JPH0416063B2 - - Google Patents

Info

Publication number
JPH0416063B2
JPH0416063B2 JP27928685A JP27928685A JPH0416063B2 JP H0416063 B2 JPH0416063 B2 JP H0416063B2 JP 27928685 A JP27928685 A JP 27928685A JP 27928685 A JP27928685 A JP 27928685A JP H0416063 B2 JPH0416063 B2 JP H0416063B2
Authority
JP
Japan
Prior art keywords
fibers
denier
laminate
fabric
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27928685A
Other languages
Japanese (ja)
Other versions
JPS62140842A (en
Inventor
Shigeru Takahashi
Fumiki Takabayashi
Kunio Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP27928685A priority Critical patent/JPS62140842A/en
Priority to EP86308727A priority patent/EP0222610A3/en
Priority to KR860009554A priority patent/KR870004827A/en
Publication of JPS62140842A publication Critical patent/JPS62140842A/en
Publication of JPH0416063B2 publication Critical patent/JPH0416063B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明はヨツトセール、ウインドサーフイン用
セール等に用いられるセール用積層体の製造方法
に関する。 <従来技術> 最近ヨツトやウインドサーフインなどのセール
クロス用として布帛とフイルムとの積層体が使用
されている。かかる積層体に関する技術として時
開昭58−222847号公報に示された「ポリエステル
2軸延伸フイルムの少なくとも片面に可塑性ポリ
エステルエーテル共重合体を介して布帛を積層し
たセールクロス」がある。又他の技術として「ポ
リエステルフイラメント糸を経、緯方向に用いた
平織物とポリエステル2軸延伸フイルムとをポリ
ウレタンを主体とした接着剤で接着した積層体か
ら成り積層体の伸度が5cm幅当り引張力が18Kgの
条件下で3%以下、剥離強度が3cm幅当り2Kg以
上であることを特徴とするセールクロス」(実開
昭59−187436号)を我々は提供している。また
「2軸延伸ポリエステルフイルムと編目状布帛と
を貼り合せて構成されるセールクロスにおいて、
編目状布帛の一部または全部に実質的に無撚のポ
リエステル繊維の原着マルチフイラメント糸を使
用することを特徴とするセールクロス」(実開昭
60−125115号)が開示されている。 しかし上述の技術は基布として用いる繊維が熱
可塑性繊維(例えばポリエステル繊維)100%で
あり基布の染色加工条件及び処理工程は通常公知
の方法で処理すれば目的とする特性を有するセー
ル用積層体が得られる。 <発明の目的> 本発明はかかる従来のセール用積層体では発生
しなかつた欠点、すなわち高強力高弾性率繊維と
ポリエステル繊維の染色加工工程(例えば精練、
染色、仕上加工など)での湿熱、乾熱処理中に発
現する収縮差によつて生ずる低収縮繊維のたるみ
を修正する製造方法に関するものであり本発明の
製造方法によつて従来より低伸度性を有し形態安
定性、耐久性の高いセール用積層体を提供するこ
とができる。 <発明の構成> すなわち本発明は特許請求の範囲に記載したセ
ール用積層体の製造方法であるが、ここで高強力
高弾性率繊維(以下高モジユラス繊維と云う。)
とは耐熱性が210℃以上の芳香族ポリアミド繊維、
炭素繊維、ガラス繊維、高強力ポリエチレン繊
維、高強力ポリビニルアルコール繊維、高強力ポ
リアクリロニトリル繊維、ポリイミド繊維などで
ある。芳香族ポリアミド繊維としてはポリ−p−
フエニレンテレフタルアミド繊維、3−4′ジアミ
ノジフエニルエーテルを共重合したポリ−p−フ
エニレンテレフタルアミド繊維などがある。炭素
繊維としてはアクリル繊維を焼結して得られるア
クリル系炭素繊維、ピツチを焼結して得られるピ
ツチ系炭素繊維などがある。 ここで云う耐熱性とはその繊維のもつ基本的物
性の劣化又は繊維が溶融する温度を云う、例えば
3−4′ジアミノジフエニルエーテルを共重合した
ポリ−p−フエニレンテレフタルアミド繊維(帝
人(株)製)の場合は約500℃である。 当該繊維を布帛へ配列せしめる方法は目的とす
る低伸度性の方向(例えば経方向など)や布帛の
形態によつて異なるが例えば経方向の低伸度性を
目的とする織物においては高モジユラス繊維を3
cm巾当り1本〜9本の割合で間隔をあけて規制正
しく配列させたあと整経し経糸とし通常の方法で
製織する。 高モジユラス繊維を含んだポリエステル繊維基
布の染色仕上加工工程は通常公知の方法例えば精
練工程、プレセツト工程、染色工程、仕上処理工
程の順で処理される。これらの処理工程において
通常処理する条件(特に処理温度)は精練工程が
60〜100℃の水中処理又はスチーム処理、プレセ
ツト工程が160℃〜200℃の乾熱処理、染色工程が
120℃〜135℃の水中処理又は180℃〜210℃の乾熱
処理(いわゆるサーモゾル染色)、仕上処理工程
が150℃〜200℃である。 上述した工程で処理した場合、高モジユラス繊
維とポリエテル繊維との収縮差は135℃の湿熱処
理で2.5%〜20.5%、210℃の乾熱処理で2.5%〜
16.5%程度である。従つて、これらの条件下で布
帛を処理したときポリエステル繊維の収縮が大き
いため高モジユラス繊維にたるみが生ずる。また
製編織する際に付加される張力によつても、繊維
の伸長弾性特性の差によるたるみが発生する。た
るみを含む基布とフイルムとを積層体にすると例
えば60ポンド、100ポンドの荷重を積層体に与え
た場合、高モジユラス繊維のたるみに基く伸度が
付加されるので高モジユラス繊維の特徴である低
伸度性を得ることが困難となる。 従つて低伸度性の積層体を得るには、特定の処
理条件を設定する必要がある。 熱処理の温度はポリエステル繊維の融点より50
℃〜110℃低いことが必要である。温度が融点よ
り110℃以上低い場合は張力を与えながら処理を
してもポリエステル繊維の寸法安定性が保ち得ず
張力を解除したあと又もとの長さに戻り熱処理の
効果が得られない。一方融点より50℃以上高い場
合はポリエステル繊維の強力が低下すること、黄
変が生じ高品価値が低下すること、染色物の堅牢
度が著しく低下することなどの欠点が生じ適当で
ない。 熱処理の時間は通常ポリエステル繊維布帛を熱
処理する条件でよく15秒〜5分間の範囲が用いら
れる。 熱処理を施す際デニール当り0.3g以上の張力
を経、緯方向に与え染色加工処理工程において生
じたポリエステル繊維と高モジユラス繊維との収
縮差による繊維のたるみを矯正する。張力が0.3
g/デニール未満の場合は高モジユラス繊維のた
るみを矯正することが困難である。熱処理を実施
する機械は経、緯方向に張力を加えられかつ連続
的に処理することが可能であるテンターを使用す
る。この場合緯方向に均一にまた効果的に張力を
与えながら処理を施す為にはクリツプ式テンター
又はクリツプ式ピンテンターを用いることが望ま
しい。 基布に張力を与えながら熱処理を施す工程はフ
イルムに接合させる直前に工程として実施するの
が望ましい。当該処理を施したあと該基布に例え
ば前述の条件にて染色処理を施すとポリエステル
繊維と高モジユラス繊維の収縮差が再び発現され
低収縮繊維である高モジユラス繊維にたるみが生
じ熱処理の効果が減少する。 熱処理を施したのち貼り合せ処理を施すまでに
布帛を放置するときは高モジユラス繊維が再度た
るみを生じない様に布帛に張力を付加した状態を
維持する必要がある(バツチアツプ)。 <発明の効果> 以上詳述した方法により得られた積層体は以下
の効果を有する。 (1) 目的とする方向(経、緯、バイヤス方向)の
伸度が極めて低く、かつ経時的伸度変性も極め
て低いのでセールクロスの形態安定耐久性が高
くヨツトやウインドサーフイン用に使用した場
合安定した高速走行性を示す。 (2) 強度が向上したことにより長期使用にも耐え
る(耐久性向上)。 <実施例> 以下実施例により本発明を具体的に説明する。 実施例で用いた評価は以下の測定方法に従つ
た。 測定方法 (1) 強伸度 引張試験機(東洋ゴールドウイン(株)製)を用
い巾5cm長さ30cmの試料を下記に示した条件で
破断するまで引張りそのときの強度、伸度を測
定した。 測定は経、緯、バイヤス各々3点について測
定した。 測定条件 (1) 試片つかみ間隔:200mm (2) 引張りスピード;200mm/分 (3) チヤートスピード;200mm/分 (2) 定荷重時の伸度 引張試験機(東洋ゴールドウイン(株)製)を用
い巾5cm、長さ30cmの試料を下記に示した条件
で所定の荷重(例えば40ポンド(LB)、60ポン
ド(LB)、100ポンド(LB)など)で引張りそ
のときの伸びを測定した。測定は経、緯、バイ
ヤス方向各々3点づつについて測定しその平均
値を示した。 測定条件 (1) 試片のつかみ間隔:200mm (2) 引張りスピード;200mm/分 (3) チヤートスピード;500mm/分 (3) 耐久性テスト 三菱電気製作所(株)製家庭用洗濯機“千曲”、
型式CW−900A型にて浴比1:100(被測定資料
500gに対し水の量50)とし90分間“強”の
条件で洗濯した。 実施例 1 単糸繊度2.1デニール、全繊維75デニールのポ
リエチレンテレフタレート繊維を用い経、緯方向
にそれぞれ110本/インチ、96本/インチの密度
の平織物を製織する際、経方向に1本/cm間隔に
単糸繊度1.5デニール、全繊度1000デニールの芳
香族ポリアミド繊維(3,4−ジアミノジフエニ
ルエーテルを共重合したポリパラフエニレンテレ
フタルアミド繊維(帝人(株)製))を挿入した布帛
を用い通常の方法にて精練をして製糸用油剤、サ
イジング糊剤を除去したのち、120℃で1分間乾
燥した。次いで布帛の経方向に0.5g/デニール、
緯方向に0.4g/デニールの張力を与え190℃で1
分間の緊張熱処理を平野金属(株)製クリツプ付ピン
テンターで実施し経方向0.05g/デニールの張力
で巻き取り処理布帛とした。 一方厚さ50μのポリエチレンテレフタレート2
軸延伸フイルムにポリウレタン系接着剤(ニツポ
ラン5032日本ポリウレタン(株)製)をコンマドクタ
ー方式を用いて厚さ30μの層になる様に塗布した
のち120℃で1分間乾燥した。ついで乾燥後の塗
布フイルムの塗布面が布帛と接合する様に貼り合
せながら表面温度120℃、圧力3.0Kg/cm2、ニツプ
ローラースピード15m/分の条件で熱圧処理を施
して本発明の積層体を得た。 得られた積層体は第1表あるいは第2表に示し
た特性をもつていた。 実施例 2 単糸繊度3デニール、全繊度150デニールのポ
リエチレンテレフタレート繊維を用い経、緯方向
にそれぞれ55本/インチ、50本/インチの密度の
平織物を製織する際に経、緯方向に1本/2cmの
間隔に単糸繊度1.5デニール、全繊度1000デニー
ルの芳香族ポリアミド繊維(実施例1と同様)を
挿入した布帛を通常の方法に精練、乾燥を実施し
た。 次いで180℃の温度で30秒間の条件でプレセツ
ト処理をした。次に下記に示した染料溶液を用い
て130℃の温度で45分間の染色を行い青色の布帛
を得た。 染料溶液 PALANIL BLUE R(BASF(株)製)
1.0%(owf) DISPER VG (明成化学(株)製) 1.0g/ CH3COOH PH4に調整 浴比1:30 染色された布帛は温度120℃、時間1分間の条
件で乾燥した。 次いで経、緯方向のそれぞれの糸条を緊張状態
すなわち低収縮糸のたるみを矯正する為に経方向
に0.8g/デニール、緯方向に0.6g/デニールの
張力を与えながら温度180℃、時間1分間の熱処
理を平野金属(株)製クリツプ付ピンテンターで実施
し経方向に0.05g/デニールの張力で巻きとつ
た。 次いで実施例1と同様の条件でポリエチレンテ
レフタレート2軸延伸フイルムと貼り合せ本発明
の積層体を得た。 得られた積層体は第1表あるいは第2表に示し
た特性をもつていた。 実施例 3 単糸繊度5デニール、全繊度125デニールのポ
リエチレンレフタレート繊維を用い経、緯方向に
それぞれ64本/インチ、50本/インチの密度の平
織物を製織する際、経方向に2本/3cm間隔に単
糸繊度1.5デニール、全繊度1000デニールの芳香
族ポリアミド繊維(実施例1で使用したもの)を
挿入し経糸方向に0.3g/デニールの張力をかけ
て布帛を得た。 該布帛を処理温度180℃、処理時間30秒、経方
向の張力0.3g/デニール、緯方向の張力0.2g/
デニールの条件で平野金属(株)製クリツプ付ピンテ
ンターで熱処理を施し経方向に0.05g/デニール
の張力で巻き取り処理布とした。 次いで実施例1と同様の条件でポリエチレンテ
レフタレート2軸延伸フイルムと貼り合せ本発明
の積層体を得た。 得られた積層体は第1表、あるいは第2表に示
した特性をもつていた。 比較例 1 実施例1で使用した布帛を通常の方法にて精
練、乾燥したあと処理温度140℃、時間1分間、
張力として経方向0.2g/デニール、緯方向0.1
g/デニールを与え、実施例1と同様の機械で熱
処理を施した以外は実施例1と同様の方法にて積
層体を得た。 比較例 2 実施例2における染色後の緊張熱処理条件を温
度220℃、時間30秒とした場合、布帛が破れ積層
体の作成が不可能であつた。 比較例 3 実施例2における染色後の緊張熱処理条件を温
度180℃、時間1分間、張力として経方向0.2g/
デニール、緯方向0.1g/デニールを与えた以外
は実施例2と同様の条件にて積層体を得た。 比較例 4 実施例3において熱処理を省略した以外はすべ
て同じ条件にて積層体を得た。
<Industrial Application Field> The present invention relates to a method for manufacturing a sail laminate used for sailboat sails, windsurfing sails, and the like. <Prior Art> Laminated bodies of fabric and film have recently been used as sailcloths for sailboats, windsurfs, etc. As a technique related to such a laminate, there is a ``sail cloth in which a fabric is laminated on at least one side of a biaxially stretched polyester film via a plastic polyester ether copolymer'' disclosed in Jikai No. 58-222847. Another technology is ``a laminate consisting of a plain woven fabric using polyester filament yarn in the warp and weft directions and a polyester biaxially stretched film bonded together with an adhesive mainly composed of polyurethane, and the elongation of the laminate is 5 cm per width. We offer "Sail Cloth" (Utility Model Application No. 187436/1983) characterized by a tensile strength of 3% or less under 18 kg conditions and a peel strength of 2 kg or more per 3 cm width. In addition, "sail cloth composed of a biaxially stretched polyester film and a mesh fabric,
``Sail cloth characterized by using virtually untwisted polyester fiber dyed multifilament yarn for part or all of the knitted fabric'' (Jitsukaiaki)
No. 60-125115) is disclosed. However, in the above technology, the fibers used as the base fabric are 100% thermoplastic fibers (e.g., polyester fibers), and the dyeing conditions and processing steps for the base fabric are generally known methods to create a sail lamination with the desired properties. You get a body. <Objective of the Invention> The present invention addresses the drawbacks that did not occur in such conventional sail laminates, namely, the dyeing process (e.g. scouring,
This invention relates to a manufacturing method for correcting the sagging of low-shrinkage fibers caused by the difference in shrinkage that occurs during wet heat and dry heat treatments during dyeing, finishing, etc., and the manufacturing method of the present invention allows for lower elongation than before. It is possible to provide a laminate for sails with high form stability and durability. <Structure of the Invention> That is, the present invention is a method for manufacturing a laminate for a sail as described in the claims, in which high strength and high modulus fibers (hereinafter referred to as high modulus fibers) are used.
is an aromatic polyamide fiber with a heat resistance of 210℃ or higher.
These include carbon fiber, glass fiber, high-strength polyethylene fiber, high-strength polyvinyl alcohol fiber, high-strength polyacrylonitrile fiber, and polyimide fiber. As aromatic polyamide fiber, poly-p-
Examples include phenylene terephthalamide fiber and poly-p-phenylene terephthalamide fiber copolymerized with 3-4' diaminodiphenyl ether. Examples of carbon fibers include acrylic carbon fibers obtained by sintering acrylic fibers and pitch carbon fibers obtained by sintering pitch. The heat resistance mentioned here refers to the deterioration of the basic physical properties of the fiber or the temperature at which the fiber melts.For example, poly-p-phenylene terephthalamide fiber copolymerized with 3-4' diaminodiphenyl ether (Teijin) Co., Ltd.), the temperature is approximately 500°C. The method of arranging the fibers into a fabric varies depending on the desired direction of low elongation (for example, the warp direction) and the form of the fabric. 3 fibers
After arranging the yarns in a regulated manner at intervals of 1 to 9 yarns per cm width, they are warped to become warps and woven in the usual manner. The dyeing and finishing process of a polyester fiber base fabric containing high modulus fibers is usually carried out by a known method, for example, in the order of a scouring process, a presetting process, a dyeing process, and a finishing process. The conditions (especially treatment temperature) normally used in these processing steps are such that the scouring step
Underwater treatment or steam treatment at 60~100℃, preset process is dry heat treatment at 160~200℃, dyeing process is
Underwater treatment at 120°C to 135°C or dry heat treatment at 180°C to 210°C (so-called thermosol dyeing), finishing process at 150°C to 200°C. When processed using the above-mentioned process, the shrinkage difference between high modulus fibers and polyether fibers is 2.5% to 20.5% after wet heat treatment at 135℃ and 2.5% to 2.5% after dry heat treatment at 210℃.
It is about 16.5%. Therefore, when the fabric is processed under these conditions, the high modulus fibers will sag due to the large shrinkage of the polyester fibers. Furthermore, the tension applied during weaving and weaving also causes sagging due to differences in elongation elastic properties of the fibers. When a laminate of base fabric and film that contains slack is applied to the laminate, for example, when a load of 60 pounds or 100 pounds is applied to the laminate, elongation is added based on the slack of the high modulus fibers, which is a characteristic of high modulus fibers. It becomes difficult to obtain low elongation properties. Therefore, in order to obtain a laminate with low elongation, it is necessary to set specific processing conditions. The heat treatment temperature is 50° below the melting point of polyester fiber.
℃~110℃ lower is required. If the temperature is 110°C or more lower than the melting point, the dimensional stability of the polyester fibers cannot be maintained even if the process is performed while applying tension, and the fibers return to their original length after the tension is released, making it impossible to obtain the effect of heat treatment. On the other hand, if it is 50° C. or more higher than the melting point, it is not suitable because there are disadvantages such as a decrease in the strength of the polyester fiber, yellowing, which reduces the quality of the product, and a marked decrease in the fastness of the dyed product. The heat treatment time is normally in the range of 15 seconds to 5 minutes under the conditions for heat treatment of polyester fiber fabrics. During heat treatment, a tension of 0.3 g or more per denier is applied in the weft direction to correct the sagging of the fibers due to the difference in shrinkage between the polyester fibers and the high modulus fibers that occurs during the dyeing process. Tension is 0.3
If it is less than g/denier, it is difficult to correct the sagging of the high modulus fiber. The machine that performs the heat treatment uses a tenter that is capable of applying tension in the warp and weft directions and can perform continuous treatment. In this case, it is desirable to use a clip-type tenter or a clip-type pin tenter in order to carry out the treatment while applying tension uniformly and effectively in the weft direction. It is desirable that the step of heat-treating the base fabric while applying tension is carried out immediately before bonding it to the film. After this treatment, if the base fabric is dyed under the conditions described above, the shrinkage difference between the polyester fiber and the high modulus fiber will be expressed again, and the high modulus fiber, which is a low shrinkage fiber, will become sagging, which will reduce the effect of the heat treatment. Decrease. When the fabric is left to stand after heat treatment and before bonding, it is necessary to maintain tension on the fabric so that the high modulus fibers do not sag again (battling). <Effects of the Invention> The laminate obtained by the method detailed above has the following effects. (1) The elongation in the target directions (warp, latitude, bias directions) is extremely low, and the change in elongation over time is also extremely low, so the sail cloth has high shape stability and durability, making it suitable for use in yachting and windsurfing. It shows stable high-speed running performance. (2) With improved strength, it can withstand long-term use (improved durability). <Examples> The present invention will be specifically explained below using examples. Evaluations used in Examples were conducted according to the following measurement method. Measurement method (1) Strength and elongation Using a tensile tester (manufactured by Toyo Goldwin Co., Ltd.), a sample with a width of 5 cm and a length of 30 cm was pulled under the conditions shown below until it broke, and the strength and elongation at that time were measured. . Measurements were made at three points each for warp, latitude, and bias. Measurement conditions (1) Specimen grip interval: 200mm (2) Tensile speed: 200mm/min (3) Chart speed: 200mm/min (2) Elongation under constant load Tensile testing machine (manufactured by Toyo Goldwin Co., Ltd.) A sample with a width of 5 cm and a length of 30 cm was pulled under a specified load (e.g., 40 pounds (LB), 60 pounds (LB), 100 pounds (LB), etc.) under the conditions shown below, and the elongation at that time was measured. . Measurements were made at three points each in the warp, latitude, and bias directions, and the average value is shown. Measurement conditions (1) Grasp interval of specimen: 200mm (2) Pulling speed: 200mm/min (3) Chart speed: 500mm/min (3) Durability test Household washing machine “Chikuma” manufactured by Mitsubishi Electric Manufacturing Co., Ltd. ,
Model CW-900A, bath ratio 1:100 (material to be measured)
The amount of water was 50% per 500g, and the clothes were washed on high heat for 90 minutes. Example 1 When weaving a plain woven fabric with a density of 110 fibers/inch and 96 fibers/inch in the warp and weft directions, respectively, using polyethylene terephthalate fibers with a single yarn fineness of 2.1 denier and a total fiber density of 75 denier, one fiber/fiber in the warp direction was used. A fabric in which aromatic polyamide fibers (polyparaphenylene terephthalamide fiber copolymerized with 3,4-diaminodiphenyl ether (manufactured by Teijin Ltd.)) with a single yarn fineness of 1.5 denier and a total fineness of 1000 denier are inserted at cm intervals. After scouring using a conventional method to remove the spinning oil and sizing paste, the product was dried at 120° C. for 1 minute. Next, 0.5g/denier in the warp direction of the fabric,
1 at 190℃ with a tension of 0.4g/denier in the latitudinal direction.
The tension heat treatment was carried out for 1 minute using a pin tenter with a clip manufactured by Hirano Metal Co., Ltd., and the fabric was wound up with a tension of 0.05 g/denier in the warp direction. On the other hand, 50μ thick polyethylene terephthalate 2
A polyurethane adhesive (Nitsuporan 5032 manufactured by Nippon Polyurethane Co., Ltd.) was applied to the axially stretched film using a comma doctor method in a layer of 30 μm in thickness, and then dried at 120° C. for 1 minute. Then, while bonding the coated film after drying to the fabric so that it joins with the fabric, heat and pressure treatment is performed at a surface temperature of 120°C, a pressure of 3.0 Kg/cm 2 , and a nip roller speed of 15 m/min to form the laminated layer of the present invention. I got a body. The obtained laminate had the properties shown in Table 1 or Table 2. Example 2 When weaving a plain fabric with a density of 55 fibers/inch and 50 fibers/inch in the warp and weft directions using polyethylene terephthalate fibers with a single yarn fineness of 3 denier and a total fineness of 150 denier, we A fabric in which aromatic polyamide fibers (same as in Example 1) having a single yarn fineness of 1.5 denier and a total fineness of 1000 denier were inserted at intervals of 1/2 cm was scoured and dried in a conventional manner. Next, a preset treatment was performed at a temperature of 180°C for 30 seconds. Next, using the dye solution shown below, dyeing was carried out at a temperature of 130° C. for 45 minutes to obtain a blue fabric. Dye solution PALANIL BLUE R (manufactured by BASF Corporation)
1.0% (owf) DISPER VG (manufactured by Meisei Chemical Co., Ltd.) 1.0 g/CH 3 COOH Adjusted to PH 4 Bath ratio 1:30 The dyed fabric was dried at a temperature of 120° C. for 1 minute. Next, each yarn in the warp and weft directions was put under tension, that is, in order to correct the slack of the low shrinkage yarn, the yarn was heated at 180°C for 1 hour while applying a tension of 0.8 g/denier in the warp direction and 0.6 g/denier in the weft direction. The film was heat-treated for 1 minute using a pin tenter with a clip manufactured by Hirano Metal Co., Ltd., and wound in the warp direction with a tension of 0.05 g/denier. Next, under the same conditions as in Example 1, a polyethylene terephthalate biaxially stretched film was bonded to obtain a laminate of the present invention. The obtained laminate had the properties shown in Table 1 or Table 2. Example 3 When weaving a plain weave fabric with a density of 64 fibers/inch and 50 fibers/inch in the warp and weft directions, respectively, using polyethylene phthalate fibers with a single yarn fineness of 5 denier and a total fineness of 125 denier, two fibers were used in the warp direction. Aromatic polyamide fibers (used in Example 1) having a single yarn fineness of 1.5 denier and a total fineness of 1000 denier were inserted at intervals of /3 cm, and a tension of 0.3 g/denier was applied in the warp direction to obtain a fabric. The fabric was treated at a temperature of 180°C, a treatment time of 30 seconds, a tension in the warp direction of 0.3 g/denier, and a tension in the weft direction of 0.2 g/denier.
It was heat-treated using a pin tenter with a clip manufactured by Hirano Metal Co., Ltd. under the conditions of denier, and wound into a treated cloth with a tension of 0.05 g/denier in the warp direction. Next, under the same conditions as in Example 1, a polyethylene terephthalate biaxially stretched film was bonded to obtain a laminate of the present invention. The obtained laminate had the characteristics shown in Table 1 or Table 2. Comparative Example 1 The fabric used in Example 1 was scoured and dried in a conventional manner, and then treated at a temperature of 140°C for 1 minute.
Tension: 0.2g/denier in longitudinal direction, 0.1 in latitudinal direction
A laminate was obtained in the same manner as in Example 1, except that g/denier was given and heat treatment was performed using the same machine as in Example 1. Comparative Example 2 When the tension heat treatment conditions after dyeing in Example 2 were set to a temperature of 220° C. and a time of 30 seconds, the fabric was torn and it was impossible to create a laminate. Comparative Example 3 The tension heat treatment conditions after dyeing in Example 2 were as follows: temperature: 180°C, time: 1 minute, tension: 0.2 g/long in the warp direction.
A laminate was obtained under the same conditions as in Example 2 except that the denier was 0.1 g/denier in the weft direction. Comparative Example 4 A laminate was obtained under all the same conditions as in Example 3 except that the heat treatment was omitted.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 基布にポリエステル2軸延伸フイルムを積層
してなるセール用積層体の製造方法において、ポ
リエステル繊維から成る基布の少なくとも一方向
に高強力高弾性率繊維を3cm巾当り1〜9本の密
度で配列せしめた布帛を配列方向に対しデニール
当り0.3g以上の張力下でポリエステル繊維の融
点より50℃〜110℃低い温度で乾燥処理すること
を特徴とするセール用積層体の製造方法。 2 高強力高弾性率繊維の引張強力が10g/デニ
ール以上、弾性率が20g/デニール以上であり耐
熱性が210℃以上である特許請求の範囲第1項に
記載のセール用積層体の製造方法。 3 乾熱処理を施す工程が基布とポリエステル2
軸延伸フイルムとを貼合せる工程前であることを
特徴とする特許請求の範囲第1項または第2項に
記載のセール用積層体の製造方法。
[Scope of Claims] 1. A method for producing a sail laminate comprising a base fabric laminated with a biaxially stretched polyester film, in which a base fabric made of polyester fibers is coated with high-strength, high-modulus fibers in at least one direction per 3 cm width. A laminate for a sail, characterized in that a fabric arranged at a density of 1 to 9 fibers is dried under a tension of 0.3 g or more per denier in the arrangement direction at a temperature 50°C to 110°C lower than the melting point of polyester fibers. manufacturing method. 2. The method for producing a sail laminate according to claim 1, wherein the high-strength, high-modulus fibers have a tensile strength of 10 g/denier or more, an elastic modulus of 20 g/denier or more, and a heat resistance of 210° C. or more. . 3 The process of applying dry heat treatment to the base fabric and polyester 2
3. The method for manufacturing a laminate for a sail according to claim 1 or 2, which is performed before the step of laminating an axially stretched film.
JP27928685A 1985-11-13 1985-12-13 Manufacture of laminate for sail Granted JPS62140842A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27928685A JPS62140842A (en) 1985-12-13 1985-12-13 Manufacture of laminate for sail
EP86308727A EP0222610A3 (en) 1985-11-13 1986-11-10 Laminate sheet material for sails and process for producing the same
KR860009554A KR870004827A (en) 1985-11-13 1986-11-12 Seaworthy laminate sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27928685A JPS62140842A (en) 1985-12-13 1985-12-13 Manufacture of laminate for sail

Publications (2)

Publication Number Publication Date
JPS62140842A JPS62140842A (en) 1987-06-24
JPH0416063B2 true JPH0416063B2 (en) 1992-03-19

Family

ID=17609048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27928685A Granted JPS62140842A (en) 1985-11-13 1985-12-13 Manufacture of laminate for sail

Country Status (1)

Country Link
JP (1) JPS62140842A (en)

Also Published As

Publication number Publication date
JPS62140842A (en) 1987-06-24

Similar Documents

Publication Publication Date Title
CA2091157C (en) Fabric material useful for wind-filling sporting goods
JPS59204942A (en) Fabric having elastic flat surface and production thereof
JPH0416063B2 (en)
EP0222610A2 (en) Laminate sheet material for sails and process for producing the same
JP3165275B2 (en) Waterproof fabric and manufacturing method thereof
CN114481402A (en) Production process of antistatic waterproof woven fabric
JPS62113547A (en) Laminate for sail
JPS61255844A (en) Laminate for sail
JP3012054B2 (en) Silky fabric manufacturing method
JPS59192767A (en) Production of fabric with low air permeability
JPS62243878A (en) Production of base cloth for yacht saling
JPS60185575A (en) Sleeve cloth for wind surfing
JPH0241475A (en) Base fabric for paraglider
JPS5930966A (en) Production of fabric having waterproofness and moisture permeability
JP4311814B2 (en) Stretch high density fabric
JPS59127789A (en) Ink ribbon
JPS61239043A (en) Polyamide fiber cloth
KR19990076033A (en) Water repellent high density fabric and method for producing the same.
JP2002201562A (en) Method for producing high density fabric with high waterproofness
JPH0414628B2 (en)
JPS61255854A (en) Laminate for sail
JP4026370B2 (en) Chest interlining dyeing method
JPH03152236A (en) Woven fabric for clothes
JPS59150169A (en) Production of low air permeable fabric
JPH04272250A (en) Light-resistant sail cloth