JP2002201560A - Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom - Google Patents

Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom

Info

Publication number
JP2002201560A
JP2002201560A JP2000401844A JP2000401844A JP2002201560A JP 2002201560 A JP2002201560 A JP 2002201560A JP 2000401844 A JP2000401844 A JP 2000401844A JP 2000401844 A JP2000401844 A JP 2000401844A JP 2002201560 A JP2002201560 A JP 2002201560A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
melt
polypropylene
blown nonwoven
air filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401844A
Other languages
Japanese (ja)
Inventor
Masataka Iwata
匡隆 岩田
Shigeo Ozaki
樹男 尾崎
Shigeyuki Motomura
茂之 本村
Minoru Hisada
稔 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000401844A priority Critical patent/JP2002201560A/en
Publication of JP2002201560A publication Critical patent/JP2002201560A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polypropylene capable of producing ultrafine fiber melt- blown nonwoven fabric in high productivity, to provide such a melt-blown nonwoven fabric thus produced, and to provide an air filter made of the above nonwoven fabric and having high particulate collection efficiency. SOLUTION: This polypropylene for ultrafine fiber melt-blown nonwoven fabric has a melt flow rate of >=1,200 g/10 min and molecular weight distribution index (Mw/Mn) of <=2.5. The 2nd objective melt-blown nonwoven fabric with an average fiber diameter of <=2.0 μm is produced by melt blowing method using the above polypropylene. The other objective air filter is obtained by applying direct current voltage to the above melt-blown nonwoven fabric to give electret property, and the thus obtained air filter has particulate collection efficiency of >=99.97% and pressure loss of <=120 Pa each determined at a basis weight of 40 g/m2 based on JIS B9908 (at a wind velocity of 5 cm/s), respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極細繊維からなる
メルトブロー不織布が得られるポリプロピレン及びそれ
からなる不織布並びにエアフィルターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene from which a melt-blown non-woven fabric made of ultrafine fibers can be obtained, a non-woven fabric made of the same, and an air filter.

【0002】[0002]

【発明の技術的背景】近年、さまざまな用途に使用され
てきた不織布の製造方法には、フィラメントから作られ
る方法としてスパンボンド法とメルトブロー法がある。
繊維径が大きく強度を有するスパンボンド不織布に比べ
て、メルトブロー不織布は繊維径が細く、これによる比
表面積の大きさを利用したフィルターや、繊維間の間隙
が狭くなることによるバリアー性を活かした、使い捨て
おむつ等の防漏性部材に利用されている。メルトブロー
不織布では、これらの性能をさらに高めるため、構成繊
維の極細化が求められている。
BACKGROUND OF THE INVENTION In recent years, nonwoven fabric production methods which have been used for various applications include a spunbond method and a meltblown method as methods for producing nonwoven fabrics.
Compared to spunbonded nonwoven fabrics with large fiber diameters and strength, meltblown nonwoven fabrics have a small fiber diameter, and utilize filters with a large specific surface area, thereby making use of the barrier properties due to the narrow gap between fibers. It is used for leak-proof members such as disposable diapers. In a melt-blown non-woven fabric, in order to further enhance these performances, the constituent fibers are required to be extremely fine.

【0003】メルトブロー不織布の製造には、原料樹脂
として主にポリプロピレン系の樹脂が用いられる。原料
樹脂の紡糸性を改善するため、通常、高メルトフローレ
ート(MFR)、例えば300g/10分以上のものが原
料として使用されているが、未だ繊維径のばらつきに問
題があり、生産性良く極細繊維を製造することには困難
をともなっていた。すなわち、極細繊維化を行うために
は、一般に樹脂温度およびエアー流量を大きくすると同
時に、吐出量を極端に落すことが必要になっていた。
[0003] In the production of melt blown nonwoven fabrics, polypropylene-based resins are mainly used as raw material resins. In order to improve the spinnability of the raw material resin, a high melt flow rate (MFR), for example, a material having a high melt flow rate of 300 g / 10 min or more is usually used as a raw material. It has been difficult to produce ultrafine fibers. That is, it is generally necessary to increase the resin temperature and the air flow rate, and at the same time, to extremely reduce the discharge amount in order to make the fibers ultrafine.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、生産
性良く極細繊維メルトブロー不織布を製造可能なポリプ
ロピレン、及びそれを用いて得られるメルトブロー不織
布、並びに該不織布からなる粒子捕集率の優れたエアフ
ィルターを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polypropylene capable of producing an ultrafine fiber melt-blown non-woven fabric with good productivity, a melt-blown non-woven fabric obtained by using the same, and an excellent particle collection rate comprising the non-woven fabric. An object of the present invention is to provide an air filter.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは鋭意検討の結果、特定のMFRと分子
量分布(Mw/Mn)を有するプロピレンを用いること
により、生産性良く極細繊維メルトブロー不織布が得ら
れることを見出し、本発明に至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and as a result, by using propylene having a specific MFR and a molecular weight distribution (Mw / Mn), it has been found that ultrafine fibers can be produced with high productivity. The present inventors have found that a melt-blown nonwoven fabric can be obtained, and have reached the present invention.

【0006】すなわち、本発明は、次の(1)〜(4)
のポリプロピレン、不織布並びにエアフィルターを提供
するものである。 (1)メルトフローレートが1200g/10分以上、か
つ分子量分布(Mw/Mn)が2.5以下である極細繊
維メルトブロー不織布用ポリプロピレン。
That is, the present invention provides the following (1) to (4)
, A nonwoven fabric and an air filter. (1) Polypropylene for ultrafine fiber melt-blown nonwoven fabric having a melt flow rate of 1200 g / 10 min or more and a molecular weight distribution (Mw / Mn) of 2.5 or less.

【0007】(2)メルトフローレート20g/10分以
下のポリプロピレンをデグラデーションして得られる前
記(1)に記載の極細繊維メルトブロー不織布用ポリプ
ロピレン。
(2) The polypropylene for ultra-fine fiber melt-blown nonwoven fabric according to (1), which is obtained by degrading polypropylene having a melt flow rate of 20 g / 10 minutes or less.

【0008】(3)前記(1)または(2)に記載のポ
リプロピレンを用い、メルトブロー法により得られる平
均繊維径2.0μm以下のメルトブロー不織布。
(3) A melt-blown nonwoven fabric having an average fiber diameter of 2.0 μm or less, obtained by a melt-blowing method using the polypropylene according to (1) or (2).

【0009】(4)直流電圧を印加してエレクトレット
化したのち、目付40g/mにおいてJIS B99
08に準拠して測定(測定風速5cm/sec)される粒
子捕集率および圧力損失が、それぞれ99.97%以
上、120Pa以下である前記(3)に記載のメルトブ
ロー不織布からなるエアフィルター。
(4) After applying a DC voltage to form an electret, JIS B99 is applied at a basis weight of 40 g / m 2 .
An air filter comprising the melt-blown nonwoven fabric according to the above (3), wherein the particle collection rate and the pressure loss measured according to the method described in No. 08 (measured air velocity 5 cm / sec) are 99.97% or more and 120 Pa or less, respectively.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る極細繊維メル
トブロー不織布用ポリプロピレン、及びそれを用いて得
られるメルトブロー不織布、並びに該不織布からなるエ
アフィルターについて具体的に説明する。本発明におい
て、極細繊維とは繊維径2.0μm以下のものを言う。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the polypropylene for ultra-fine fiber melt-blown non-woven fabric according to the present invention, the melt-blown non-woven fabric obtained by using the same, and the air filter comprising the non-woven fabric will be described in detail. In the present invention, ultrafine fibers refer to fibers having a fiber diameter of 2.0 μm or less.

【0011】本発明に係る極細繊維メルトブロー不織布
用ポリプロピレンは、メルトフローレート(MFR)が
1200g/10分以上、好ましくは1200〜3000
g/10分、より好ましくは1500〜2500g/10
分、かつ分子量分布(Mw/Mn)が2.5以下、好ま
しくは1.0〜2.3、より好ましくは1.0〜2.0
のものである。
The polypropylene for ultra-fine fiber melt-blown nonwoven fabric according to the present invention has a melt flow rate (MFR) of 1200 g / 10 min or more, preferably 1200 to 3000.
g / 10 min, more preferably 1500 to 2500 g / 10
And the molecular weight distribution (Mw / Mn) is 2.5 or less, preferably 1.0 to 2.3, more preferably 1.0 to 2.0.
belongs to.

【0012】本発明において、MFRは、ASTM D
1238に準拠して荷重2.16kg、温度230℃に
おいて測定したものである。また、本発明において、分
子量分布は重量平均分子量(Mw)/数平均分子量(M
n)で表し、その測定には、以下の条件によるゲルパー
ミエーションクロマトグラフィー(GPC)分析で行っ
た。試料の調製 試料をo-ジクロロベンゼン中に加えて0.1%(w/
w)の溶液とし、140℃で完全に溶解させた。その溶
液を孔径0.45μmの焼結フィルターで濾過したもの
を分析用試料とした。 使用装置及び測定条件 装置 Waters社製ALC/GPC 150−C型 分離カラム 東ソー(株)製GMHHR−H(S)−HT30cm ×2 GMH−HTL30cm ×2 移動相 o-ジクロロベンゼン 検出器 示差屈折計 流速 1.0ml/min. カラム温度 140℃ 注入量 500μl
In the present invention, MFR is ASTM D
It was measured at a load of 2.16 kg and a temperature of 230 ° C. in accordance with 1238. In the present invention, the molecular weight distribution is expressed as weight average molecular weight (Mw) / number average molecular weight (M
n), and the measurement was performed by gel permeation chromatography (GPC) analysis under the following conditions. Sample preparation A sample was added to o-dichlorobenzene at 0.1% (w /
and the solution was completely dissolved at 140 ° C. The solution was filtered through a sintered filter having a pore size of 0.45 μm to obtain a sample for analysis. Apparatus Used and Measurement Condition Apparatus ALC / GPC 150-C Separation Column manufactured by Waters GMHHR-H (S) -HT30 cm × 2 manufactured by Tosoh Corporation GMH-HTL30 cm × 2 Mobile phase o-dichlorobenzene Detector Differential refractometer Flow rate 1.0ml / min. Column temperature 140 ℃ Injection volume 500μl

【0013】本発明のポリプロピレンは、プロピレンの
単独重合体であってもよいし、プロピレンと他のα−オ
レフィンとのランダム共重合体であってもよい。共重合
体の場合、用いられる他のα−オレフィンとしては、炭
素原子数2〜20のα−オレフィンが好ましく、α−オ
レフィン構造単位の含有量は、通常30モル%以下、好
ましくは10モル%以下である。
The polypropylene of the present invention may be a homopolymer of propylene or a random copolymer of propylene and another α-olefin. In the case of a copolymer, the other α-olefin used is preferably an α-olefin having 2 to 20 carbon atoms, and the content of the α-olefin structural unit is usually 30 mol% or less, preferably 10 mol%. It is as follows.

【0014】α−オレフィンとして具体的には、エチレ
ン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、
1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセ
ン、1-オクタデセン、1-エイコセンなどの直鎖状α−オ
レフィン;3-メチル-1-ブテン、3-メチル-1-ペンテン、
3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル
-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル
-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキ
センなどの分岐状α−オレフィンなどが挙げられる。こ
れらのなかでは、炭素原子数がエチレン、1-ブテンが好
ましく、特にエチレンが好ましい。このような直鎖状ま
たは分岐状のα−オレフィンは、1種単独でまたは2種
以上組合わせて用いることができる。
Specific examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene,
Linear α-olefins such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene; 3-methyl-1-butene, 3-methyl-1-pentene;
3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl
1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl
And branched α-olefins such as 1-pentene, 4-ethyl-1-hexene and 3-ethyl-1-hexene. Among these, ethylene and 1-butene are preferable, and ethylene is particularly preferable. Such linear or branched α-olefins can be used alone or in combination of two or more.

【0015】本発明のポリプロピレンは、公知のチーグ
ラー型、あるいはメタロセン系のオレフィン重合触媒の
存在下、オレフィンを重合または共重合させることによ
り直接得てもよいが、MFR20g/10分以下、さらに
はMFR15g/10分以下のポリプロピレンを、デグラ
デーションして得られるものが好ましい。このようなデ
グラデーションにより、MFRが大きくなるとともに、
分子量分布(Mw/Mn)が狭くなり、それを用いるこ
とにより極細繊維のメルトブロー不織布が生産性良く得
られるようになる。
The polypropylene of the present invention may be directly obtained by polymerizing or copolymerizing an olefin in the presence of a known Ziegler-type or metallocene-based olefin polymerization catalyst, but may have an MFR of 20 g / 10 min or less, and a MFR of 15 g or less. What is obtained by degrading polypropylene of / 10 minutes or less is preferable. Such a gradation increases the MFR,
The molecular weight distribution (Mw / Mn) becomes narrower, and by using the same, a melt-blown nonwoven fabric of ultrafine fibers can be obtained with high productivity.

【0016】デグラデーションの方法としては、例え
ば、ラジカル発生剤の存在下に溶融混練する方法があ
り、これにより所定のMFRと分子量分布を持ったポリ
プロヒレンを得ることかできる。
As a method of degradation, for example, there is a method of melt-kneading in the presence of a radical generator, whereby polypropylene having a predetermined MFR and a molecular weight distribution can be obtained.

【0017】ここで、用いることのできるラジカル発生
剤は、有機または無機のものであって、ラジカル重合の
開始剤として一般に用いられるパーオキシド、ハイドロ
パーオキシド、パーアシド等があげられる。有機過酸化
物は、液状、固体状又は無機充填物で固化された形のも
のがある。これらは、通常、有機過酸化物が実質的に分
解しない温度でポリプロピレンと混合される。
Here, the radical generator that can be used is an organic or inorganic one, and includes peroxides, hydroperoxides, peracids and the like which are generally used as radical polymerization initiators. Organic peroxides may be in liquid, solid or solid form with inorganic fillers. These are usually mixed with the polypropylene at a temperature at which the organic peroxide does not substantially decompose.

【0018】具体例として、t-ブチルハイドロパーオキ
シド、クメンハイドロパーオキシド等のハイドロパーオ
キシド類;ジクミルパーオキシド、2,5-ジメチル-ジ(t-
ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-
ブチルパーオキシ)へキシン-3等のジアルキルパーオキ
シド類;ラウロイルパーオキシド、ベンゾイルパーオキ
シド等のジアシルパーオキシド類;t-ブチルパーオキシ
アセテート、t-ブチルパーオキシラウレート等のパーオ
キシエステル類;メチルエチルケトンパーオキシド、メ
チルイソブチルケトンパーオキシド等のケトンパーオキ
シド類を挙げることができる。
Specific examples include hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; dicumyl peroxide, 2,5-dimethyl-di (t-
Butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-
Dialkyl peroxides such as butylperoxy) hexine-3; diacyl peroxides such as lauroyl peroxide and benzoyl peroxide; peroxyesters such as t-butylperoxyacetate and t-butylperoxylaurate; Ketone peroxides such as methyl ethyl ketone peroxide and methyl isobutyl ketone peroxide can be mentioned.

【0019】ラジカル発生剤の添加量は、デグラデーシ
ョン前後のMFR及び分子量分布を考慮して適宜決定さ
れるが、通常、メルトフローレート10g/10分以下の
ポリプロピレン100重量部に対し、0.01〜1.0
0重量部、好ましくは0.05〜0.50重量部であ
る。
The amount of the radical generator to be added is appropriately determined in consideration of the MFR and the molecular weight distribution before and after the degradation, and is usually 0.01 to 10 parts by weight of polypropylene having a melt flow rate of 10 g / 10 minutes or less. ~ 1.0
0 parts by weight, preferably 0.05 to 0.50 parts by weight.

【0020】デグラデーションは、例えば、ポリプロピ
レン及びラジカル発生剤を、ドライブレンドなどの方法
で所定の割合に混合し、溶融温度200〜300℃、好
ましくは220〜280℃で、押出機等を用いて溶融混
練することにより行われる。これによって本発明のポリ
プロピレンが得られる。
The degradation is carried out, for example, by mixing polypropylene and a radical generator in a predetermined ratio by a method such as dry blending, and using a extruder or the like at a melting temperature of 200 to 300 ° C., preferably 220 to 280 ° C. This is performed by melt-kneading. This gives the polypropylene of the invention.

【0021】本発明のポリプロピレンには、ラジカル発
生剤の他に、ポリプロピレン樹脂に配合可能な各種添加
剤、例えば酸化防止剤、耐候安定剤、アンチブロッキン
グ剤、スリップ剤、帯電防止剤、着色剤等を配合するこ
とができる。
In the polypropylene of the present invention, in addition to the radical generator, various additives that can be blended with the polypropylene resin, such as antioxidants, weather stabilizers, antiblocking agents, slip agents, antistatic agents, coloring agents, etc. Can be blended.

【0022】本発明のメルトブロー不織布は、上記のポ
リプロピレンを用いて、メルトブロー法により製造され
る。メルトブロー法は、溶融樹脂を多数のオリフィスか
ら、空気の二つの収束する高速加熱気流中に直接押出
し、溶融樹脂を牽引細化し、移動するスクリーン上に捕
集するプロセスである。この方法において、メルトブロ
ー不織布を構成する繊維の繊維径は、主として樹脂の溶
融温度(溶融粘度)、空気流量、樹脂の吐出量で決ま
る。従って、従来の方法で極細繊維を製造するために
は、溶融温度、空気流量を上げ、吐出量を下げる必要が
あり、条件によっては糸切れを起こしたり、それによる
いわゆるフライまたはショットが発生し、製品の外観を
悪化させる。
The melt blown nonwoven fabric of the present invention is produced by a melt blow method using the above polypropylene. Meltblowing is a process in which molten resin is extruded directly from a number of orifices into two converging high-speed heated air streams of air to draw and narrow the molten resin and collect it on a moving screen. In this method, the fiber diameter of the fibers constituting the melt-blown nonwoven fabric is mainly determined by the melting temperature (melt viscosity) of the resin, the air flow rate, and the discharge amount of the resin. Therefore, in order to produce microfibers by the conventional method, it is necessary to increase the melting temperature, the air flow rate, and reduce the discharge rate, depending on the conditions, the thread breaks, so-called fly or shot occurs, Deteriorate the appearance of the product.

【0023】本発明のポリプロピレンを用いて、メルト
ブロー法による不織布の製造を行えば、単孔吐出量0.
3g/min以上、高速空気量500Nm/hr/m以下で製
造したときに、平均繊維径2.0μm以下のメルトブロ
ーン繊維を得ることができる。
When a non-woven fabric is produced by the melt blow method using the polypropylene of the present invention, a single-hole discharge rate of 0.1 wt.
When produced at a flow rate of 3 g / min or more and a high-speed air flow of 500 Nm 3 / hr / m or less, a melt blown fiber having an average fiber diameter of 2.0 μm or less can be obtained.

【0024】また、本発明のポリプロピレンを用いて、
メルトブロー法による不織布の製造を行えば、樹脂温度
280℃で製造したときに、平均繊維径2.0μm以下
のメルトブローン繊維を得ることができる。
Further, using the polypropylene of the present invention,
If the nonwoven fabric is manufactured by the melt blow method, when manufactured at a resin temperature of 280 ° C., meltblown fibers having an average fiber diameter of 2.0 μm or less can be obtained.

【0025】これについては次の様に考えられる。本発
明のポリプロピレンは、メルトブロー不織布の製造に適
したMFRを有すると同時に、極めて狭い分子量分布を
有するので、上記の様な製造条件で、平均繊維径2.0
μm以下の極細繊維を得る際に糸切れを起こしたり、そ
れによるフライ、ショットが見られず、生産性良く製造
することができる。
This can be considered as follows. The polypropylene of the present invention has an MFR suitable for the production of a melt-blown nonwoven fabric and, at the same time, has an extremely narrow molecular weight distribution.
No yarn breakage occurs when obtaining ultrafine fibers of μm or less, and no fly or shot due to the yarn breakage is observed, so that production can be performed with high productivity.

【0026】本発明に係るメルトブロー不織布は、前記
の様な、メルトブロー法により製造されるものであり、
構成繊維の平均繊維径は、2.0μm以下、好ましくは
0.5〜1.9μm、さらに好ましくは0.8〜1.8
μmのものであり、見掛け密度は、通常、0.05〜
0.30g/cm、なかでも0.07〜0.20g/
cmのものが、優れたフィルター性能を発揮できる点
で好ましい。また,必要に応じて、後工程で交絡処理を
行っても良い。交絡処理の方法としては、エンボスロー
ルを用いた熱エンボス加工、超音波による融着による交
絡、ホットエアースルーによる繊維の融着を用いた交絡
などを挙げることができる。
The melt-blown nonwoven fabric according to the present invention is produced by the above-mentioned melt-blowing method.
The average fiber diameter of the constituent fibers is 2.0 μm or less, preferably 0.5 to 1.9 μm, and more preferably 0.8 to 1.8.
μm, and the apparent density is usually 0.05 to
0.30 g / cm 3 , especially 0.07 to 0.20 g / cm 3
cm 3 is preferable in that excellent filter performance can be exhibited. If necessary, a confounding process may be performed in a subsequent step. Examples of the confounding method include hot embossing using an embossing roll, confounding by fusion using ultrasonic waves, and confounding using fusion of fibers by hot air through.

【0027】このような本発明に係るメルトブロー不織
布は、極細繊維径を有しており、フィルターとして用い
た場合に、粒子捕集率に優れる。すなわち得られたメル
トブロー不織布に、直流電圧を印加してエレクトレット
化したのち、目付40g/mにおいてJIS B99
08に準拠して下記の方法により測定される粒子捕集率
が、99.97%以上、その時の圧力損失が120Pa
以下となる。
Such a melt-blown nonwoven fabric according to the present invention has an extremely fine fiber diameter, and when used as a filter, has an excellent particle collection rate. That is, after applying a DC voltage to the obtained melt-blown nonwoven fabric to form an electret, the JIS B99 is applied at a basis weight of 40 g / m 2 .
The particle collection rate measured by the following method according to the method described in No. 08 is 99.97% or more, and the pressure loss at that time is 120 Pa
It is as follows.

【0028】粒子捕集率の測定は、図1に概略を示す装
置を用いて行った。まず、エアロゾル発生機(日本科学
工業(株)製)21からNaCl粒子(粒径:0.3μ
m)を、清浄用フィルター22を通じて清浄空気を導入
したチャンバー23内に供給した。該チャンバー内のN
aClの濃度が一定(2〜6×106個/cm3)になっ
た後、吸引装置24によりチャンバー23の底部に配置
したフィルター試料25を介して矢印の方向に吸引し、
フィルター通過風速が一定速度(5cm/sec)となっ
た時のフィルター試料25の上流26および下流27側
におけるNaCl粒子濃度CINおよびCOUTを、それぞ
れパーティクルカウンタ(リオン社製KC−01B)2
8a、28bによって測定し、下記式によって粒子捕集
率を求めた。29は流速計、30は流量調節バルブであ
る。 粒子捕集率(%)=(1−COUT/CIN)×100
The measurement of the particle collection rate was performed using an apparatus schematically shown in FIG. First, an aerosol generator (manufactured by Nippon Kagaku Kogyo Co., Ltd.) 21 sends NaCl particles (particle size:
m) was supplied through a cleaning filter 22 into a chamber 23 into which clean air was introduced. N in the chamber
After the concentration of aCl becomes constant (2 to 6 × 10 6 / cm 3 ), the aspirator 24 sucks in the direction of the arrow through the filter sample 25 arranged at the bottom of the chamber 23,
The NaCl particle concentrations C IN and C OUT on the upstream 26 and downstream 27 sides of the filter sample 25 when the wind speed passing through the filter became a constant speed (5 cm / sec) were measured by a particle counter (KC-01B manufactured by Rion) 2.
8a and 28b, and the particle collection rate was determined by the following equation. 29 is a flow meter, 30 is a flow control valve. Particle collection rate (%) = (1−C OUT / C IN ) × 100

【0029】また、圧力損失の測定方法は、粒子捕集率
の測定と同時に行った。フィルター試料25の上流26
および下流27側に差圧計(山武ハネウェル社製KD1
46)を取付けて、風速5cm/secの条件下で行っ
た。
The pressure loss was measured at the same time as the particle collection rate. Upstream 26 of filter sample 25
And a differential pressure gauge (KD1 manufactured by Yamatake Honeywell Co., Ltd.)
46) was attached and the test was performed under the condition of a wind speed of 5 cm / sec.

【0030】エレクトレット化は、メルトブロー不織布
に直流電圧を印加することによって行うことができる。
印加される直流電圧値は、使用する電極の形状、電極間
距離等、また、エレクトレット化不織布に要求される帯
電電荷量、処理速度等に応じて適宜選択される。例え
ば、電極間距離が8mmの場合、少なくとも−5kV、
好ましくは−6〜−20kVの直流電圧を不織布に印加
して行うことができる。
The electretization can be performed by applying a DC voltage to the melt-blown nonwoven fabric.
The applied DC voltage value is appropriately selected according to the shape of the electrodes to be used, the distance between the electrodes, and the like, and the amount of charge required for the electretized nonwoven fabric, the processing speed, and the like. For example, when the distance between the electrodes is 8 mm, at least -5 kV,
Preferably, a DC voltage of -6 to -20 kV is applied to the nonwoven fabric.

【0031】直流電圧の印加は、いずれの方法にしたが
って行っても良く、特に制限されない。例えば、不織布
を、直流電圧を印加した一対の電極間に通して行う方
法、不織布の表面にコロナ放電やパルス状高電圧を加え
る方法、不織布の表裏両面を他の誘電体で保持し両面に
直流高電圧を加える方法などのいずれの方法によって行
っても良い。
The application of the DC voltage may be performed according to any method, and is not particularly limited. For example, a method in which a nonwoven fabric is passed between a pair of electrodes to which a DC voltage is applied, a method in which a corona discharge or a pulsed high voltage is applied to the surface of the nonwoven fabric, and the front and back surfaces of the nonwoven fabric are held by another dielectric and the direct current is applied to both surfaces. Any method such as a method of applying a high voltage may be used.

【0032】エアフィルターは、前記のメルトブロー不
織布を濾材として、通気面積を増やして捕集効率を上げ
るため、プリーツ状に加工されたり、圧力損失を下げる
ためハニカム状に加工したりしてフィルターユニットが
形成され、それらのユニットを組合わせて製作される。
本発明のエアフィルターは、前記のメルトブロー不織布
を濾材として用いているので、粒子捕集率に優れる。
The air filter is processed into a pleated shape in order to increase the ventilation area and increase the collection efficiency by using the above-mentioned melt-blown non-woven fabric as a filter material, or is processed into a honeycomb shape in order to reduce the pressure loss. It is formed and manufactured by combining those units.
Since the air filter of the present invention uses the above-mentioned melt-blown nonwoven fabric as a filter material, it has an excellent particle collection rate.

【0033】また、本発明によるメルトブロー不織布
は、防塵マスク、ワイパー、使い捨てキャップ、バッテ
リーセパレーター、紙おむつ、母乳パッド、マスク、液
体フィルター、油吸着材などにも好適に用いられる。
The melt blown nonwoven fabric according to the present invention is also suitably used for dust masks, wipers, disposable caps, battery separators, disposable diapers, breast milk pads, masks, liquid filters, oil adsorbents and the like.

【0034】[0034]

【実施例】以下、実施例に基づいて本発明をさらに具体
的に説明するが、本発明はこれらの実施例に限定される
ものではない。なお、以下の実施例において用いた物性
等の測定方法、評価方法は、下記により行った。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In addition, the measuring method and evaluation method of the physical property etc. used in the following Examples were performed as follows.

【0035】(1)平均繊維径 電子顕微鏡により倍率1000倍で撮影した不織布試料
の拡大写真から、無作為に50本の繊維を選び、それら
の繊維径をノギスを用いて測定し、その平均値を平均繊
維径とした。 (2)見掛け密度 JIS L1906に準じて不織布試料の目付、厚さを
測定し、次式により、見掛け密度を算出した。 見掛け密度=目付/厚さ
(1) Average fiber diameter From a magnified photograph of a nonwoven fabric sample taken at a magnification of 1000 with an electron microscope, 50 fibers were randomly selected, and their fiber diameters were measured using calipers. As the average fiber diameter. (2) Apparent density The basis weight and thickness of the nonwoven fabric sample were measured according to JIS L1906, and the apparent density was calculated by the following equation. Apparent density = weight / thickness

【0036】(3)フライ及びショットの有無 メルトブロー成形時の糸切れにより生じた繊維の飛散状
態(フライ)及び繊維とはならずに粒状になって不織布
に混入した樹脂塊(ショット)の有無を目視で観察し、
それらが観察されなかったものを○、それらが観察され
たものを×で示した。
(3) Presence or absence of flies and shots The state of scattering of fibers (fly) caused by yarn breakage during melt blow molding and the presence or absence of resin blocks (shots) which are not converted into fibers but are granulated and mixed into the nonwoven fabric are determined. Observe visually,
Those in which they were not observed were indicated by ○, and those in which they were observed were indicated by x.

【0037】(実施例1)MFR14g/10分の未処理
ポリプロピレン100重量部に対し、ジクミルパーオキ
シドを0.18重量部添加して、240℃でデグラデー
ションを行い、MFRが1200g/10分、分子量分布
(Mw/Mn)が2.3のポリプロピレンを得た。この
ポリプロピレンをもちいて樹脂温度280℃、単孔吐出
量0.3g/min、空気流量400Nm/hr/m、の条件
で、メルトブロー法による不織布製造を行い、目付40
g/mのメルトブロー不織布を製造した。この不織布
の測定結果を、フィルター性能(粒子捕集率、圧力損
失)評価結果とともに、表1に示す。
Example 1 0.18 parts by weight of dicumyl peroxide was added to 100 parts by weight of untreated polypropylene having an MFR of 14 g / 10 minutes, and degraded at 240 ° C. to give an MFR of 1200 g / 10 minutes. And a polypropylene having a molecular weight distribution (Mw / Mn) of 2.3. Using this polypropylene, a nonwoven fabric was produced by a melt blow method under the conditions of a resin temperature of 280 ° C., a single hole discharge rate of 0.3 g / min, and an air flow rate of 400 Nm 3 / hr / m.
g / m 2 melt blown nonwoven fabric was produced. Table 1 shows the measurement results of the nonwoven fabric together with the evaluation results of the filter performance (particle collection rate and pressure loss).

【0038】(実施例2)実施例1と同じ未処理ポリプ
ロピレンを用い、ジクミルパーオキシドを0.23重量
部添加して、260℃でデグラデーションを行い、MF
Rが1500g/10分、分子量分布(Mw/Mn)が
2.2のポリプロピレンを得た。このポリプロピレンを
もちいて樹脂温度280℃、単孔吐出量0.3g/mi
n、空気流量400Nm/hr/mの条件で、メルトブロー法
による不織布製造を行い、目付40g/mのメルトブ
ロー不織布を製造した。この不織布の結果を表1に示
す。
(Example 2) Using the same untreated polypropylene as in Example 1, 0.23 parts by weight of dicumyl peroxide was added, degraded at 260 ° C.
A polypropylene having an R of 1500 g / 10 min and a molecular weight distribution (Mw / Mn) of 2.2 was obtained. Using this polypropylene, the resin temperature is 280 ° C and the single hole discharge amount is 0.3g / mi.
n, a nonwoven fabric was produced by a melt blow method under the conditions of an air flow rate of 400 Nm 3 / hr / m, to produce a melt blown nonwoven fabric having a basis weight of 40 g / m 2 . Table 1 shows the results of the nonwoven fabric.

【0039】(実施例3)MRF2g/10分の未処理ポ
リプロピレンを用い、ジクミルパーオキシドを0.35
重量部添加して、240℃でデグラデーションを行い、
MFRが2000g/10分、分子量分布(Mw/Mn)
が1.9のポリプロピレンを得た。このポリプロピレン
をもちいて実施例2と同様にしてメルトブロー不織布を
製造した。この不織布の結果を表1に示す。
Example 3 Using untreated polypropylene having an MRF of 2 g / 10 min and dicumyl peroxide in an amount of 0.35
Parts by weight, degraded at 240 ° C,
MFR 2000g / 10min, molecular weight distribution (Mw / Mn)
Was 1.9. A melt blown nonwoven fabric was manufactured in the same manner as in Example 2 using this polypropylene. Table 1 shows the results of the nonwoven fabric.

【0040】(比較例1)MFR300g/10分の未処
理ポリプロピレン100重量部に対し、ジクミルパーオ
キシドを0.10重量部添加して、240℃でデグラデ
ーションを行い、MFRが900g/10分、分子量分布
(Mw/Mn)が3.5のポリプロピレンを得た。この
ポリプロピレンをもちいて実施例2と同様にしてメルト
ブロー不織布を製造した。この不織布の結果を表1に示
す。
Comparative Example 1 Dicumyl peroxide was added in an amount of 0.10 part by weight to 100 parts by weight of untreated polypropylene having an MFR of 300 g / 10 minutes, and degraded at 240 ° C. to give an MFR of 900 g / 10 minutes. A polypropylene having a molecular weight distribution (Mw / Mn) of 3.5 was obtained. A melt blown nonwoven fabric was manufactured in the same manner as in Example 2 using this polypropylene. Table 1 shows the results of the nonwoven fabric.

【0041】(比較例2)メルトブロー不織布の成形を
310℃で行った以外は、比較例1と同様にしてメルト
ブロー不織布を製造した。この不織布の結果を表1に示
す。 (比較例3)メルトブロー不織布の成形を空気流量60
0Nm/hr/mで行った以外は、比較例1と同様にしてメ
ルトブロー不織布を製造した。この不織布の結果を表1
に示す。
Comparative Example 2 A melt blown nonwoven fabric was manufactured in the same manner as in Comparative Example 1 except that the melt blown nonwoven fabric was molded at 310 ° C. Table 1 shows the results of the nonwoven fabric. (Comparative Example 3) Melt blown nonwoven fabric was molded at an air flow rate of
Except at 0 Nm 3 / hr / m, a melt blown nonwoven fabric was produced in the same manner as in Comparative Example 1. Table 1 shows the results of this nonwoven fabric.
Shown in

【0042】(比較例4)MFR1300g/10分、分
子量分布(Mw/Mn)が4.5の未処理ポリプロピレ
ンを用いて、実施例2と同様にしてメルトブロー不織布
を製造した。この不織布の結果を表1に示す。 (比較例5)メルトブロー不織布の成形を、単孔吐出量
0.2g/minで行った以外は、実施例1と同様にして
メルトブロー不織布を製造した。この不織布の結果を表
1に示す。
Comparative Example 4 A melt-blown nonwoven fabric was produced in the same manner as in Example 2 using untreated polypropylene having an MFR of 1300 g / 10 min and a molecular weight distribution (Mw / Mn) of 4.5. Table 1 shows the results of the nonwoven fabric. (Comparative Example 5) A melt blown nonwoven fabric was manufactured in the same manner as in Example 1 except that the melt blown nonwoven fabric was formed at a single hole discharge rate of 0.2 g / min. Table 1 shows the results of the nonwoven fabric.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明のポリプロピレンをメルトブロー
法による不織布の製造に用いれば、極細のメルトブロー
繊維が生産性良く製造でき、その繊維からなるメルトブ
ロー不織布は、粒子捕集率に優れたエアフィルターのほ
か、防塵マスク、ワイパー、使い捨てキャップ、バッテ
リーセパレーター、紙おむつ、母乳パッド、マスク、液
体フィルター、油吸着材などに応用できる。
When the polypropylene of the present invention is used for the production of a nonwoven fabric by the meltblowing method, ultrafine meltblown fibers can be produced with high productivity. The meltblown nonwoven fabric made of such fibers can be used in addition to an air filter having an excellent particle collection rate. It can be applied to dust mask, wiper, disposable cap, battery separator, disposable diaper, breast milk pad, mask, liquid filter, oil absorbent, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒子捕集率の測定に用いた装置の構成を示す概
略図である。
FIG. 1 is a schematic diagram showing a configuration of an apparatus used for measuring a particle collection rate.

【符号の説明】[Explanation of symbols]

21 エアロゾル発生機 22 清浄用
フィルター 23 チャンバー 24 吸引装
置 25 フィルター試料 26 上流 27 下流 28a、28b パーティクルカウンタ 29 流速計 30 流量調
節バルブ
DESCRIPTION OF SYMBOLS 21 Aerosol generator 22 Cleaning filter 23 Chamber 24 Suction device 25 Filter sample 26 Upstream 27 Downstream 28a, 28b Particle counter 29 Flowmeter 30 Flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本村 茂之 三重県四日市市朝明町1番地 三井化学株 式会社内 (72)発明者 久田 稔 三重県四日市市朝明町1番地 三井化学株 式会社内 Fターム(参考) 4D019 AA01 BA13 BB03 BC01 DA03 4D054 AA11 BC16 4L047 AA14 AB07 AB08 BA09 BA23 BB02 CB10 CC12  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shigeyuki Motomura 1 Asahi-cho, Yokkaichi-shi, Mie Mitsui Chemicals Co., Ltd. Terms (reference) 4D019 AA01 BA13 BB03 BC01 DA03 4D054 AA11 BC16 4L047 AA14 AB07 AB08 BA09 BA23 BB02 CB10 CC12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メルトフローレートが1200g/10分
以上、かつ分子量分布(Mw/Mn)が2.5以下であ
る極細繊維メルトブロー不織布用ポリプロピレン。
An ultrafine fiber melt-blown nonwoven polypropylene having a melt flow rate of at least 1200 g / 10 min and a molecular weight distribution (Mw / Mn) of at most 2.5.
【請求項2】 メルトフローレート20g/10分以下の
ポリプロピレンをデグラデーションして得られる請求項
1に記載の極細繊維メルトブロー不織布用ポリプロピレ
ン。
2. The polypropylene for ultra-fine fiber melt-blown nonwoven fabric according to claim 1, which is obtained by degrading polypropylene having a melt flow rate of 20 g / 10 minutes or less.
【請求項3】 請求項1または2に記載のポリプロピレ
ンを用い、メルトブロー法により得られる平均繊維径
2.0μm以下のメルトブロー不織布。
3. A melt-blown non-woven fabric having an average fiber diameter of 2.0 μm or less, obtained by a melt-blowing method using the polypropylene according to claim 1 or 2.
【請求項4】 直流電圧を印加してエレクトレット化し
たのち、目付40g/mにおいてJIS B9908
に準拠して測定(測定風速5cm/sec)される粒子捕
集率および圧力損失が、それぞれ99.97%以上、1
20Pa以下である請求項3に記載のメルトブロー不織
布からなるエアフィルター。
4. After applying a DC voltage to form an electret, the JIS B9908 is applied at a basis weight of 40 g / m 2 .
The particle collection rate and the pressure loss measured in conformity with (measured wind speed 5 cm / sec) are 99.97% or more, respectively.
An air filter comprising the melt-blown nonwoven fabric according to claim 3, which is at most 20 Pa.
JP2000401844A 2000-12-28 2000-12-28 Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom Pending JP2002201560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401844A JP2002201560A (en) 2000-12-28 2000-12-28 Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401844A JP2002201560A (en) 2000-12-28 2000-12-28 Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom

Publications (1)

Publication Number Publication Date
JP2002201560A true JP2002201560A (en) 2002-07-19

Family

ID=18866223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401844A Pending JP2002201560A (en) 2000-12-28 2000-12-28 Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom

Country Status (1)

Country Link
JP (1) JP2002201560A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037295A (en) * 2004-07-29 2006-02-09 Toray Ind Inc Melt-blown non-woven fabric sheet and filtering material by using the same
JP2007023391A (en) * 2005-07-12 2007-02-01 Toray Ind Inc Nonwoven fabric composed of ultrafine fiber and method for producing the same
JP2008075226A (en) * 2006-09-25 2008-04-03 Japan Vilene Co Ltd Nonwoven fabric and filtering material used for air filter which uses the same
JP2008075227A (en) * 2006-09-25 2008-04-03 Japan Vilene Co Ltd Nonwoven fabric and filtering material used for air filter which uses the same
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
JP2010125404A (en) * 2008-11-28 2010-06-10 Mitsui Chemicals Inc Liquid filter
WO2011090132A1 (en) 2010-01-21 2011-07-28 出光興産株式会社 Non-woven polypropylene fabric
JP2012012743A (en) * 2010-07-02 2012-01-19 Toyota Boshoku Corp Electret filter for cabin and method for producing the same
WO2012102398A1 (en) * 2011-01-28 2012-08-02 タピルス株式会社 Melt-blown nonwoven fabric comprising ultra-fine fibers, production method therefor, and device for producing same
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
WO2013089213A1 (en) 2011-12-16 2013-06-20 東レ株式会社 Mixed-fiber non-woven fabric, laminate sheet, filter, and method for producing mixed-fiber non-woven fabric
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
JP2014024061A (en) * 2013-10-02 2014-02-06 Mitsui Chemicals Inc Liquid filter
WO2014030730A1 (en) * 2012-08-23 2014-02-27 三井化学株式会社 Melt-blown nonwoven fabric and use thereof
WO2014142275A1 (en) 2013-03-13 2014-09-18 出光興産株式会社 Filter, filter laminate, and fiber product comprising filter or filter laminate
WO2014168066A1 (en) 2013-04-11 2014-10-16 東レ株式会社 Mixed-fiber nonwoven fabric and method for manufacturing same
JP2014227618A (en) * 2013-05-21 2014-12-08 トヨタ紡織株式会社 Nonwoven fabric sheet and method for producing nonwoven fabric sheet
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
JP2018525538A (en) * 2015-10-02 2018-09-06 ボレアリス エージー Melt blow web with improved properties
JP2018141244A (en) * 2017-02-24 2018-09-13 花王株式会社 Method of manufacturing melt-blown nonwoven fabric
CN111423663A (en) * 2020-06-09 2020-07-17 金发科技股份有限公司 Long-acting melt-blown polypropylene composite electret material for mask melt-blown cloth and preparation method thereof
JP2020165013A (en) * 2019-03-28 2020-10-08 三井化学株式会社 Method of manufacturing fiber non-woven fabric
EP3901345A1 (en) * 2014-11-21 2021-10-27 DuPont Safety & Construction, Inc. Melt spun filtration media for respiratory devices and face masks

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US10206827B2 (en) 2003-06-30 2019-02-19 The Procter & Gamble Company Hygiene articles containing nanofibers
US9138359B2 (en) 2003-06-30 2015-09-22 The Procter & Gamble Company Hygiene articles containing nanofibers
US8835709B2 (en) 2003-06-30 2014-09-16 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
JP2006037295A (en) * 2004-07-29 2006-02-09 Toray Ind Inc Melt-blown non-woven fabric sheet and filtering material by using the same
JP2007023391A (en) * 2005-07-12 2007-02-01 Toray Ind Inc Nonwoven fabric composed of ultrafine fiber and method for producing the same
JP2008075227A (en) * 2006-09-25 2008-04-03 Japan Vilene Co Ltd Nonwoven fabric and filtering material used for air filter which uses the same
JP2008075226A (en) * 2006-09-25 2008-04-03 Japan Vilene Co Ltd Nonwoven fabric and filtering material used for air filter which uses the same
JP2010125404A (en) * 2008-11-28 2010-06-10 Mitsui Chemicals Inc Liquid filter
WO2011090132A1 (en) 2010-01-21 2011-07-28 出光興産株式会社 Non-woven polypropylene fabric
US9587334B2 (en) 2010-01-21 2017-03-07 Idemitsu Kosan Co., Ltd. Non-woven polypropylene fabric
JP2012012743A (en) * 2010-07-02 2012-01-19 Toyota Boshoku Corp Electret filter for cabin and method for producing the same
JPWO2012102398A1 (en) * 2011-01-28 2014-07-03 タピルス株式会社 Melt blown nonwoven fabric made of ultrafine fibers, method for producing the same, and apparatus for producing the same
JP5905400B2 (en) * 2011-01-28 2016-04-20 タピルス株式会社 Method for producing melt blown nonwoven fabric comprising ultrafine fibers and apparatus for producing melt blown nonwoven fabric comprising ultrafine fibers
JP2016053241A (en) * 2011-01-28 2016-04-14 タピルス株式会社 Melt blown nonwoven fabric comprising ultrafine fiber and laminated processed product
WO2012102398A1 (en) * 2011-01-28 2012-08-02 タピルス株式会社 Melt-blown nonwoven fabric comprising ultra-fine fibers, production method therefor, and device for producing same
KR20140108216A (en) 2011-12-16 2014-09-05 도레이 카부시키가이샤 mixed-fiber non-woven fabric, laminate sheet, filter, and method for producing mixed-fiber non-woven fabric
US9266046B2 (en) 2011-12-16 2016-02-23 Toray Industries, Inc. Mixed-fiber nonwoven fabric, laminated sheet and filter, and process for producing mixed-fiber nonwoven fabric
WO2013089213A1 (en) 2011-12-16 2013-06-20 東レ株式会社 Mixed-fiber non-woven fabric, laminate sheet, filter, and method for producing mixed-fiber non-woven fabric
KR20150034797A (en) * 2012-08-23 2015-04-03 미쓰이 가가쿠 가부시키가이샤 Melt-blown nonwoven fabric and use thereof
KR101665895B1 (en) * 2012-08-23 2016-10-12 미쓰이 가가쿠 가부시키가이샤 Melt-blown nonwoven fabric and use thereof
WO2014030730A1 (en) * 2012-08-23 2014-02-27 三井化学株式会社 Melt-blown nonwoven fabric and use thereof
JP5503816B1 (en) * 2012-08-23 2014-05-28 三井化学株式会社 Meltblown nonwoven fabric and its use
WO2014142275A1 (en) 2013-03-13 2014-09-18 出光興産株式会社 Filter, filter laminate, and fiber product comprising filter or filter laminate
KR20150140655A (en) 2013-04-11 2015-12-16 도레이 카부시키가이샤 Mixed-fiber nonwoven fabric and method for manufacturing same
WO2014168066A1 (en) 2013-04-11 2014-10-16 東レ株式会社 Mixed-fiber nonwoven fabric and method for manufacturing same
JP2014227618A (en) * 2013-05-21 2014-12-08 トヨタ紡織株式会社 Nonwoven fabric sheet and method for producing nonwoven fabric sheet
JP2014024061A (en) * 2013-10-02 2014-02-06 Mitsui Chemicals Inc Liquid filter
EP3901345A1 (en) * 2014-11-21 2021-10-27 DuPont Safety & Construction, Inc. Melt spun filtration media for respiratory devices and face masks
JP2018525538A (en) * 2015-10-02 2018-09-06 ボレアリス エージー Melt blow web with improved properties
JP2018141244A (en) * 2017-02-24 2018-09-13 花王株式会社 Method of manufacturing melt-blown nonwoven fabric
JP2020165013A (en) * 2019-03-28 2020-10-08 三井化学株式会社 Method of manufacturing fiber non-woven fabric
CN111423663A (en) * 2020-06-09 2020-07-17 金发科技股份有限公司 Long-acting melt-blown polypropylene composite electret material for mask melt-blown cloth and preparation method thereof
WO2021248823A1 (en) * 2020-06-09 2021-12-16 金发科技股份有限公司 Long-lasting melt-blown polypropylene composite electret material for mask melt-blown nonwoven fabric and preparation method for long-lasting melt-blown polypropylene composite electret material

Similar Documents

Publication Publication Date Title
JP2002201560A (en) Polypropylene for ultrafine fiber melt-blown nonwoven fabric and nonwoven fabric and air filter each made therefrom
EP0868554B1 (en) Meltblown polyethylene fabrics and processes of making same
US5804512A (en) Nonwoven laminate fabrics and processes of making same
EP1709224B1 (en) Soft extensible nonwoven webs containing multicomponent fibers with high melt flow rates
US6759357B1 (en) Spunbonded non-woven fabric and laminate
EP1377698A1 (en) Extensible fibers and nonwovens made from large denier splittable fibers
WO2017142021A1 (en) Nonwoven fabric, filter, and manufacturing method for nonwoven fabric
JP6715056B2 (en) Spunbond nonwovens and sanitary materials
JP2002242069A (en) Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric
US20080032579A1 (en) Spunbond Fleece of Polymer Fibers and Its Use
TWI780248B (en) Nonwoven fabric and filter
KR102605801B1 (en) Melt-blown nonwoven fabric, filter, and method for manufacturing melt-blown nonwoven fabric
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JP7013486B2 (en) Manufacturing method of spunbonded non-woven fabric, sanitary material, and spunbonded non-woven fabric
JPH03279452A (en) High-strength nonwoven sheet
JP7156033B2 (en) CRIMPED FIBERS, SPUNBOND NONWOVENS AND METHOD OF MANUFACTURE THEREOF
JP7049728B1 (en) Non-woven fabric
TW201929938A (en) Melt-blown nonwoven fabric, nonwoven fabric laminate, filter and manufacturing method of melt-blown nonwoven fabric
KR102500062B1 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
JPH10251958A (en) Bulky nonwoven fabric
JPH03249249A (en) Nonwoven fabric of olefin-based ultrathin yarn
JPH01192871A (en) Non woven fabric
WO2023283222A1 (en) Nonwoven fabrics having improved softness
WO2024048433A1 (en) Polyethylene resin composition, melt-blown non-woven fabric using polyethylene resin, and electret material
JP2021161564A (en) Spunbonded nonwoven fabrics, sanitary materials, and method for drawing of spunbonded nonwoven fabric