and the hollow portion average diameter (r) were calculated, and the variation (CV value) was calculated by the following equation.
CV value = (standard deviation σ / hollow part average diameter r) × 100 (%)
The hollow portion average diameter (r) is an average value of the major axis and the minor axis of the hollow part measured by observing a cross section of the hollow fiber at a magnification of 30000 using a TEM.

(8)多孔中空繊維の均一性
供試海島型複合繊維を、島成分用溶剤で処理し、島成分含有比率に相当する質量減少が認められたとき溶解処理を中止し、得られた繊維束の断面をTEMにより観察し、単繊維の断面の均一性に基いて、中空部の均一性を「均一」と「不均一」で評価した。
(8) Uniformity of porous hollow fiber The test sea island type composite fiber was treated with an island component solvent, and when the mass reduction corresponding to the island component content ratio was observed, the dissolution treatment was stopped, and the resulting fiber bundle The cross section was observed with a TEM, and the uniformity of the hollow portion was evaluated as “uniform” and “non-uniform” based on the uniformity of the cross section of the single fiber.

(9)軽量化率(%)
通常の中実の断面で構成されるポリエステル繊維56dtexの10フィラメントを使用した筒編み布の目付け(g/m)と布帛厚み(mm)を測定し、布帛厚みに対する目付けの基準曲線を作成した。同じ筒編み布を作成した際の基準曲線の同一厚み値における目付けの減少率を軽量化率(%)とした。
(9) Weight reduction rate (%)
The basis weight (g / m 2 ) and fabric thickness (mm) of a tubular knitted fabric using 10 filaments of polyester fiber 56 dtex composed of a normal solid section were measured, and a basis curve of fabric weight with respect to the fabric thickness was created. . The reduction rate of basis weight at the same thickness value of the reference curve when the same tubular knitted fabric was produced was defined as the weight reduction rate (%).

(10)布帛保温性
温度20℃ 、湿度60%RHの恒温恒湿環境下で、エネルギー源として200Wレフランプ光源を用い、高さ50cmから光照射し、180秒後の布帛の裏面の温度を熱電対で測定した。かかる温度が30℃以上である場合を良好と判定し、30度未満である場合を不良と判定した。
(10) Fabric heat retention property In a constant temperature and humidity environment with a temperature of 20 ° C. and a humidity of 60% RH, a 200 W reflex lamp light source is used as an energy source, and light is irradiated from a height of 50 cm. Measured in pairs. The case where this temperature was 30 degreeC or more was determined to be favorable, and the case where it was less than 30 degrees was determined to be defective.

(11)原料
海島型複合繊維を製造するための用いた原料を表1に示す。表1に記載されたポリマーは下記のとおりである。
PET1:
280℃における溶融粘度が120Pa・sであるポリエチレンテレフタレート
Ny−6:
280℃における溶融粘度が140Pa・sであるナイロン6
改質PET1:
テレフタル酸ジメチル197部、エチレングリコール124部、3―カルボメトキシ・ベンゼンスルホン酸Na―5―カルボン酸Na4部(テレフタル酸ジメチルに対して1.3モル%)、酢酸カルシウム1水塩0.118部を精溜塔付ガラスフラスコに入れ、常法に従ってエステル交換反応を行い、理論量のメタノールが留出した後反応生成物を精溜塔付重縮合用フラスコに入れ、安定剤としてトリメチルホスフェート0.112部および重縮合触媒として酸化アンチモン0.079部を加え、温度280℃で常圧下20分間、30mmHgの減圧下15分間反応させた後、高真空下で80分間反応させた。最終内圧は0.38mmHgであった。この反応で得られたポリマーは固有粘度0.640、軟化点258℃であった。このポリマーを常法に従いペレット化した。
改質PET2:
上記の改質PET1の製造に準じて、285℃での溶融粘度が1600poise(160Pa・s)である平均分子量4000のポリエチレングリコール(PEG)を4wt%、5−ナトリウムスルホイソフタル酸を8モル%共重合した共重合ポリエチレンテレフタレートを製造した。
(11) Raw materials Table 1 shows the raw materials used for producing the sea-island type composite fibers. The polymers described in Table 1 are as follows.
PET1:
Polyethylene terephthalate Ny-6 having a melt viscosity at 280 ° C. of 120 Pa · s:
Nylon 6 having a melt viscosity at 280 ° C. of 140 Pa · s
Modified PET1:
197 parts of dimethyl terephthalate, 124 parts of ethylene glycol, 3 parts of 3-carbomethoxy-benzenesulfonic acid Na-5-carboxylate (1.3 mol% with respect to dimethyl terephthalate), 0.118 part of calcium acetate monohydrate Is placed in a glass flask with a rectifying column and subjected to a transesterification according to a conventional method. After the theoretical amount of methanol is distilled off, the reaction product is put into a flask for polycondensation with a rectifying column, and trimethyl phosphate 0. 112 parts and 0.079 parts of antimony oxide as a polycondensation catalyst were added and reacted at a temperature of 280 ° C. under normal pressure for 20 minutes and under reduced pressure of 30 mmHg for 15 minutes, and then reacted under high vacuum for 80 minutes. The final internal pressure was 0.38 mmHg. The polymer obtained by this reaction had an intrinsic viscosity of 0.640 and a softening point of 258 ° C. The polymer was pelletized according to a conventional method.
Modified PET2:
In accordance with the production of the above modified PET1, 4 wt% polyethylene glycol (PEG) having an average molecular weight of 4000 having a melt viscosity of 1600 poise (160 Pa · s) at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid are combined. Polymerized copolymer polyethylene terephthalate was produced.

実施例1
表1に示す島成分用ポリマーと海成分用ポリマーを用いて海島型複合繊維を製造した。この実施例1においては、改質PET1および改質PET2を、それぞれ海成分用ポリマーおよび島成分用ポリマーとして50:50の重量比率で用い、両者をそれぞれ加熱溶融し、海島型複合繊維紡糸用口金に供して290℃の紡糸温度で押出し、表1に記載の引き取り速度で巻取ローラー上に巻き取った。得られた未延伸繊維束をでローラー延伸して、延伸された繊維束に温度150℃の熱処理を施し巻き取った。このとき、得られる延伸熱処理された繊維束のヤーンカウントが50dtex/10fになるように紡糸吐出流量および延伸倍率を調整した。
Example 1
Sea-island composite fibers were produced using the island component polymer and the sea component polymer shown in Table 1. In Example 1, the modified PET1 and the modified PET2 were used as a sea component polymer and an island component polymer in a weight ratio of 50:50, respectively, and both were heated and melted to form a sea island type composite fiber spinning base. Extruded at a spinning temperature of 290 ° C. and wound on a winding roller at the take-up speed shown in Table 1. The obtained unstretched fiber bundle was subjected to roller stretching, and the stretched fiber bundle was subjected to a heat treatment at a temperature of 150 ° C. and wound up. At this time, the spinning discharge flow rate and the draw ratio were adjusted so that the yarn count of the obtained fiber bundle subjected to the drawing heat treatment was 50 dtex / 10f.

得られた海島型複合繊維の測定および評価の結果を表1に示す。得られた海島型複合繊維は、島成分と島成分との間の海成分の厚さが薄く、均一な直径をもつ島を形成していた。この海島型複合繊維の断面をTEMで観察し、島成分の直径(r)と島成分の間隔の最小値(Smin)、海島型複合繊維の直径(R)と島成分の間隔の最大値(Smax)の関係を調べたところ、Smin/r=0.49、Smax/R=0.1であった。 Table 1 shows the results of measurement and evaluation of the obtained sea-island type composite fibers. The obtained sea-island type composite fiber had a thin sea component between the island component and the island component, and formed an island having a uniform diameter. The cross-section of this sea-island type composite fiber is observed with a TEM, and the minimum value (S min ) of the island component diameter (r) and the island component interval, and the maximum value of the sea-island type composite fiber diameter (R) and the island component interval When the relationship of (S max ) was examined, S min /r=0.49 and S max /R=0.1.

この海島型複合繊維を用いて筒編みを作成し、4重量%NaOH水溶液の液温95℃中に浸漬し50重量%減量し50重量%になるまで減量処理をした。減量処理後の筒編を構成する繊維束の断面を観察したところ均一な多孔中空を有する多孔中空繊維が形成されていた。減量処理後の繊維束の引張強さは2.5cN/dtex、切断伸び率は45%であった。   Using this sea-island type composite fiber, a tubular knitting was prepared, immersed in a 4 wt% NaOH aqueous solution at a temperature of 95 ° C., and reduced by 50 wt% until the weight was reduced to 50 wt%. Observation of the cross section of the fiber bundle constituting the tubular knitted fabric after the weight loss treatment revealed that a porous hollow fiber having a uniform porous hollow was formed. The tensile strength of the fiber bundle after the weight reduction treatment was 2.5 cN / dtex, and the elongation at break was 45%.

Figure 2018168510
Figure 2018168510

実施例2
実施例1と同様にして海島型複合繊維を製造した。ただし、実施例2では、実施例1と同じ海成分用ポリマーおよび島成分のポリマーを用い、両者を60:40の重量比率で用いた。実施例1と同様にして筒編みを作成し、4重量%NaOH水溶液の液温95℃中に浸漬して、海島型複合繊維の繊維重量が40重量%減量し60重量%になるまで減量処理をした。海島型複合繊維の減量処理後の断面を観察したところ、均一な多孔中空を有する多孔中空繊維が形成されていた。得られた多孔中空繊維の繊維束の引張強さは3.0cN/dtex、切断伸び率は35%であった。
Example 2
Sea-island type composite fibers were produced in the same manner as in Example 1. However, in Example 2, the same sea component polymer and island component polymer as in Example 1 were used, and both were used in a weight ratio of 60:40. Cylinder knitting was made in the same manner as in Example 1 and immersed in a 4 wt% NaOH aqueous solution at a temperature of 95 ° C, and the weight reduction treatment was performed until the fiber weight of the sea-island type composite fiber was reduced by 40 wt% to 60 wt% Did. When the cross section of the sea-island composite fiber after the weight reduction treatment was observed, a porous hollow fiber having a uniform porous hollow was formed. The tensile strength of the fiber bundle of the obtained porous hollow fiber was 3.0 cN / dtex, and the elongation at break was 35%.

実施例3
実施例1と同様にして海島型複合繊維を製造した。ただし、実施例3では、実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを用い、両者を80:20の重量比率で用いた。海島型複合繊維の断面を観察すると、島成分と島間成分との間の海成分の厚さが薄く、均一な直径をもつ島を形成していた。この海島型複合繊維の断面をTEM観察して島成分の直径(r)と島成分の間隔の最小値Smin、海島型複合繊の維径(R)と島成分の間隔の最大値Smaxの関係を調べたところ、Smin/r=0.30、Smax/R=0.01であった。
Example 3
Sea-island type composite fibers were produced in the same manner as in Example 1. However, in Example 3, the same sea component polymer and island component polymer as in Example 1 were used, and both were used in a weight ratio of 80:20. When the cross section of the sea-island type composite fiber was observed, the sea component between the island component and the inter-island component was thin, and an island having a uniform diameter was formed. The cross section of the sea-island composite fiber is observed with a TEM, and the minimum value S min of the island component diameter (r) and the island component interval, and the maximum value S max of the sea-island composite fiber diameter (R) and the island component interval. As a result, S min /r=0.30 and S max /R=0.01.

得られた延伸糸を用いて実施例1と同様に筒編みを作成し、4重量%NaOH水溶液の液温95℃中に浸漬して海島型複合繊維が20重量%減量して80重量%になるまで減量処理をした。得られた繊維束の断面を観察したところ、均一な多孔中空を有する繊維が形成されていた。島成分の除去後の繊維束の引張強さは3.5cN/dtex、切断伸び率は50%であっなお、得られる延伸熱処理された繊維束のヤーンカウントが50dtex/10fになるように、紡糸吐出流量および延伸倍率を調整した。   Using the obtained drawn yarn, a cylindrical knitting was made in the same manner as in Example 1, and the sea-island type composite fiber was reduced by 20% by weight to 80% by weight by immersing in a liquid temperature of 95 ° C. in a 4% by weight NaOH aqueous solution. Reduced weight until it was. When a cross section of the obtained fiber bundle was observed, fibers having a uniform porous hollow were formed. Spinning was performed so that the tensile strength of the fiber bundle after removal of the island component was 3.5 cN / dtex, the elongation at break was 50%, and the yarn count of the resulting heat-treated fiber bundle was 50 dtex / 10f. The discharge flow rate and the draw ratio were adjusted.

実施例4および5
実施例1と同様にして海島型複合繊維を製造した。実施例4および5では、実施例2と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を60:40とし、島数および島の直径を表1に記載のとおりとした口金にて製糸した。得られた海島型複合繊維の断面形成性は良好であった。
Examples 4 and 5
Sea-island type composite fibers were produced in the same manner as in Example 1. In Examples 4 and 5, the same sea component polymer and island component polymer as in Example 2 were used, the weight ratio of both was 60:40, and the number of islands and the island diameter were as shown in Table 1. Yarn was made with a die. The sea-island type composite fiber obtained had good cross-sectional formability.

多孔中空繊維の製造では実施例1と同様の方法を用い、海島型複合繊維が40重量%減量して60重量%になるまで減量処理をした。なお、得られる延伸熱処理された繊維束のヤーンカウントが50dtex/10fになるように紡糸吐出流量および延伸倍率を調整した。   In the production of the porous hollow fiber, the same method as in Example 1 was used, and the weight reduction treatment was performed until the sea-island type composite fiber was reduced by 40% by weight to 60% by weight. The spinning discharge flow rate and the draw ratio were adjusted so that the yarn count of the obtained fiber bundle subjected to the drawing heat treatment was 50 dtex / 10f.

実施例6〜8
実施例1と同様にして海島型複合繊維を製造した。実施例6および7では、実施例2と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を60:40とし、島数および島の直径を表1記載のとおりとした口金にて製糸した。得られた海島型複合繊維の断面形成性は良好であった。
Examples 6-8
Sea-island type composite fibers were produced in the same manner as in Example 1. In Examples 6 and 7, the same sea component polymer and island component polymer as in Example 2 were used, the weight ratio of both was 60:40, and the number of islands and the diameter of the islands were as shown in Table 1. Made in The sea-island type composite fiber obtained had good cross-sectional formability.

比較例1
実施例1と同様にして海島型複合繊維を製造した。比較例1では、実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を20:80とし、島数を800として紡糸・延伸した。得られた海島型複合繊維の断面形成性は良好であったが、海成分量が少な過ぎるために、島−島間の海成分の厚みが薄く、アルカリ水溶液による減量処理により島成分を溶出した後に得られる多孔中空繊維の強度が弱く、実用に耐えうるものではなかった。
Comparative Example 1
Sea-island type composite fibers were produced in the same manner as in Example 1. In Comparative Example 1, the same sea component polymer and island component polymer as in Example 1 were used, and both were spun and stretched with a weight ratio of 20:80 and an island number of 800. Although the cross-section formability of the obtained sea-island type composite fiber was good, since the sea component amount is too small, the thickness of the sea component between islands and islands is thin, and after elution of the island components by weight reduction treatment with an alkaline aqueous solution The strength of the resulting porous hollow fiber was weak and could not withstand practical use.

比較例2
実施例1と同様にして海島型複合繊維を製造した。比較例2では実施例1と同じ海成分用ポリマーおよび島成分用ポリマーを使用し、両者の重量比率を90:10とし、島数を800として紡糸・延伸した。得られた海島型複合繊維の断面形成性は良好であったが、海成分量が多過ぎるために、島−島間の海成分厚みが厚く、繊維中心部の島成分を溶解除去できず、多孔中空が均一に形成されなかった。
Comparative Example 2
Sea-island type composite fibers were produced in the same manner as in Example 1. In Comparative Example 2, the same sea component polymer and island component polymer as in Example 1 were used, and both were spun and stretched at a weight ratio of 90:10 and an island number of 800. The sea-island type composite fiber obtained had good cross-sectional formability, but because the amount of sea component was too large, the sea component thickness between islands and islands was so thick that the island component at the center of the fiber could not be dissolved and removed, The hollow was not formed uniformly.

比較例3
実施例1と同様にして海島型複合繊維を製造した。比較例3においては、改質PET1を海成分用ポリマー、PET1を島成分用ポリマーとして、両者の重量比率60:40で用いた。海島形成性は良好であったが、島成分のアルカリ水溶液による減量速度が海成分のそれと比較して不十分なために、アルカリ減量のときに海成分用ポリマーのかなりの量が減量されてしまい、海成分用ポリマーの相当分が除去されているにもかかわらず、複合繊維の中心部分に分布している島成分用ポリマーの大部分が減量されずに残存していて、均一な多孔中空繊維が得られなかった。
Comparative Example 3
Sea-island type composite fibers were produced in the same manner as in Example 1. In Comparative Example 3, modified PET1 was used as a sea component polymer and PET1 was used as an island component polymer at a weight ratio of 60:40. Although the formation of sea islands was good, the rate of weight loss by the alkaline aqueous solution of the island component was insufficient compared to that of the sea component, so a considerable amount of the polymer for the sea component was reduced during the alkali weight reduction. Even though a considerable amount of the sea component polymer has been removed, the majority of the island component polymer distributed in the central portion of the composite fiber remains unreduced and is a uniform porous hollow fiber. Was not obtained.

比較例4
実施例1と同様にして海島型複合繊維を製造した。比較例4においては、PET1を海成分用ポリマー、改質PET2を島成分用ポリマーとして、両者の重量比率60:40で用いた。海島形成性は良好であったが、海成分のポリマーに微細孔形成剤が含まれていないため、海成分のかなりの量が減量されても、島成分の相当分が完全に除去されず、複合繊維の中心部分に残存してしまい、均一な多孔中空繊維が得られなかった。
Comparative Example 4
Sea-island type composite fibers were produced in the same manner as in Example 1. In Comparative Example 4, PET1 was used as the sea component polymer, and modified PET2 was used as the island component polymer at a weight ratio of 60:40. Sea-island formation was good, but the sea component polymer does not contain a micropore-forming agent, so even if a significant amount of sea component is reduced, a considerable amount of island component is not completely removed, It remained in the central part of the composite fiber, and a uniform porous hollow fiber could not be obtained.

本発明の多孔中空繊維によれば、単繊維内に多孔中空が均一に形成されており、軽量性と保温性を両立するポリエステル系中空繊維を提供することができる。   According to the porous hollow fiber of the present invention, a porous hollow fiber is uniformly formed in a single fiber, and it is possible to provide a polyester-based hollow fiber that achieves both lightness and heat retention.

また、本発明の海島型複合繊維は、その島成分を容易に溶解除去できるので、単繊維内に多孔中空を均一に形成でき、軽量性と保温性に優れたポリエステル系中空繊維の製造に用いることができる。   Further, the sea-island type composite fiber of the present invention can easily dissolve and remove the island component, so that a porous hollow can be uniformly formed in a single fiber, and is used for producing a polyester-based hollow fiber excellent in lightness and heat retention. be able to.

1 紡糸口金
2 分配前島成分用ポリマー溜め部
3 複数の中空ピンにより形成された島成分用ポリマー導入路
4 海成分用ポリマー導入通路
5 分配前海成分用ポリマー溜め部
6 複数の芯鞘型複合流用通路
7 ロート状の合流通路
8 吐出口
11 紡糸口金
13 複数の透孔からなる島成分ポリマー用導入通路
21 海島型複合繊維の一例の横断面説明図
22 マトリックスを形成する海成分
23 互に離間して配置された多数の島成分
24 紡糸口金の横断面の中心
25 紡糸口金の横断面の中心をとおり互に45度の角間隔をおいた直線
1 Spinneret 2 Pre-distribution island component polymer reservoir 3 Island component polymer introduction path 4 formed by a plurality of hollow pins 4 Sea component polymer introduction channel 5 Pre-distribution sea component polymer reservoir 6 Multiple core-sheath type composite flow Passage 7 funnel-like joining passage 8 discharge port 11 spinneret 13 introduction passage 21 for island component polymer composed of a plurality of through-holes 21 cross-sectional explanatory view of an example of sea-island type composite fiber 22 sea component 23 forming a matrix separated from each other A large number of island components 24 arranged at the center of the spinneret cross section 25 A straight line passing through the center of the spinneret cross section and having an angular interval of 45 degrees from each other

Claims (7)

易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする複数本の海島型複合繊維から該島成分を除去して得られる多孔中空繊維であって、該繊維の長さ方向に対して直角な繊維断面において観察される中空部の数が多孔中空繊維の1本あたり100以上であり、互に隣り合う中空部の間隔が100nm以上であり、中空部のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーが下記式で表される金属塩化合物を含有し、その含有量が難溶性ポリマー100重量%あたり0.1〜3.0重量%であることを特徴とする、多孔中空繊維。
Figure 2018168510
A porous hollow fiber obtained by removing the island component from a plurality of sea-island type composite fibers having an easily soluble polymer as an island component and a hardly soluble polymer as a sea component, The number of hollow portions observed in a cross section perpendicular to the fiber is 100 or more per porous hollow fiber, the interval between adjacent hollow portions is 100 nm or more, and the diameter of each hollow portion is 10 to 1000 nm. The variation in the diameter of the hollow part (CV value) is 30% or less, the hardly soluble polymer contains a metal salt compound represented by the following formula, and the content thereof is a hardly soluble polymer. A porous hollow fiber characterized by being 0.1 to 3.0% by weight per 100% by weight.
Figure 2018168510
易溶解性ポリマーが、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングリコール化合物共重合ポリエステル、およびポリエチレングリコール化合物と5−ナトリウムスルホイソフタル酸との共重合ポリエステルから成る群から選ばれる少なくとも1種である、請求項1に記載の多孔中空繊維。   The easily soluble polymer is at least one selected from the group consisting of polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymer polyester, and copolymer polyester of polyethylene glycol compound and 5-sodium sulfoisophthalic acid. The porous hollow fiber according to claim 1, which is a seed. 中空部の数が多孔中空繊維の1本あたり500以上である、請求項1に記載の多孔中空繊維。   The porous hollow fiber according to claim 1, wherein the number of hollow portions is 500 or more per porous hollow fiber. 易溶解性ポリマーを島成分とし、難溶解性ポリマーを海成分とする海島型複合繊維であって、この複合繊維の繊維長さ方向に対して直角な繊維断面において観察される島成分の数が100以上であり、互に隣り合う島成分の間隔が100nm以上であり、かつ島成分のそれぞれの直径が10〜1000nmの範囲内にあり、中空部の直径のばらつき(CV値)が30%以下であり、かつ、難溶解性ポリマーが下記式で表される金属塩化合物を含有し、その含有量が難溶性ポリマー100重量%あたり0.1〜3.0重量%であることを特徴とする海島型複合繊維。
Figure 2018168510
A sea-island type composite fiber having an easily soluble polymer as an island component and a hardly soluble polymer as a sea component, and the number of island components observed in a fiber cross section perpendicular to the fiber length direction of the composite fiber is 100 or more, the interval between adjacent island components is 100 nm or more, the diameter of each island component is in the range of 10 to 1000 nm, and the variation in the diameter of the hollow portion (CV value) is 30% or less And the hardly soluble polymer contains a metal salt compound represented by the following formula, and the content thereof is 0.1 to 3.0% by weight per 100% by weight of the hardly soluble polymer. Sea-island type composite fiber.
Figure 2018168510
多孔性中空繊維を製造するために用いられる、請求項4に記載の海島型複合繊維。   The sea-island type composite fiber according to claim 4, which is used for producing a porous hollow fiber. 海成分の島成分に対する質量比率(海:島)が30:70〜80:20である、請求項4に記載の海島型複合繊維。   The sea-island type composite fiber according to claim 4, wherein a mass ratio of the sea component to the island component (sea: island) is 30:70 to 80:20. 島成分の海成分に対する溶解速度比(島/海)が200以上である、請求項4に記載の海島型複合繊維。   The sea-island type composite fiber according to claim 4, wherein a dissolution rate ratio (island / sea) of the island component to the sea component is 200 or more.
JP2017067887A 2017-03-30 2017-03-30 Porous hollow fiber Pending JP2018168510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017067887A JP2018168510A (en) 2017-03-30 2017-03-30 Porous hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067887A JP2018168510A (en) 2017-03-30 2017-03-30 Porous hollow fiber

Publications (1)

Publication Number Publication Date
JP2018168510A true JP2018168510A (en) 2018-11-01

Family

ID=64019303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067887A Pending JP2018168510A (en) 2017-03-30 2017-03-30 Porous hollow fiber

Country Status (1)

Country Link
JP (1) JP2018168510A (en)

Similar Documents

Publication Publication Date Title
KR101250683B1 (en) Composite fabric of island-in-sea type and process for producing the same
KR101296470B1 (en) Process for producing sea-island-type composite spun fiber
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
CN1304652C (en) A microcellular foamed fiber, and a process of preparing for the same
TWI638919B (en) Fiber with phase separation structure and manufacturing method thereof
JP2018168510A (en) Porous hollow fiber
JP6829134B2 (en) Porous hollow fiber
JP2007031863A (en) Profiled polyester multifilament for separation
JP2005200593A (en) Pellet
JPH08113829A (en) New polymer blend fiber and its production
JP2006503194A (en) Fine porous fiber and method for producing the same
JP4995523B2 (en) False twisted yarn and method for producing the same
JP2006322131A (en) Split type conjugate fiber and method for producing the same
JP2020165026A (en) Spinneret for sea-island type conjugate fiber
JP2006265788A (en) Method for producing conjugated fiber
KR100804039B1 (en) A process of preparing for sea- island type composite yarn
JP7260362B2 (en) Island-in-the-sea composite fiber and porous hollow fiber made of the same
JPWO2018079567A1 (en) Nanovoid polyester fiber
JP2019167646A (en) Bulky light-weight multifilament
JP7176886B2 (en) Island-in-the-sea composite fibers and ultrafine fiber bundles
JPH09170128A (en) Cellulose acetate multifilament yarn having each specific cross section and its production
JP2020026599A (en) Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle
JP2019052395A (en) Sea-island type composite fiber and ultra fine fiber
JP2006144165A (en) Self-crimping conjugate fiber and method for producing the same
JP3376744B2 (en) Method for producing polyester fiber with improved spinnability

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180219