JPH04161229A - Denitration apparatus - Google Patents

Denitration apparatus

Info

Publication number
JPH04161229A
JPH04161229A JP2285758A JP28575890A JPH04161229A JP H04161229 A JPH04161229 A JP H04161229A JP 2285758 A JP2285758 A JP 2285758A JP 28575890 A JP28575890 A JP 28575890A JP H04161229 A JPH04161229 A JP H04161229A
Authority
JP
Japan
Prior art keywords
denitration
converter
exhaust gas
denitrification
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2285758A
Other languages
Japanese (ja)
Other versions
JP3014738B2 (en
Inventor
Kozo Obata
晃三 小幡
Tatsuo Murataka
村高 達雄
Toshio Murakami
敏夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2285758A priority Critical patent/JP3014738B2/en
Publication of JPH04161229A publication Critical patent/JPH04161229A/en
Application granted granted Critical
Publication of JP3014738B2 publication Critical patent/JP3014738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make denitration possible even in a low temperature range, immediate after starting, and make it possible to lower NOx even when DSS operation is carried out by installing a CO converter, an NH3 injection pipe, and a denitration reactor and installing an upper stream side NH3 injection pipe also on the upper stream of the CO converter. CONSTITUTION:A denitration apparatus 30 is composed of a CO converter 31 having a CO oxidation catalyst 33 inside which CO in a waste gas is oxidized to CO2 in a waste gas passing through a passing route 25, an NH3 injection tube 35 to spray NH3 led from an ammonia gas system 34, and a denitration reactor 32 having a denitration catalyst 36 inside to reduce NOx in the waste gas to nitrogen and water. An upper stream side NH3 injection tube 42 is installed also in the upper stream of the CO converter 31 and even at the time of starting or stopping a gas turbine in a low temperature range of the waste gas temperature, denitration is carried out by injecting the reducing agent from the upper stream side NH3 injection tube 42 and after the temperature of the waste gas becomes high, the reducing agent is injected from the NH3 injection tube 35 to carry out denitration.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は脱硝装置に係り、特にC○酸化触媒を内蔵した
廃熱回収ボイラ用脱硝装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a denitrification device, and more particularly to a denitrification device for a waste heat recovery boiler incorporating a C○ oxidation catalyst.

[従来の技術] 急増する電力需要に応えるために大容量の火力発電所が
建設されているが、これらのボイラは部分負荷時におい
ても高い発電効率を得るために変圧運転に行なうことが
要求されている。
[Conventional technology] Large-capacity thermal power plants are being constructed to meet the rapidly increasing demand for electricity, but these boilers are required to operate at variable voltage in order to obtain high power generation efficiency even during partial load. ing.

これは最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大と最小の差も増大し、火力発電はベ
ースロード用から負荷調整用へと移行する傾向にある。
This is a feature of recent electricity demand, as nuclear power generation increases, the difference between maximum and minimum loads increases, and thermal power generation tends to shift from base load to load adjustment.

つまり、火力発電はボイラ負荷を常に全負荷で運転され
るものは少なく、負荷を75%負荷、50%負荷、25
%負荷へと負荷を上げ、下げして運転したり、運転を停
止するなど、いわゆる高頻度起動停止(D aily 
S tart S top以下単にDSSという)運転
を行なって中間負荷を担い、発電効率を向上させるので
ある。
In other words, in thermal power generation, there are few cases in which the boiler load is always operated at full load.
% load, operating by lowering the load, or stopping the operation, so-called high-frequency startup/shutdown (Daily
Start S top (hereinafter simply referred to as DSS) operation is carried out to shoulder intermediate loads and improve power generation efficiency.

例えば高効率発電の一環として、最近複合発電プラント
が注目されている。この複合発電プラントはまず、ガス
タービンによる発電を行なうと共に、ガスタービンから
排出された排ガス中の熱を廃熱回収装置(廃熱回収ボイ
ラ)によって回収し、この廃熱回収ボイラで発生した蒸
気により蒸気タービンを作動させて発電するものである
。この複合発電プラントはガスタービンによる発電と蒸
気タービンによる発電を行なうために発電効率が高いう
え、ガスタービンの特性である負荷応答性が早く、この
ために急激な電力需要の上昇にも十分対応し得る負荷追
従性に優れた利点もあり、DSS運転には有効である。
For example, combined cycle power plants have recently been attracting attention as a part of high-efficiency power generation. This combined power generation plant first generates electricity using a gas turbine, and then recovers the heat in the exhaust gas discharged from the gas turbine using a waste heat recovery device (waste heat recovery boiler). It operates a steam turbine to generate electricity. This combined power generation plant has high power generation efficiency because it generates electricity with a gas turbine and a steam turbine, and also has quick load response, which is a characteristic of gas turbines, and is therefore able to adequately respond to sudden increases in electricity demand. It also has the advantage of excellent load followability, and is effective for DSS operation.

ところが、複合発電プラントにおいては、LNG、灯油
などのクリーンな燃料を使用するので。
However, combined cycle power plants use clean fuels such as LNG and kerosene.

SOX量やダスト量は少なくなるが、ガスタービンの燃
焼においては酸素量が多く高温燃焼を行なうために、排
ガス中のNOx量が増加するので、脱硝装置を内臓した
廃熱回収ボイラが開発されている。
Although the amount of SOX and dust decreases, the amount of NOx in the exhaust gas increases due to the large amount of oxygen and high temperature combustion in gas turbine combustion, so waste heat recovery boilers with built-in denitration equipment have been developed. There is.

第4図は、従来の複合発電プラントの概略構成図である
FIG. 4 is a schematic configuration diagram of a conventional combined cycle power plant.

複合発電プラントはガスタービン装置10と、ガスター
ビン装置10から排出される燃焼ガスを熱源として蒸気
を発生する廃熱回収ボイラ装置20と、この廃熱回収ボ
イラ装置20で発生した蒸気を駐動源にする蒸気タービ
ン装置40と、ガスタービン装置10から排出されるN
Oxを脱硝する脱硝装ff1t30とによって構成され
ている。
The combined power generation plant includes a gas turbine device 10, a waste heat recovery boiler device 20 that generates steam using combustion gas discharged from the gas turbine device 10 as a heat source, and a parking source that uses the steam generated by the waste heat recovery boiler device 20. N discharged from the steam turbine device 40 and the gas turbine device 10
The denitrification device ff1t30 denitrates Ox.

そしてガスタービン装置10は導入空気4を加圧する圧
縮機11と、加圧空気を燃料系統5から供給された燃料
と共に燃焼する燃焼器14と、燃焼ガスにより駐動され
るガスタービン12と、発電機13によって形成されて
いる。
The gas turbine device 10 includes a compressor 11 that pressurizes the introduced air 4, a combustor 14 that burns the pressurized air together with fuel supplied from the fuel system 5, a gas turbine 12 that is parked by combustion gas, and a generator that generates electricity. It is formed by machine 13.

また、廃熱回収ボイラ装置20はガスタービン装置10
から導かれる燃焼ガス3の上流から下流に沿って過熱器
21、蒸発器22、節炭器23および煙突24によって
形成されている。
Further, the waste heat recovery boiler device 20 is a gas turbine device 10.
The combustion gas 3 is formed by a superheater 21, an evaporator 22, a economizer 23, and a chimney 24 along the upstream to downstream direction of the combustion gas 3 led from the combustion gas 3.

そして、過熱器21の蒸気を蒸気配管2を経て蒸気ター
ビン装置40へ導き、発電機41にて負荷を取る。
Then, the steam from the superheater 21 is guided to the steam turbine device 40 via the steam pipe 2, and the load is taken by the generator 41.

蒸気タービン装置4oからは給水配管1を経て節炭器2
3に導かれ、更に廃熱回収ボイラ装置20の過熱器21
と蒸発器22の間にはCOコンバータ31と、蒸発器2
2と節炭器23の間には脱硝反応器32からなる脱硝装
置30が配置されている。
The steam turbine device 4o is connected to the energy saver 2 via the water supply pipe 1.
3, and further the superheater 21 of the waste heat recovery boiler device 20
A CO converter 31 and an evaporator 2 are provided between the evaporator 22 and the evaporator 22.
A denitrification device 30 consisting of a denitrification reactor 32 is arranged between the denitrification device 2 and the economizer 23 .

脱硝装置30は排ガス通路25内の排ガス中に、排ガス
中のCOをCO2に酸化する白金(Pt)等を主成分と
するC○酸化触媒33を内蔵したC○コンバータ31と
、アンモニアガス系統34から導かれたNH,を噴霧す
るNH3注入管35と、排ガス中のNOxを窒素分と水
に還元する脱硝触媒36を内蔵した脱硝反応器32によ
って構成される。なお、37はNH,流量調整弁である
The denitrification device 30 includes a CO converter 31 containing a CO oxidation catalyst 33 whose main component is platinum (Pt), which oxidizes CO in the exhaust gas to CO2, and an ammonia gas system 34 in the exhaust gas in the exhaust gas passage 25. The denitrification reactor 32 includes an NH3 injection pipe 35 that sprays NH introduced from the exhaust gas, and a denitrification catalyst 36 that reduces NOx in the exhaust gas to nitrogen and water. In addition, 37 is NH, a flow rate adjustment valve.

そして、脱硝反応器32での脱硝反応は一般に脱硝触媒
36に吸着したNH,とNoの衝突によって進行するも
のと考えられ、その反応は4No+4NH,+02→4
 N2+ 6 H2Oとなり、無害な窒素と水に分解さ
れて脱硝される。
The denitrification reaction in the denitrification reactor 32 is generally thought to proceed through the collision of NH and No adsorbed on the denitrification catalyst 36, and the reaction is 4No+4NH, +02→4
It becomes N2+ 6 H2O, decomposes into harmless nitrogen and water, and is denitrified.

一方、C○コンバータ31のco酸化触媒33としては
、例えば白金、パラジウム、ロジウムなどの単独または
合金の白金系、銅系、鉄系のものが用いられ、脱硝反応
器32の脱硝触媒36としでは通常Ti−V系が採用さ
れており、温度に対する活性は第5図に示すような特性
となっている。
On the other hand, as the CO oxidation catalyst 33 of the CO converter 31, a platinum-based, copper-based, or iron-based catalyst such as platinum, palladium, or rhodium alone or in an alloy is used. Usually, Ti-V type is used, and its activity with respect to temperature has characteristics as shown in FIG.

そのため脱硝反応器32は計画条件において排ガス温度
が350〜400℃となる位置、すなわち二分割した蒸
発器22の間や、蒸発器22の後流に設置されている。
Therefore, the denitrification reactor 32 is installed at a position where the exhaust gas temperature is 350 to 400°C under the planned conditions, that is, between the two divided evaporators 22 or downstream of the evaporator 22.

第6図は第4図に示される複合発電プラントにおける起
動時の排ガス温度の変化の一例を示しているが、第6図
に示すようにガスタービン12の起動時は脱硝反応器3
2の入口排ガス温度は低いため、NH3等の還元剤を注
入しても脱硝率は著しく低く、脱硝反応器32の後流に
未反応還元剤が高濃度存在することになる。
FIG. 6 shows an example of the change in exhaust gas temperature at the time of startup in the combined cycle power plant shown in FIG. 4. As shown in FIG.
Since the exhaust gas temperature at the inlet of No. 2 is low, the denitration rate is extremely low even if a reducing agent such as NH3 is injected, and a high concentration of unreacted reducing agent is present in the downstream of the denitration reactor 32.

そのため、排ガス温度が低い起動時、停止時等の低温域
においてはNH3の注入を行なわず、ガスタービン12
で発生したNOxが煙突24より糸外へそのまま排出さ
れることになる。
Therefore, NH3 is not injected into the gas turbine 12 in low-temperature ranges such as startup and shutdown when the exhaust gas temperature is low.
The NOx generated in this case is directly discharged from the chimney 24 to the outside of the line.

[発明が解決しようとする課題] ところが、前述した様にDSS運転を行なう複合発電プ
ラントにおいては、起動直後の低温域から高濃度のNO
xを発生するが、これまでに開発されている脱硝触媒は
低温活性が低いため、起動直後の例えば250℃程度以
下の温度で脱硝しようとすると極端に触媒量が多く必要
となり実用的ではない。そのため、複合発電プラントか
らの排ガスの脱硝を従来の脱硝触媒でのみ行なった場合
には、起動直後の低温域で発生されるNOxの除去が不
可能となり、起動直後から多量のNOxを大気に放出す
る欠点がある。
[Problem to be solved by the invention] However, as mentioned above, in a combined power generation plant that performs DSS operation, a high concentration of NO is generated from the low temperature range immediately after startup.
However, the denitrification catalysts developed so far have low low-temperature activity, so if denitration is attempted at a temperature of, for example, 250° C. or lower immediately after startup, an extremely large amount of catalyst is required, which is not practical. Therefore, if exhaust gas from a combined cycle power plant is denitrated using only conventional denitrification catalysts, it becomes impossible to remove NOx generated in the low temperature range immediately after startup, and a large amount of NOx is released into the atmosphere immediately after startup. There are drawbacks to doing so.

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、起動直後の低温域であっても
脱硝することができ、しかもDSS運転を行なってもN
Oxを低減することができる脱硝装置を得ようとするも
のである。
The present invention aims to eliminate such conventional drawbacks,
The purpose of this is to be able to remove nitrogen even in the low temperature range immediately after startup, and to be able to remove nitrogen even during DSS operation.
The objective is to obtain a denitrification device that can reduce Ox.

[課題を解決するための手3段] 本発明は前述の目的を達成するために、COコンバータ
の上流に上流側NH3注入管を配置したのである。
[3 Means for Solving the Problem] In order to achieve the above-mentioned object, the present invention arranges an upstream NH3 injection pipe upstream of the CO converter.

[作用] CO酸化触媒は低温域において、アンモニア等の還元剤
を注入すると脱硝触媒としての脱硝作用がある。
[Function] When a reducing agent such as ammonia is injected into the CO oxidation catalyst in a low temperature range, it has a denitrification effect as a denitrification catalyst.

従って、低温域であってもC○酸化触媒によってNOx
はN2に還元されるので、NOxが多量に系外に排出さ
れることがない。
Therefore, even in the low temperature range, NOx is reduced by the C○ oxidation catalyst.
Since NOx is reduced to N2, a large amount of NOx is not discharged outside the system.

[実施例コ 以下、本発明の実施例を図面を用いて説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る複合発電プラントの概略
構成図、第2図および第3図は縦軸に脱硝率、横軸に排
ガス温度を示し、第2図はCO酸化触媒の特性曲線図、
第3図は脱硝触媒の特性曲線図である。
Figure 1 is a schematic configuration diagram of a combined power generation plant according to an embodiment of the present invention, Figures 2 and 3 show the denitrification rate on the vertical axis and the exhaust gas temperature on the horizontal axis, and Figure 2 shows the characteristics of the CO oxidation catalyst. curve diagram,
FIG. 3 is a characteristic curve diagram of the denitrification catalyst.

第1図において、符号1から41は従来のものと同一の
ものを示す。
In FIG. 1, numerals 1 to 41 indicate the same parts as the conventional one.

42はC○コンバータ31の上流側に配置した上流側N
H,注入管、43は上流側NH,流量調整弁、44は脱
硝反応器32の入口排ガス温度を検出する温度検出器、
45はC○コンバータ31の入口排ガス温度を検出する
上流側温度検出器である。
42 is an upstream side N located upstream of the C○ converter 31
H, injection pipe; 43, upstream NH; flow rate adjustment valve; 44, temperature detector for detecting the exhaust gas temperature at the entrance of the denitrification reactor 32;
45 is an upstream temperature detector that detects the inlet exhaust gas temperature of the C○ converter 31.

第1図において、第4図に示す従来技術の脱硝装置と異
なる点は、NH3注入管35の他に、C○コンバータ3
1の前流にも上流側NH,注入管42を設置したもので
あり、ガスタービン起動時。
1, the difference from the prior art denitrification device shown in FIG. 4 is that in addition to the NH3 injection pipe 35, the C○ converter 3
1, an upstream NH injection pipe 42 is also installed upstream of the gas turbine when the gas turbine is started.

停止時等、排ガス温度が低い低温域において上流側NH
3注入管42から還元剤を注入して脱硝を行ない、排ガ
ス温度が高くなった後はNH,注入管35から還元剤を
注入して脱硝を行なうようにしたのである。
Upstream NH in low temperature range where exhaust gas temperature is low, such as when stopping.
The reducing agent is injected from the NH injection pipe 35 to perform denitration, and after the exhaust gas temperature becomes high, the reducing agent is injected from the NH injection pipe 35 to perform denitration.

第2図にCO酸化触媒における排ガス温度と脱硝率の関
係の一例を、第3図に脱硝触媒における排ガス温度と脱
硝率の関係の一例を示す。第2図。
FIG. 2 shows an example of the relationship between the exhaust gas temperature and the denitration rate in the CO oxidation catalyst, and FIG. 3 shows an example of the relationship between the exhaust gas temperature and the denitration rate in the denitration catalyst. Figure 2.

第3図の例テハ、CO@化触媒33 L;! ’t 5
0℃以上で脱硝率50%以上、又脱硝触媒36は180
℃以上で脱硝率5o%以上が得られる。通常の複合発電
プラントにおいては、COコンバータ31の入口排ガス
温度に比へ、脱硝反応器32の入口排ガス温度は約10
0℃程度低いことから、実施例においては、coコンバ
ータ31の入口排ガス温度が150℃程度から上流側N
H,注入管42よリアンモニア等の還元剤の注入を開始
し、C○コンバータ31の入口排ガス温度が約250℃
前後に達したら、NH,注入管35からの還元剤の注入
も開始し、脱硝反応器32の入口排ガス温度が約250
℃もしくはCOコンバータ31の入口排ガス温度が約3
00 ’Cになった時点で上流側NH。
Example of Fig. 3: CO@ conversion catalyst 33 L;! 't 5
The denitrification rate is 50% or more at 0°C or higher, and the denitrification catalyst 36 is 180
A denitrification rate of 50% or more can be obtained at temperatures above .degree. In a normal combined cycle power plant, the exhaust gas temperature at the inlet of the denitrification reactor 32 is approximately 10% compared to the exhaust gas temperature at the inlet of the CO converter 31.
Since the temperature is about 0°C lower, in the embodiment, the inlet exhaust gas temperature of the CO converter 31 is lower than about 150°C on the upstream side N.
H, injection of a reducing agent such as ammonia through the injection pipe 42 was started, and the exhaust gas temperature at the inlet of the C○ converter 31 was approximately 250°C.
When the temperature reaches approximately 250℃, the injection of reducing agent from the NH injection pipe 35 is started, and the temperature of the exhaust gas at the entrance of the denitrification reactor 32 is about 250℃.
℃ or the inlet exhaust gas temperature of the CO converter 31 is approximately 3
When the temperature reached 00'C, the upstream NH.

注入管42からの還元剤の注入を停止することにより、
ガスタービンの起動時、停止時等の排ガス温度が低い低
重域でのNOx除去を行なうことができる。即ち、低温
域においては、COコンバータ31の入口排ガス温度に
より上流側NH3注入管42より還元剤の注入を開始し
、以後はC○コンバータ31の入口排ガス温度と脱硝反
応器32の装置入口排ガス温度によりNH3注入管35
より還元剤の注入を開始することにより、低温域でのN
Ox除去を達成することができる。
By stopping the injection of the reducing agent from the injection pipe 42,
NOx can be removed in a low gravity region where the exhaust gas temperature is low, such as when the gas turbine is started or stopped. That is, in the low temperature range, the injection of the reducing agent is started from the upstream NH3 injection pipe 42 depending on the temperature of the exhaust gas at the inlet of the CO converter 31, and thereafter the temperature of the exhaust gas at the inlet of the CO converter 31 and the exhaust gas temperature at the device inlet of the denitrification reactor 32 are changed. NH3 injection pipe 35
By starting to inject more reducing agent, N at low temperatures can be reduced.
Ox removal can be achieved.

なお、COコンバータ31、脱硝反応器32の入口排ガ
ス温度は上流側温度検出器45、温度検出器44によっ
て検出され、この温度検出器44゜45による排ガス温
度によってNH3の注入量は上流側NH,流量調整弁4
3、NH3流量調整弁37により調整される。
Note that the exhaust gas temperature at the inlet of the CO converter 31 and the denitrification reactor 32 is detected by the upstream temperature detector 45 and the temperature detector 44, and the injection amount of NH3 is determined by the exhaust gas temperature detected by the temperature detector 44, 45, and the upstream NH, Flow rate adjustment valve 4
3. Adjusted by NH3 flow rate adjustment valve 37.

[発明の効果] 本発明によれば、低温域であっても脱硝を行なうことが
でき、DSS運転を行なってもNOxを低減できる。
[Effects of the Invention] According to the present invention, denitration can be performed even in a low temperature range, and NOx can be reduced even when DSS operation is performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る複合発電プラントの概略
構成図、第2図および第3図は縦軸に脱硝率、横軸に排
ガス温度を示し、第2図はCO酸化触媒の特性曲線図、
第3図は脱硝触媒の特性曲線図、第4図は従来の複合発
電プラントの概略構成図、第5図は縦軸に脱硝触媒の活
性比、横軸に排ガス温度を示した特性曲線図、第6図は
縦軸に排ガス温度、横軸に時間を示した特性曲線図であ
る。 31・・・・・・C○コンバータ、32・・・・・・脱
硝反応器、33・・・・CO酸化触媒、35・・・・・
NH3注入管、36・・・・脱硝触媒、42・・・・・
上流側NH3注入管。 第2図 第3図 寸 一−1八自「C)
Figure 1 is a schematic configuration diagram of a combined power generation plant according to an embodiment of the present invention, Figures 2 and 3 show the denitrification rate on the vertical axis and the exhaust gas temperature on the horizontal axis, and Figure 2 shows the characteristics of the CO oxidation catalyst. curve diagram,
Fig. 3 is a characteristic curve diagram of the denitrification catalyst, Fig. 4 is a schematic diagram of a conventional combined cycle power generation plant, and Fig. 5 is a characteristic curve diagram in which the vertical axis shows the activity ratio of the denitrification catalyst and the horizontal axis shows the exhaust gas temperature. FIG. 6 is a characteristic curve diagram in which the vertical axis shows exhaust gas temperature and the horizontal axis shows time. 31...C○ converter, 32...Denitration reactor, 33...CO oxidation catalyst, 35...
NH3 injection pipe, 36... denitrification catalyst, 42...
Upstream NH3 injection pipe. Figure 2 Figure 3 Size 1-1 8-ji "C"

Claims (1)

【特許請求の範囲】 排ガス通路内の上流から下流へCO酸化触媒を内蔵した
COコンバータと、NH_3注入管と、脱硝触媒を内蔵
した脱硝反応器を配置し、排ガス中の窒素酸化物を脱硝
するものにおいて、 前記COコンバータの上流に上流側NH_3注入管を配
置したことを特徴とする脱硝装置。
[Claims] A CO converter with a built-in CO oxidation catalyst, an NH_3 injection pipe, and a denitration reactor with a built-in denitration catalyst are arranged from upstream to downstream in the exhaust gas passage, and nitrogen oxides in the exhaust gas are denitrated. A denitrification device, characterized in that an upstream NH_3 injection pipe is disposed upstream of the CO converter.
JP2285758A 1990-10-25 1990-10-25 Denitration equipment Expired - Fee Related JP3014738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2285758A JP3014738B2 (en) 1990-10-25 1990-10-25 Denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2285758A JP3014738B2 (en) 1990-10-25 1990-10-25 Denitration equipment

Publications (2)

Publication Number Publication Date
JPH04161229A true JPH04161229A (en) 1992-06-04
JP3014738B2 JP3014738B2 (en) 2000-02-28

Family

ID=17695673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2285758A Expired - Fee Related JP3014738B2 (en) 1990-10-25 1990-10-25 Denitration equipment

Country Status (1)

Country Link
JP (1) JP3014738B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102275517B1 (en) * 2019-09-25 2021-07-09 주식회사 베이스캠프코리아 Device for removing dust in subway tunnel

Also Published As

Publication number Publication date
JP3014738B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US8916119B2 (en) System using selective catalytic reduction for improving low-temperature De-NOx efficiency and reducing yellow plume
US4875436A (en) Waste heat recovery system
US8741239B2 (en) Method and apparatus for operation of CO/VOC oxidation catalyst to reduce NO2 formation for gas turbine
US8397482B2 (en) Dry 3-way catalytic reduction of gas turbine NOx
JPS6157927B2 (en)
JP7221262B2 (en) Exhaust system for power plant
GB2082084A (en) Apparatus for recovering heat energy and removing nox in combined cycle plants
JPS609201B2 (en) Exhaust heat recovery boiler equipment
JP6906381B2 (en) Combustion equipment and gas turbine
WO1986001579A1 (en) Boiler capable of recovering waste heat and having denitration devices
US20120102913A1 (en) Apparatus for reducing emissions and method of assembly
US20120102951A1 (en) Apparatus for reducing emissions and method of assembly
US11041422B2 (en) Systems and methods for warming a catalyst in a combined cycle system
CN111804138A (en) Biomass boiler flue gas denitration system and application process thereof
JPH04161229A (en) Denitration apparatus
JP3831804B2 (en) Exhaust gas denitration equipment
JPH01155007A (en) Operating method for exhaust heat recovery boiler
KR100903930B1 (en) Heat Recovery Steam Generator System Including NOx Removal Catalyst Arranged in Multi-stage Pattern
JPH0120984Y2 (en)
JP3568566B2 (en) Method of using denitration equipment for exhaust gas containing nitrogen dioxide and nitric oxide
KR102458302B1 (en) Combined cycle power plant for reducing air pollutants and Method of reducing air pollutants in combined cycle power plant
JPS5943213B2 (en) Exhaust gas denitrification equipment
JPH0461917A (en) Exhaust gas treatment apparatus
JPH0811171B2 (en) Ammonia injection amount control device
JPH01119330A (en) Denitration of exhaust gas from gas turbine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees