JPH03249249A - Nonwoven fabric of olefin-based ultrathin yarn - Google Patents

Nonwoven fabric of olefin-based ultrathin yarn

Info

Publication number
JPH03249249A
JPH03249249A JP4985790A JP4985790A JPH03249249A JP H03249249 A JPH03249249 A JP H03249249A JP 4985790 A JP4985790 A JP 4985790A JP 4985790 A JP4985790 A JP 4985790A JP H03249249 A JPH03249249 A JP H03249249A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
molecular weight
average molecular
weight
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4985790A
Other languages
Japanese (ja)
Other versions
JP2775959B2 (en
Inventor
Hideo Isoda
英夫 磯田
Shigeki Tanaka
茂樹 田中
Takashi Arimoto
有本 尚
Hideaki Ishihara
石原 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12842725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03249249(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4985790A priority Critical patent/JP2775959B2/en
Publication of JPH03249249A publication Critical patent/JPH03249249A/en
Application granted granted Critical
Publication of JP2775959B2 publication Critical patent/JP2775959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title nonwoven fabric useful for a filter, having excellent handleability, comprising specific polyolefin-based ultrathin yarn. CONSTITUTION:The objective nonwoven fabric comprising specific polyolefin- based ultrathin yarn having 0.1-5mum, preferably 0.5-4mum average yarn diameter and weight-average molecular weight (Mw) and number-average molecular weight (Mn) satisfying formula I and formula II.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オレフィン系極細繊維不織布、更に詳しくは
、フィルター用途に特に優れたハンドリング性の良好な
オレフィン系極細繊維不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an olefin-based ultrafine fiber nonwoven fabric, and more particularly to an olefin-based ultrafine fiber nonwoven fabric that is particularly excellent in filter applications and has good handling properties.

(従来の技術) 極細繊維不織布は、近年メルトブロー法で得られる様に
なり、多くの用途に使用されるようになった。
(Prior Art) Ultrafine fiber nonwoven fabrics have recently come to be obtained by melt blowing and are used for many purposes.

メルトブロー法による重量体の紡糸法は、インダストリ
アルのアンド・エンジニアリング・ケミストリー、第4
8巻、第8号、1342〜1346頁、1956年に開
示されている。国内におけるポリプロピレンのメルトブ
ロー法は、特開昭50−46972、特開昭54−13
4177に開示されている。これらの方法は、高い分子
量のポリマーを(初期固有粘度1.4以上)紡出時まで
に熱劣化させ、低い溶融粘度(剪断速度700〜350
0秒1での溶融粘度50〜300ポイズ)にして紡出す
る方法であるため、得られる不織布は、繊維径の斑が大
きく、不織布強力も弱い欠点を有する。配管内の熱劣化
斑を改良する方法が、特開昭83−6107、特開平1
−158581号公報に開示されている。これらは、分
子量低減以下の溶融粘度で紡出する方法及びそのとき得
られる低い分子量と広い分子量分布(重量平均分子量:
 Mw、数平均分子量;Mnとして、Mwが50000
から90000、Mw/Mnが4から6を持つ不織布で
あるが分子量低減剤の添加斑による繊維径斑(特に経時
斑入)が大きくなり、また粘度のコントロールが困難、
低粘度の為糸切れし易い、分子量が低い為不織布の強力
が弱い、添加物が背圧上昇の原因になり、また、添加物
が使用時溶出するなどの問題がある。
The heavy weight spinning method using the melt-blowing method is described in Industrial and Engineering Chemistry, Vol.
8, No. 8, pp. 1342-1346, 1956. The melt blowing method for polypropylene in Japan is disclosed in JP-A-50-46972 and JP-A-54-13.
No. 4177. These methods thermally degrade high molecular weight polymers (initial intrinsic viscosity of 1.4 or higher) by the time of spinning, and reduce the polymer to a low melt viscosity (with a shear rate of 700 to 350).
Since the method involves spinning with a melt viscosity of 50 to 300 poise at 1 second, the resulting nonwoven fabric has the drawbacks of large irregularities in fiber diameter and weak nonwoven fabric strength. A method for improving heat deterioration spots in piping is disclosed in Japanese Patent Application Laid-open No. 83-6107 and Japanese Patent Application Laid-open No. 1
It is disclosed in the publication No.-158581. These are based on a method of spinning with a melt viscosity below molecular weight reduction, and the resulting low molecular weight and wide molecular weight distribution (weight average molecular weight:
Mw, number average molecular weight; Mw is 50,000 as Mn
to 90,000, and the nonwoven fabric has an Mw/Mn of 4 to 6, but fiber diameter irregularities (particularly irregularities over time) become large due to addition irregularities of the molecular weight reducing agent, and it is difficult to control the viscosity.
There are problems such as the threads break easily due to the low viscosity, the strength of the nonwoven fabric is weak due to the low molecular weight, the additives cause an increase in back pressure, and the additives dissolve during use.

(発明が解決しようとする課題) 本発明は、従来の技術の欠点を克服し、繊維径斑を減少
し、不織布強力を向上し、添加物の溶出等が改善された
、特にフィルター用途に好適なオレフィン系極細繊維不
織布を提供することを課題とするものである。
(Problems to be Solved by the Invention) The present invention overcomes the drawbacks of the conventional technology, reduces fiber diameter unevenness, improves the strength of the nonwoven fabric, and improves elution of additives, etc., and is particularly suitable for filter applications. An object of the present invention is to provide an olefin-based ultrafine fiber nonwoven fabric.

(課題を解決するための手段) 本発明は、分子量をやや高くシ、分子量分布を狭くする
ことに解決の糸口を見出したもので、かかる課題を解決
するために、次の手段をとるものである。すなわち、本
発明は、平均繊維径力!0゜1μm以上5μm以下、重
量平均分子量(Mw)と数平均分子量(Mn)とが下記
の式を満足するポリオレフィン径極細繊維からなること
を特徴とするオレフィン系極細繊維不織布である。
(Means for Solving the Problems) The present invention has found a solution by increasing the molecular weight slightly and narrowing the molecular weight distribution.In order to solve the problems, the following means are taken. be. That is, the present invention is based on the average fiber diameter force! This is an olefin-based ultrafine fiber nonwoven fabric characterized by being made of polyolefin ultrafine fibers having a diameter of 0°1 μm or more and 5 μm or less, and whose weight average molecular weight (Mw) and number average molecular weight (Mn) satisfy the following formula.

Mw≧5.0X10’ Lo g (Mw/Mn)≦0.5791×Log (
Mw) −2,2916本発明の不織布を構成する繊維
の重量平均分子量(Mw)は、50000以上好ましく
は、60000以上400000以下である。
Mw≧5.0X10' Log (Mw/Mn)≦0.5791×Log (
Mw) -2,2916 The weight average molecular weight (Mw) of the fibers constituting the nonwoven fabric of the present invention is 50,000 or more, preferably 60,000 or more and 400,000 or less.

重量平均分子量(Mw)が低いと後述する重量平均分子
量と数平均分子量の比(Mw/Mn)が満足しても不織
布強力が低くなるので好ましくない。
If the weight average molecular weight (Mw) is low, the strength of the nonwoven fabric will be low even if the ratio of weight average molecular weight to number average molecular weight (Mw/Mn) described below is satisfied, which is not preferable.

又、紡出時、糸切れが生じ易くなるため、繊維径が太い
と玉状物が発生したり、繊維径が細いと粉状物が飛散し
たり、不織布に含有され、汚染の原因や濾過性能の低下
をきたし、好ましくない。更に、重量平均分子量(Mw
)と数平均分子量(Mn)の比Log (Mw/Mn)
が0.5791×Log (Mw) −2,2918以
下好ましくはより少ない、すなわち、分子量分布は、重
量平均分子量(Mw)が低くなるほど分子量分布が狭く
なるφ毒と、高度に繊維を配向させられるためか、不織
布強力を向上させることが可能となった。又、糸切れが
無くなるため玉状物や粉状物の混入がなくなり濾過精度
が向上する。更に、驚くべきことに、重量平均分子量(
Mw)と数平均分子量(Mn)との比すなわちLo g
 (Mw/Mn)が発明の範囲内では、糸径斑が著しく
改善される。理由は明らかではないが、分子量分布が狭
いため、適度の伸長抵抗が必要で、且つ、溶融粘度斑が
少ない為、切れにくくなり、牽引斑が発現しにくくなる
のではないかと類推される。なお、Mw/Mnは、3.
1以下が好ましい。本発明を外れる重量平均分子量(M
w)と数平均分子量(Mn)の比Lo g (Mw/M
n)の繊維からなる不織布は、不織布強力が劣るので取
扱性が悪いために欠陥商品が出やすい、繊維径の斑が太
くなるためや、玉状物による孔の発生等により濾過精度
が悪くなる、粉状物や玉状物が脱落すると汚染の原因に
なるなどフィルター性能での問題が心配される。
In addition, thread breakage is more likely to occur during spinning, so if the fiber diameter is large, beads may be generated, and if the fiber diameter is small, powdery material may be scattered or contained in nonwoven fabrics, causing contamination and filtration. This is undesirable as it causes a decrease in performance. Furthermore, the weight average molecular weight (Mw
) and number average molecular weight (Mn) Log (Mw/Mn)
is preferably less than or equal to 0.5791×Log (Mw) −2,2918, that is, the molecular weight distribution becomes narrower as the weight average molecular weight (Mw) becomes lower, and the fibers are highly oriented. Perhaps because of this, it became possible to improve the strength of the nonwoven fabric. In addition, since thread breakage is eliminated, there is no contamination of beads or powdery substances, and filtration accuracy is improved. Moreover, surprisingly, the weight average molecular weight (
Mw) and number average molecular weight (Mn), that is, Log
When (Mw/Mn) is within the range of the invention, yarn diameter unevenness is significantly improved. The reason is not clear, but it is assumed that because the molecular weight distribution is narrow, appropriate elongation resistance is required, and because there are few melt viscosity irregularities, it becomes difficult to break and traction irregularities are less likely to occur. Note that Mw/Mn is 3.
It is preferably 1 or less. Weight average molecular weight (M
w) and the number average molecular weight (Mn) Log (Mw/M
Non-woven fabrics made of the fibers mentioned in n) have poor non-woven strength and are difficult to handle, resulting in defective products, and filtration accuracy deteriorates due to uneven fiber diameters and the formation of pores due to beads. There are concerns about problems with filter performance, such as when powder or beads fall off, causing contamination.

なお、本発明でいう、重量平均分子量(M w )と数
平均分子量(Mn)は、ゲルバーミュエイシ日ンクロマ
トグラフ(日本ウォーターズ社製 150C)を用いポ
リスチレン換算で求めたものである。
In addition, the weight average molecular weight (M w ) and number average molecular weight (Mn) as used in the present invention are determined in terms of polystyrene using a Gerber Mueishi Nikko chromatograph (manufactured by Nippon Waters Co., Ltd., 150C).

本発明の不織布を構成する繊維の平均繊維径は、0.1
μm以上5μm以下好ましくは、0.5μm以上4μm
以下である。公知のごとく、繊維径が細くなるほど細か
い粒子が濾過できるが、平均繊維径が0.1μm未満に
なると圧力損失が著しく高くなり、為に不織布強力も強
いものが必要になるが、不織布強力は、逆に弱くなるた
め破裂等の問題がでて好ましくない。5μmをこえると
、濾過効率が悪くなり、高性能フィルターには不適当な
ものになる。
The average fiber diameter of the fibers constituting the nonwoven fabric of the present invention is 0.1
μm or more and 5 μm or less, preferably 0.5 μm or more and 4 μm
It is as follows. As is well known, the thinner the fiber diameter, the more fine particles can be filtered out, but when the average fiber diameter is less than 0.1 μm, the pressure loss becomes extremely high, so a nonwoven fabric with strong strength is required. On the contrary, it becomes weaker and may cause problems such as bursting, which is undesirable. When it exceeds 5 μm, the filtration efficiency deteriorates, making it unsuitable for high-performance filters.

本発明に言うオレフィン系繊維とは、ポリプロピレン、
ポリエチレン、ポリブテン−1、ポリペンテン−1等及
び、それらの改質ポリマー等から成る繊維を言う。
The olefin fibers referred to in the present invention include polypropylene,
Fibers made of polyethylene, polybutene-1, polypentene-1, etc., and modified polymers thereof.

本発明に好ましい繊維素材は、特開平1−156561
に示される粒状物、分解剤などを含まないもので、より
好ましくは、若干の抗酸化剤のみを含有するものが例示
できる。とくに繊維形成性から好ましいものとして、ポ
リプロピレン、ポリブテン1などが例示できる。ガスフ
ィルターに供する場合、荷電処理することで捕集性能を
向上できる。
A preferable fiber material for the present invention is disclosed in Japanese Patent Application Laid-open No. 1-156561.
Examples include those that do not contain particulate matter, decomposing agents, etc. shown in (2), and more preferably those that contain only some antioxidants. Particularly preferred from the viewpoint of fiber forming properties are polypropylene, polybutene 1, and the like. When used in a gas filter, charging performance can improve the collection performance.

本発明の不織布の嵩密度は特には限定されないが、濾過
精度の保持と形態保持性からは、0.05g/cJ以上
が好ましく、より好ましくは、0゜15g/ca以上で
ある。繊維径や嵩密度を変えたものを積層するとライフ
や捕集能力を向上できる。
The bulk density of the nonwoven fabric of the present invention is not particularly limited, but from the viewpoint of maintaining filtration accuracy and shape retention, it is preferably 0.05 g/cJ or more, more preferably 0.15 g/ca or more. Life and collection ability can be improved by stacking fibers with different fiber diameters and bulk densities.

本発明の不織布の目付は、特には限定されないが、形態
保持性からは、5g、//以上が好ましい。
The basis weight of the nonwoven fabric of the present invention is not particularly limited, but from the viewpoint of shape retention, it is preferably 5 g or more.

また、120g//以下好ましい。Moreover, 120 g// or less is preferable.

本発明の極細繊維不織布を得るには、特にメルトブロー
法を用いるのが好ましい。
In order to obtain the ultrafine fiber nonwoven fabric of the present invention, it is particularly preferable to use a melt blowing method.

以下に本発明不織布を得るための一例を示す。An example for obtaining the nonwoven fabric of the present invention will be shown below.

本発明に用いるポリマーは、分子量分布が狭いものが好
ましい。なお、分子量が大きいものは、(Mwで150
000以上のもの)は下式を満たすことが好ましい。
The polymer used in the present invention preferably has a narrow molecular weight distribution. In addition, those with a large molecular weight (Mw 150
000 or more) preferably satisfies the following formula.

L o g (Mw/Mn)≦0.854×Log (
Mw) −3,701抗酸化剤0.05%添加したポリ
プロピレンを押出機で溶融し計量ポンプを介して一定量
をノズルへ供給する。途中糸切れ防止のためフィルター
で異物を除去するのが好ましい。またノズルまでの導管
内での熱履歴差を消去するためスタチックミキサーなど
でマイグレートさせるのが好ましい。
L o g (Mw/Mn)≦0.854×Log (
Mw) -3,701 Polypropylene with 0.05% antioxidant added is melted in an extruder and a fixed amount is supplied to a nozzle via a metering pump. It is preferable to remove foreign matter with a filter to prevent yarn breakage during the process. Further, in order to eliminate the difference in thermal history within the conduit up to the nozzle, it is preferable to perform migration using a static mixer or the like.

またノズルオリフィスまでの滞留時間は、熱分解を制御
するためにも、10分以内が好ましく、よ分解させない
ために好ましく、例えば、ポリプロピレンでは250℃
以上280℃以下、ポリブテン−1では230℃以上2
70℃以下である。多量の安定剤が添加されていないも
のは、少なくとも融点+150℃までで紡出するのがよ
い。かくして、出来るだけ熱劣化させずに均一な溶融粘
度のポリマーは、オリフィスより均一に吐出させる。
In addition, the residence time up to the nozzle orifice is preferably within 10 minutes in order to control thermal decomposition, and is preferable in order to prevent further decomposition.
280℃ or higher, and 230℃ or higher for polybutene-12
The temperature is 70°C or less. If a large amount of stabilizer is not added, it is preferable to spin it at least up to the melting point +150°C. In this way, the polymer having a uniform melt viscosity can be uniformly discharged from the orifice without being thermally degraded as much as possible.

と同時に、加熱流体をオリフィス先端に吹きつけ、溶融
ポリマーを伸長細化させ、同伴流で引き込まれた低温の
流体で冷却固化させてサクションされたネット上に捕集
積層してランダムな繊維配列の不織布を形成する。加熱
流体は、蒸気、空気、窒素ガス等が好適である。加熱流
体の温度は、250℃以上400℃以下、好ましく30
0℃以上380℃以下、加熱流体の圧力は、0.5kg
/cJ以上、好ましくは、0.8kg/cJ以上4 k
g / cJ以下である。なお流体の温度斑は、5℃以
下、噴出圧力斑(ピトー管で測定可能)は、速度換算で
10m/秒以下とするのが好ましい。上記範囲を外れた
場合、繊維径の斑が大きくなったり、著しい場合、糸切
れによる玉状物や粉状物が発生しフィルターに不適当な
不織布になる。
At the same time, heated fluid is blown onto the tip of the orifice to elongate and thin the molten polymer, which is then cooled and solidified by the low-temperature fluid drawn in by the accompanying flow, collected and stacked on the suctioned net to create a random fiber arrangement. Form a nonwoven fabric. The heating fluid is preferably steam, air, nitrogen gas, or the like. The temperature of the heating fluid is 250°C or more and 400°C or less, preferably 30°C
0℃ or more and 380℃ or less, the pressure of the heating fluid is 0.5kg
/cJ or more, preferably 0.8kg/cJ or more4k
g/cJ or less. Note that it is preferable that the temperature unevenness of the fluid be 5° C. or less, and the ejection pressure unevenness (measurable with a pitot tube) be 10 m/sec or less in terms of velocity. If it is out of the above range, the unevenness of the fiber diameter becomes large, or if it is significant, balls or powder are generated due to thread breakage, making the nonwoven fabric unsuitable for filters.

ノズルと引取りネットの距離は、短いと融着が起こり、
長ずざると失速によるカラミで紐杖物が多くなる。好ま
しい距離は、40c1から60cmである。
If the distance between the nozzle and the take-up net is short, fusion will occur.
If it is not long, it will stall and there will be a lot of string canes. The preferred distance is 40c1 to 60cm.

また繊維の配列をフィルターに好ましいランダムな配列
にするには、フラットな面で引き取るのが好ましい。
Further, in order to arrange the fibers in a random arrangement suitable for filters, it is preferable to take the fibers on a flat surface.

目付の斑は、流体の流れに乗った繊維の落下状態で決ま
るのと、積層された繊維が流体で吹き飛ばされるか否か
で決まる。噴出流体と同伴流の乱れを少なくするため、
中方向の側面は、流体の流入を規制するのが好ましい。
The unevenness of the fabric weight is determined by how the fibers fall on the flow of fluid, and by whether or not the laminated fibers are blown away by the fluid. In order to reduce the turbulence of the ejected fluid and entrained flow,
Preferably, the medial side surface restricts the inflow of fluid.

直行する方向は、流入する同伴流が乱れないように凹凸
がないようにするのが好ましい。
It is preferable that there be no unevenness in the orthogonal direction so that the inflowing entrained flow is not disturbed.

流下流体に吹き飛ばされないように、適度のサクション
が必要である。また噴出流体量を多くしないように噴出
流体の流路中を制限したり、流下途中で吸引するのが好
ましい。
Appropriate suction is required to avoid being blown away by the flowing fluid. Further, it is preferable to restrict the flow path of the ejected fluid so as not to increase the amount of ejected fluid, or to suction the ejected fluid midway through the flow.

かくして積層された不織布は、繊維径の斑が少なく(好
ましくCV<20%に達する)かつ目付の斑も少ない(
好ましくCV<3%に達する)フィルター用途に最適な
不織布である。
The nonwoven fabric laminated in this way has less unevenness in fiber diameter (preferably reaching CV<20%) and less unevenness in fabric weight (
The nonwoven fabric is ideal for filter applications (preferably reaching a CV<3%).

本発明の不織布は、強力もありそのままフィルター用に
使用可能であるが、プレスして、嵩密度、強力を高める
ことができる。また、必要に応じ、熱処理、エンボス加
工、超音波加工等を行うことができる。また、コロナ放
電等によりエレクトレット化して捕集性能を向上できる
The nonwoven fabric of the present invention is strong and can be used as a filter as it is, but it can be pressed to increase its bulk density and strength. Further, heat treatment, embossing, ultrasonic processing, etc. can be performed as necessary. In addition, the collection performance can be improved by converting it into an electret by corona discharge or the like.

(実施例) 以下に実施例で本発明をさらに詳述するが、本発明がこ
れら実施例により制限されるものではない。
(Examples) The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.

なお、本文に規定した、及び実施゛例中に用いた主な特
性値は以下の方法による。
The main characteristic values specified in the text and used in the examples are as follows.

■ 平均繊維径(μm)、変動率(VC%)不織布の巾
方向:IOか所、任意に サンプリングし、操作型電子顕微鏡(SEM)で300
0倍にて1か所に5点写真撮影し、L点5本の繊維径を
測定する。合計250本の繊維径測定値から平均値(X
)と標準偏差(σ、−1)を求める。変動率(CV)は
下式で求める。
■ Average fiber diameter (μm), variation rate (VC%) Width direction of nonwoven fabric: IO locations, arbitrarily sampled, 300% using a scanning electron microscope (SEM)
Photographs are taken at 5 points at 0x magnification, and the diameters of the 5 fibers at point L are measured. The average value (X
) and standard deviation (σ, -1). The rate of variation (CV) is determined by the formula below.

変動率=〔(σ、−+)/(X))xlOO%長方方向
:501毎Wか所サンプリングし、巾方向と同じ方法で
求める。
Variation rate = [(σ, -+)/(X))xlOO% Rectangular direction: Sample at every 501 W and find in the same way as in the width direction.

値は区別するため、XTCVTで示す。Values are indicated by XTCVT for differentiation.

■ 不織布強力(g / c嘗) 巾、長手方向毎 長さ24c■巾2 cmのサンプルを
5本取り、掴みしろ2craでテンシロンにより伸長切
断しく伸長速度100%)そのときの最大強力を測定し
5点の平均値を1 cm換算して求める。
■ Non-woven fabric strength (g/c) Take 5 samples of length 24cm x width 2cm in each width and longitudinal direction, stretch and cut with Tensilon with a gripping width of 2cra (stretching speed 100%) and measure the maximum strength at that time. Calculate the average value of the 5 points by converting it into 1 cm.

■ 嵩密度(g / cJ ) 50 g/cJ荷重下で測定した厚みと目付量から計算
した。
■ Bulk density (g/cJ) Calculated from the thickness and area weight measured under a load of 50 g/cJ.

■ 捕集効率、圧力損失 JIS  Z−8901試験用ダスト を用い捕集効率及び圧力損失を測定した。■ Collection efficiency, pressure loss JIS Z-8901 test dust The collection efficiency and pressure drop were measured using

実施例I JIS  K−8785の方法によるメルトインデック
ス(以下MIで示す)300g/10分Mw:1100
00.Mw/Mn:3.9、抗酸化剤 0.05重量%
含有するポリプロピレンを加熱溶融し、以下の条件でメ
ルトブローした。
Example I Melt index (hereinafter referred to as MI) according to the method of JIS K-8785: 300 g/10 minutes Mw: 1100
00. Mw/Mn: 3.9, antioxidant 0.05% by weight
The contained polypropylene was melted by heating and melt blown under the following conditions.

紡糸温度280℃、ノズル孔径0.15m−、孔間ピッ
チ0.7mm、のノズルより単孔吐出量0.2g/分に
て吐出、牽引流体は、330℃の空気を使月、供給ヘッ
ダー(ノズル内)の圧力3.5にに/dGにてオリフィ
ス先端に供給牽引し、ノズル下eo、、のサクシヨンさ
れた移動ネットに繊維を捕集し、ついで、押さえローラ
ーを介し、巻き取った。リップから噴出する加熱空気の
温度差は100 am間で8℃、流速差は10m/秒、
粉状物の発生は認められなかった。
The spinning temperature is 280℃, the nozzle diameter is 0.15m, the pitch between the holes is 0.7mm, and the single hole discharge rate is 0.2g/min.The traction fluid is air at 330℃. The fibers were supplied to the tip of the orifice at a pressure of 3.5/dG (inside the nozzle), collected on a suctioned moving net under the nozzle, and then wound up through a pressing roller. The temperature difference of the heated air jetting out from the lip is 8°C over 100 am, the flow velocity difference is 10 m/s,
No powdery matter was observed.

なお、ノズル側面(巾方向)からの同伴流流入は、規制
板でカットした。またネット面も巾方向は規制板をつけ
(ノズル巾の1.2倍)ffiの飛散を規制した。
Note that the entrained flow inflow from the nozzle side (width direction) was cut by a regulating plate. In addition, a regulating plate was attached in the width direction of the net surface (1.2 times the nozzle width) to prevent scattering of ffi.

得られた不織布の平均繊維径は1.2μm (CV12
%)、Mw: 90000.Mw/Mn : 3゜6、
目付30 g/d、目付斑(巾方向に2 cm毎長さ1
0cmに不織布を切断し個々の重量を測定し平均値:W
と標準偏差:σfi−1をもとめ、変動率:(W/σ、
、−1)X100で示す)3%、嵩密度0゜15g/c
J、長手方向の繊維の変動率(CVT)は14%であっ
た。不織布強力は、巾方向540g / c璽、長手方
向480g/amであった。
The average fiber diameter of the obtained nonwoven fabric was 1.2 μm (CV12
%), Mw: 90000. Mw/Mn: 3゜6,
Fabric weight: 30 g/d, fabric weight irregularities (1 length for every 2 cm in the width direction)
Cut the nonwoven fabric into 0cm pieces, measure the weight of each piece, and average value: W
and standard deviation: σfi-1, fluctuation rate: (W/σ,
, -1) indicated by X100) 3%, bulk density 0°15g/c
J, longitudinal fiber variation (CVT) was 14%. The strength of the nonwoven fabric was 540 g/cm in the width direction and 480 g/am in the longitudinal direction.

この不織布の0.3μm粒子捕集率は99.6%、圧力
損失は12mmH2Oを示す。
This nonwoven fabric has a collection rate of 0.3 μm particles of 99.6% and a pressure loss of 12 mmH2O.

実施例2 平均分子量2000000のポリエチレンをネット速度
を変更して、他の条件は、実施例−1と同様にして不織
布を作成した。なお、不織布の平均繊維径は4.8μm
(CVIO%) + M w :5000000、Mw
/Mn : 7.57.  目付88 g/rl、目付
斑4%、嵩密度0.08g/J1長手方向の繊維経理C
VTII%、巾方向強力3310 g / am N長
手方向強力2895 g / cmであった。
Example 2 A nonwoven fabric was prepared using polyethylene having an average molecular weight of 2,000,000 and changing the net speed, but using the same conditions as Example 1 except for the other conditions. The average fiber diameter of the nonwoven fabric is 4.8 μm.
(CVIO%) + Mw: 5000000, Mw
/Mn: 7.57. Fabric weight 88 g/rl, fabric weight unevenness 4%, bulk density 0.08 g/J1 longitudinal fiber accounting C
VTII%, the strength in the width direction was 3310 g/am, and the strength in the longitudinal direction was 2895 g/cm.

不織布の0.3μm粒子捕集捉率は82%、圧力損失は
5箇■H20であった。なお、不織布に玉状物は無かっ
た。その本発明の不織布は、著しく強い強力と、優れた
濾過性能を示すことが判る。
The collection rate of 0.3 μm particles of the nonwoven fabric was 82%, and the pressure loss was 5 μm H20. Note that there were no beads on the nonwoven fabric. It can be seen that the nonwoven fabric of the present invention exhibits extremely strong strength and excellent filtration performance.

実施例3〜4、比較例1〜4 MIおよび分子量分布の異なる種々のポリプロピレンを
用い、紡糸温度、吐出量、牽引流体温度、圧力を種々変
え、他は実施例1と同様にして極細繊維不織布を得た。
Examples 3 to 4, Comparative Examples 1 to 4 Using various polypropylenes with different MI and molecular weight distribution, various spinning temperatures, discharge rates, traction fluid temperatures, and pressures were used, and the other conditions were the same as in Example 1 to produce ultrafine fiber nonwoven fabrics. I got it.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

第1表から明らかなように、本発明の範囲のものは、濾
過性能に優れ、強度も強くフィルター素材として最適な
ものであることが判る。また本発明を外れるものは、フ
ィルターとして好ましくない。
As is clear from Table 1, it can be seen that the products within the scope of the present invention have excellent filtration performance, strong strength, and are optimal as filter materials. Also, those that are outside the scope of the present invention are not preferred as filters.

比較例5 M112%のポリプロピレン粉末にビス(1−t−ブチ
ルパーオキシ−1−メチルエチル)ベンゼン0.07重
量%とジ−ベンジリデンソルビトール0.2重量%をV
型混合機にて2時間混合し、ペレタイザーにてペレット
化し、MI250のペレットを得た。この樹脂を紡糸温
度290℃、流体温度370℃、流体圧力2 、5 k
g / cJ G以外は実施例1と同様にして不織布を
得た。
Comparative Example 5 V
The mixture was mixed for 2 hours using a mold mixer and pelletized using a pelletizer to obtain pellets with an MI of 250. This resin was spun at a spinning temperature of 290°C, a fluid temperature of 370°C, and a fluid pressure of 2.5 k.
g/cJ A nonwoven fabric was obtained in the same manner as in Example 1 except for G.

得られた不織布は、平均繊維径1.3μm(CV48%
、CVt 79%)Mw: 58000.Mw/Mn 
: 4 、ol  目付31 g/d (CVI 2%
)、巾方向強力158g/am、長手方向強力127 
g / cm 、微小玉状物を含有していた。また、引
取り時、粉状物が著しく飛散していた。
The obtained nonwoven fabric had an average fiber diameter of 1.3 μm (CV48%
, CVt 79%) Mw: 58000. Mw/Mn
: 4, ol basis weight 31 g/d (CVI 2%
), width direction strength 158g/am, longitudinal direction strength 127
g/cm, and contained microbeads. Furthermore, when the vehicle was picked up, a significant amount of powder was scattered.

この不織布の捕集率は42%、圧力損失10w−H2O
でフィルター性能が劣るものであった。
The collection rate of this nonwoven fabric is 42%, and the pressure loss is 10w-H2O.
The filter performance was poor.

実施例5 実施例1で得た不織布を熱プレスローラーで嵩密度0.
6にしてラテックス標準粒子1μm1濃度1重量%水溶
液を使い濾過性能を調べた。本発明の不織布は100%
除去できた。評価は、濾過液中の粒子を液中微粒子計測
器にて、RO水と対比して評価した。
Example 5 The nonwoven fabric obtained in Example 1 was heated to a bulk density of 0.
The filtration performance was investigated using an aqueous solution containing latex standard particles of 1 μm and 1% concentration by weight. The nonwoven fabric of the present invention is 100%
I was able to remove it. The evaluation was performed by comparing particles in the filtrate with RO water using an in-liquid particulate meter.

比較例6 比較例5で得た不織布を実施例5と同様にして濾過性能
を評価した。1μm粒子の除去率は、42%であった。
Comparative Example 6 The nonwoven fabric obtained in Comparative Example 5 was evaluated for filtration performance in the same manner as in Example 5. The removal rate of 1 μm particles was 42%.

さらに問題は、粉状物が濾過液中に含有していた。A further problem was that powdery substances were contained in the filtrate.

(発明の効果) 本発明の不織布は、平均繊維径が細く、繊維経理が小さ
い、不織布強力が強い、粉状物や玉杖物を含まない、な
どの特徴を持つ為、濾過精度、濾過効率が優れ、かつフ
ィルターの加工性も良好で、各種高性能フィルター素材
に最適である。
(Effects of the Invention) The nonwoven fabric of the present invention has characteristics such as a small average fiber diameter, low fiber accounting, strong nonwoven fabric, and no powdery or clumped substances, resulting in improved filtration accuracy and filtration efficiency. It has excellent properties and has good filter processability, making it ideal for various high-performance filter materials.

本発明の不織布は、前述の特徴から、セパレーター、ワ
イパー、保温材、バリヤー材、その他多くの産業資材用
途に適合し、有用の機能を発揮できる。
Due to the above-mentioned characteristics, the nonwoven fabric of the present invention is suitable for use in separators, wipers, heat insulating materials, barrier materials, and many other industrial materials, and can exhibit useful functions.

Claims (1)

【特許請求の範囲】[Claims] 1.平均繊維径か0.1μm以上5μm以下、重量平均
分子量(Mw)と数平均分子量(Mn)とが下記の式を
満足するポリオレフイン系極細繊維からなることを特徴
とするオレフイン系極細繊維不織布。 Mw≧5.0×10^4 Log(Mw/Mn)≦0.5791×Log(Mw)
−2.2916
1. An olefin-based ultrafine fiber nonwoven fabric characterized by being made of polyolefin-based ultrafine fibers having an average fiber diameter of 0.1 μm or more and 5 μm or less, and a weight average molecular weight (Mw) and a number average molecular weight (Mn) satisfying the following formula. Mw≧5.0×10^4 Log(Mw/Mn)≦0.5791×Log(Mw)
-2.2916
JP4985790A 1990-02-28 1990-02-28 Olefin-based ultra-fine fiber non-woven fabric Expired - Lifetime JP2775959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4985790A JP2775959B2 (en) 1990-02-28 1990-02-28 Olefin-based ultra-fine fiber non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4985790A JP2775959B2 (en) 1990-02-28 1990-02-28 Olefin-based ultra-fine fiber non-woven fabric

Publications (2)

Publication Number Publication Date
JPH03249249A true JPH03249249A (en) 1991-11-07
JP2775959B2 JP2775959B2 (en) 1998-07-16

Family

ID=12842725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4985790A Expired - Lifetime JP2775959B2 (en) 1990-02-28 1990-02-28 Olefin-based ultra-fine fiber non-woven fabric

Country Status (1)

Country Link
JP (1) JP2775959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105678A (en) * 2001-09-28 2003-04-09 Uni Charm Corp Method for producing composite sheet having elastic elongation
JP2015092038A (en) * 2010-12-06 2015-05-14 三井化学株式会社 Melt-blown nonwoven fabric, and method and device for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792846B2 (en) * 2005-07-12 2011-10-12 東レ株式会社 Nonwoven manufacturing method
CN103380242B (en) * 2011-01-28 2016-03-02 特布乐丝株式会社 The melt spraying non-woven fabrics be made up of superfine fibre, the manufacture method of this melt spraying non-woven fabrics and the device for the manufacture of this melt spraying non-woven fabrics
JP7236797B2 (en) * 2017-02-24 2023-03-10 サンアロマー株式会社 Method for manufacturing polypropylene nanofibers and laminates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105678A (en) * 2001-09-28 2003-04-09 Uni Charm Corp Method for producing composite sheet having elastic elongation
JP4694743B2 (en) * 2001-09-28 2011-06-08 ユニ・チャーム株式会社 Method for producing composite sheet having elastic extensibility
JP2015092038A (en) * 2010-12-06 2015-05-14 三井化学株式会社 Melt-blown nonwoven fabric, and method and device for producing the same

Also Published As

Publication number Publication date
JP2775959B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
KR101504768B1 (en) Pleated filter with bimodal monolayer monocomponent media
JP5767113B2 (en) Patterned spunbond fiber web and method of making the same
KR100995213B1 (en) Nonwoven Amorphous Fibrous Webs and Methods for Making Them
JP6390612B2 (en) Mixed fiber nonwoven fabric and method for producing the same
US10640891B2 (en) Fibers made from soluble polymers
JPH08502790A (en) Metal melt blown cloth
KR20050007410A (en) Bondable, Oriented, Nonwoven Fibrous Webs and Methods for Making Them
JP2004518030A (en) Fiber forming process
KR102471365B1 (en) Non-woven fabric and its manufacturing method
JP6210422B2 (en) Fiber assembly
JPH08144166A (en) Polyamide ultrafine fiber nonwoven fabric and its production
CN102414015A (en) Thermoplastic film, methods for making such film, and use of such film as battery separator film
JP2002201560A (en) Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom
JP2013177703A (en) Mixed fiber nonwoven fabric
KR100401118B1 (en) Molten-foamed polyarylene sulfide microfibers and preparation method thereof
JPH03249249A (en) Nonwoven fabric of olefin-based ultrathin yarn
JPH0596110A (en) Cylindrical filter and its production
JP2020196974A (en) Spinneret for producing melt-blown nonwoven fabric and production apparatus and production method of melt-blown nonwoven fabric
JP3581712B2 (en) Stretched melt-blown fibers, methods for making such fibers, and webs made from such fibers
JP2007237167A (en) Nonwoven fabric for filter
EP3161200A1 (en) Thermally stable nonwoven web comprising meltblown blended-polymer fibers
JPH1121754A (en) Ultrafine composite fiber nonwoven fabric and its production
JPH04163353A (en) Nonwoven fabric of olefin-based ultra-fine fiber
CN116113483A (en) Melt-blown nonwoven fabric and filter provided with same
JPH083851A (en) Polyolefin nonwoven fabric

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

EXPY Cancellation because of completion of term