JPH04160105A - Production of magnetic powder for anisotropic bond magnet - Google Patents

Production of magnetic powder for anisotropic bond magnet

Info

Publication number
JPH04160105A
JPH04160105A JP2287528A JP28752890A JPH04160105A JP H04160105 A JPH04160105 A JP H04160105A JP 2287528 A JP2287528 A JP 2287528A JP 28752890 A JP28752890 A JP 28752890A JP H04160105 A JPH04160105 A JP H04160105A
Authority
JP
Japan
Prior art keywords
magnetic powder
alloy
anisotropic
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287528A
Other languages
Japanese (ja)
Inventor
Koji Sezaki
瀬崎 好司
Yasunori Matsunari
靖典 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2287528A priority Critical patent/JPH04160105A/en
Publication of JPH04160105A publication Critical patent/JPH04160105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetic powder for anisotropic bond magnet having high coercive force and residual magnetic flux density without complicated production process by pulverizing an alloy essentially comprising specified compsn. in a perfluorocarbon inert liquid by mechanical pulverization method to obtain a specified average particle size. CONSTITUTION:An alloy essentially comprising by atomic %, 10-30% R, 2-28% B, 65-82% M (R is one or more rare earth elements including Y and M is one or more elements of Fe, Co, and Ni) is prepared by arc melting method. This alloy is roughly pulverized and then further pulverized to 0. 5-50mum average particle size in a perfluorocarbon inert liquid by mechanical pulverization method such as a ball mill to obtain the objective magnetic powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR(Rはイツトリウムを含む希土類元素の少な
くとも1種)、ホウ素、M(MはFe、 Co。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to R (R is at least one rare earth element including yttrium), boron, M (M is Fe, Co.

Niの少なくとも1種以上)を主成分とし、優れた磁気
特性を有する異方性ボンド磁石用磁粉の製造方法に関す
る。
The present invention relates to a method for producing magnetic powder for anisotropic bonded magnets, which contains at least one kind of Ni) as a main component and has excellent magnetic properties.

〔従来の技術〕[Conventional technology]

希土類ボンド磁石用の磁粉は、これまで大別して、Sm
−Co系とNd−Fe−B系の磁粉が提案されているが
、前者は全希土類金属中敷原子%しか含まれていないサ
マリウム(Sm)を使用すること、さらに原料供給が不
安定なコバルト(CO)を多量に含んでいることから資
源上の問題を抱えている。後者は近年精力的に研究され
ている永久磁石材料であり、高価なCoを含まず、資源
的にもSmより豊富なNdを主体とした永久磁石材料で
あり、注目されている。これまで実用化されているNd
−Fe−B基磁石粉に関する製造方法は、特開昭59−
64739号公報に代表されるように、溶融合金を急冷
薄帯製造装置によってアモルファスリボンにし、その後
熱処理、粉砕することによって磁粉を得る方法である。
Until now, magnetic powder for rare earth bonded magnets has been roughly divided into Sm
-Co-based and Nd-Fe-B-based magnetic powders have been proposed, but the former requires the use of samarium (Sm), which only contains atomic percent of the total rare earth metal insole, and cobalt, whose raw material supply is unstable. Because it contains a large amount of (CO), it has resource problems. The latter is a permanent magnet material that has been actively researched in recent years, and is attracting attention because it does not contain expensive Co and is mainly composed of Nd, which is richer in resources than Sm. Nd that has been put into practical use so far
-The manufacturing method for Fe-B-based magnet powder is disclosed in JP-A-59-
As typified by Japanese Patent No. 64739, this is a method of obtaining magnetic powder by turning a molten alloy into an amorphous ribbon using a quenching ribbon production device, followed by heat treatment and pulverization.

さらにこの方法による異方性磁石粉の製造方法は特開昭
60−100402号公報に開示されているように上記
の等方性磁粉をホットプレスによって成形体とした後に
、高温下で塑性変形させることによって異方性のバルク
磁石を得、その後粉砕することによって異方性のボンド
磁石用磁粉を得ている。
Furthermore, as disclosed in JP-A-60-100402, the method for producing anisotropic magnetic powder by this method involves forming the above-mentioned isotropic magnetic powder into a compact by hot pressing, and then plastically deforming the powder at a high temperature. An anisotropic bulk magnet is obtained by this, and anisotropic magnetic powder for bonded magnets is obtained by pulverizing the magnet.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の急冷リボンによる方法は異方性の
磁粉が得られるものの等方性の磁石をホットプレスした
後、高温下で据込み加工をする必要があり、複雑な工程
を必要とするばかりでなく、品質的にばらつきが大きい
という問題を有している。また、粉末冶金法による異方
性焼結磁石を粉砕して磁粉を得る方法はこれまでのとこ
ろ粉砕によって大幅に保磁力(iHc)が低下し、実用
に耐えないことが判明している。これらの急冷リボンに
よる方法及び焼結磁石を粉砕する方法に代わって、磁石
合金を微粉末化することによって異方性の磁粉を得る方
法がこれまで種々提案されている。この方法は溶解・鋳
造した合金を粉砕するだけで異方性の磁粉がえられるの
で工程が簡略化されコスト的に有利な方法であると考え
られる。しかしながら、これまでの報告では鋳造合金を
微粉末化する際に急激な酸化を防止するために不活性ガ
ス中若しくは有機溶剤中で粉砕しているが、この方法に
よって得られた磁粉は保磁力(iHc)か低く、ボンド
磁石用磁粉として必要な保磁力(iHc)を発揮できる
程度の充分なレベルに達していない。本発明者らは上記
の鋳造合金の粉砕過程における有機溶剤の性質に着目し
、鋳造合金の粉砕時に双極子モーメントが1.0デバイ
以下の有機溶剤、例えばヘキサンもしくはヘプタンを用
いてボールミル等により機械的粉砕を行い、このことに
よって高い保磁力を有する異方性ボンド磁石用磁粉得る
という内容の製造方法を既に提案している。しかしなが
ら、この方法においては高い保磁力が得られるものの、
磁場中て配向させた時の磁粉の配向度か高くならず、低
い残留磁束密度の異方性ボンド磁石しか得られない。一
方、粉末冶金法による焼結磁石の製造方法に関しては、
磁石合金の粉砕工程において用いる溶媒として、含存酸
素量がQ、1重量%であるクロロフルオロカーボンを用
いる方法(特開昭61−291901号公報)や、更に
は、クロロフルオロカーボンとヘキサンまたはトルエン
との混合溶媒を用いる方法(特開平2−153005号
公報参照)が開示されている。しかしなからこれらの方
法はいずれも地球上のオゾン層を破壊する物質であるク
ロロフルオロカーボンを含んでおり、近年その使用が大
幅に制限されつつある現状を鑑みれば工業的に青用な粉
砕溶媒であるとは言いがたい。
However, although the method using the quenched ribbon described above can obtain anisotropic magnetic powder, it requires upsetting at high temperatures after hot pressing an isotropic magnet, which only requires a complicated process. However, there is a problem in that there are large variations in quality. Furthermore, it has been found that the method of obtaining magnetic powder by pulverizing an anisotropic sintered magnet using a powder metallurgy method is not practical due to a significant decrease in coercive force (iHc) due to pulverization. Instead of these methods using rapidly cooled ribbons and methods of pulverizing sintered magnets, various methods have been proposed to obtain anisotropic magnetic powder by pulverizing a magnet alloy. In this method, anisotropic magnetic powder can be obtained simply by pulverizing a melted and cast alloy, so the process is simplified and it is considered to be an advantageous method in terms of cost. However, in previous reports, cast alloys are pulverized in an inert gas or organic solvent to prevent rapid oxidation, but the magnetic powder obtained by this method has a coercive force ( iHc) is low, and has not reached a sufficient level to exhibit the coercive force (iHc) required as magnetic powder for bonded magnets. The present inventors focused on the properties of the organic solvent used in the process of pulverizing the cast alloy, and used an organic solvent with a dipole moment of 1.0 debye or less, such as hexane or heptane, to crush the cast alloy using a ball mill or the like. A manufacturing method has already been proposed in which magnetic powder for anisotropic bonded magnets having a high coercive force is obtained by performing targeted pulverization. However, although a high coercive force can be obtained with this method,
The degree of orientation of magnetic particles when oriented in a magnetic field does not increase, and only anisotropic bonded magnets with low residual magnetic flux density can be obtained. On the other hand, regarding the manufacturing method of sintered magnets using powder metallurgy,
There is a method using chlorofluorocarbon having an oxygen content of Q, 1% by weight as a solvent used in the grinding process of the magnetic alloy (Japanese Patent Application Laid-Open No. 61-291901), and a method using chlorofluorocarbon and hexane or toluene. A method using a mixed solvent (see JP-A-2-153005) has been disclosed. However, all of these methods contain chlorofluorocarbon, a substance that destroys the earth's ozone layer, and in view of the fact that its use has been severely restricted in recent years, it is difficult to find an industrially suitable crushing solvent for blue. It's hard to say that there is.

そこで、本発明者らはこれらの従来技術の欠点を改良す
るために合金の粉砕時の溶媒に関してさらに鋭意検討し
た結果、本発明の完成に至ったものである。
Therefore, the inventors of the present invention conducted further intensive studies regarding the solvent used in grinding the alloy in order to improve these drawbacks of the prior art, and as a result, the present invention was completed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の様な従来技術が有する問題を解決し、
地球上のオゾン層を破壊することもなく、かつ高い磁気
特性を有する異方性ボンド磁石用磁粉の製造方法を提供
することを目的とする。
The present invention solves the problems of the prior art as described above,
It is an object of the present invention to provide a method for producing magnetic powder for anisotropic bonded magnets that does not destroy the earth's ozone layer and has high magnetic properties.

即ち、本発明はR(但し、Rはイツトリウムを含む希土
類元素の少なくとも1種):lO〜30原子%、ホウ素
:2〜28原子%、M(但し、MはFe。
That is, in the present invention, R (wherein R is at least one rare earth element including yttrium): 1O to 30 at%, boron: 2 to 28 at%, M (however, M is Fe.

Co、 Niの少なくとも1種以上):65〜82原子
%を主成分とする合金をバーフルオロカーボン不活性液
体中で機械的粉砕法によって平均粒子径が0.5〜50
μmとなるように粉砕することを特徴とする異方性ボン
ド磁石用磁粉の製造方法を内容とする。
At least one of Co, Ni): 65 to 82 atomic % of the alloy is mechanically pulverized in a fluorocarbon inert liquid to an average particle size of 0.5 to 50.
The content is a method for producing magnetic powder for anisotropic bonded magnets, which is characterized by pulverizing magnetic powder to a particle size of μm.

本発明における希土類磁石(R)はイツトリウムを含む
希土類元素の1種以上であって、ネオジウム(Nd)、
プラセオジウム(Pr)、 ランタン(La)。
The rare earth magnet (R) in the present invention is one or more rare earth elements including yttrium, neodymium (Nd),
Praseodymium (Pr), Lanthanum (La).

セリウム(Ce)、サマリウム(Sm)、ガドリニウム
(Gd)、プロメジウム(Pm)、ユーロピウム(Eu
)、 ルテチウム(lu)、テルビウム(Tb)、 ジ
スプロシウム(Dy)、ホルミウム(Ha)などか例示
される。イツトリウム(Y)は希土類元素ではないが本
発明ては他の希土類元素と同様に扱える。希土類元素(
R)の含有量がIO原子%以下であると、保磁力(iH
c)が低くなり、30原子%以上であると残留磁束密度
(Br)が低くなり高性能磁石となり得ない。また、ホ
ウ素の含有量が2原子%未満であると保磁力か低くなり
、28原子%以上であると残留磁束密度か低くなる。本
発明における最も好ましい希土類元素はネオジウム(N
d)であり、より高い保磁力を得るためにはNdの一部
をジスプロシウム(Dy)、テルビウム(Tb)のいず
れかもしくは両方で置換することが好ましい。
Cerium (Ce), samarium (Sm), gadolinium (Gd), promedium (Pm), europium (Eu)
), lutetium (lu), terbium (Tb), dysprosium (Dy), holmium (Ha), etc. Although yttrium (Y) is not a rare earth element, it can be treated in the same manner as other rare earth elements in the present invention. Rare earth elements (
When the content of R) is less than IO atomic %, the coercive force (iH
c) becomes low, and if it is 30 atomic % or more, the residual magnetic flux density (Br) becomes low and a high-performance magnet cannot be obtained. Further, if the boron content is less than 2 atomic %, the coercive force will be low, and if it is 28 atomic % or more, the residual magnetic flux density will be low. The most preferred rare earth element in the present invention is neodymium (N
d), and in order to obtain a higher coercive force, it is preferable to replace a portion of Nd with either or both of dysprosium (Dy) and terbium (Tb).

本発明で用いるバーフルオロカーボン不活性液体は一般
式C@F2e+aで表される直鎖状のカーボン骨格を有
しカーボンの側鎖がフッ素で置換された構造の液体であ
り、住人スリーエム■社製の〈フロリナート〉が例示で
きる。バーフルオロカーボン不活性液体は不燃性であり
、完全に不活性であるため金属を侵さず、液体中に含ま
れる水分量、酸素量ともに極めて少ないため、酸化され
やすい本発明の磁石合金の粉砕には好適な粉砕溶媒であ
る。鋳造合金を粉砕する際に上記のようなバーフルオロ
カーボン不活性液体を用いると磁粉の磁気特性が向上す
る理由についてはまだ明確でないが、前記した溶媒中の
含有酸素量及び水分量が極めて少ないことによって粉砕
時の磁粉表面の酸化が抑制されること、さらにはバーフ
ルオロカーボンが持つ性質である低表面張力によって磁
粉の粉砕後の凝集か抑えられ粉砕後の粒度分布かシャー
プになっているためであると考えられる。
The barfluorocarbon inert liquid used in the present invention is a liquid with a linear carbon skeleton represented by the general formula C@F2e+a, and the carbon side chain is substituted with fluorine. An example is <Florinat>. The barfluorocarbon inert liquid is nonflammable and completely inert, so it does not attack metals, and the liquid contains extremely low amounts of water and oxygen, so it is suitable for grinding the magnetic alloy of the present invention, which is easily oxidized. It is a suitable grinding solvent. Although it is not yet clear why the magnetic properties of the magnetic powder are improved when using a barfluorocarbon inert liquid such as the one described above when grinding a cast alloy, it is possible that the magnetic properties of the magnetic powder are improved due to the extremely small amount of oxygen and water contained in the solvent. This is because oxidation of the surface of the magnetic powder during crushing is suppressed, and the low surface tension, which is a property of barfluorocarbon, suppresses agglomeration of the magnetic powder after crushing, resulting in a sharp particle size distribution after crushing. Conceivable.

本発明における鋳造合金の粉砕は通常の機械的粉砕法を
用いることができる。粉砕効率を向上させるためには高
エネルギーボールミルを用いることが好ましい。
The cast alloy in the present invention can be pulverized using a conventional mechanical pulverization method. It is preferable to use a high-energy ball mill to improve grinding efficiency.

本発明において、粉砕磁粉の平均粒子径が0.5μm以
下であるとポンド磁石用磁粉としての取扱が困難になり
、かつポンド磁石作製時に酸化されやすくなり実用的で
ない。また平均粒子径が50μm以上であると十分な保
磁力が得られない。より好ましい磁粉の平均粒子径は1
〜20μmである。
In the present invention, if the average particle diameter of the crushed magnetic powder is 0.5 μm or less, it will be difficult to handle as magnetic powder for pound magnets, and it will be easily oxidized during the production of pound magnets, making it impractical. Moreover, if the average particle diameter is 50 μm or more, sufficient coercive force cannot be obtained. A more preferable average particle diameter of magnetic powder is 1
~20 μm.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するか、本発明はこれ
らにより何ら制限されるものではない。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples, but the present invention is not limited to these in any way.

実施例1 出発原料としてNd:8原子%、Dyニア原子%、Fe
 : 77原子%、B:8原子%の組成に調製した合金
をアーク溶解によって作製した。得られた合金をスタン
プミルによって50〜500μmに粗粉砕し、住人スリ
ーエム■社製のバーフルオロカーボン不活性液体である
「フロリナート(FC−72) Jとともにボールミル
によって90分間粉砕を行った。微粉砕された磁粉の平
均粒子径は3.43μmであった。
Example 1 As starting materials Nd: 8 atomic%, Dy near atomic%, Fe
An alloy having a composition of 77 atomic % B and 8 atomic % B was produced by arc melting. The obtained alloy was coarsely pulverized to 50 to 500 μm using a stamp mill, and then pulverized for 90 minutes using a ball mill together with Fluorinert (FC-72) J, a bar fluorocarbon inert liquid manufactured by Jushima 3M ■. The average particle diameter of the magnetic powder was 3.43 μm.

その後磁粉含率が97重量%となるようにエポキシ樹脂
を混合し、ポンド磁石用混合物を得た。続いて、20k
Oeの磁場中でこれらの混合物をプレス成形し、本発明
に係わる異方性ポンド磁石を得た。
Thereafter, an epoxy resin was mixed so that the magnetic powder content was 97% by weight to obtain a mixture for pound magnets. Next, 20k
These mixtures were press-molded in a magnetic field of Oe to obtain an anisotropic pound magnet according to the present invention.

得られたポンド磁石の磁気特性を第1表に示す。The magnetic properties of the obtained pound magnet are shown in Table 1.

比較例1.2 粉砕溶媒をヘキサンとエタノールを用いる以外は実施例
1と同様にしてボンド磁石用磁粉を得た。
Comparative Example 1.2 Magnetic powder for a bonded magnet was obtained in the same manner as in Example 1 except that hexane and ethanol were used as the grinding solvent.

得られた微粉砕磁粉の平均粒子径はそれぞれ4.23μ
m、2.19μmであった。これらを用いて実施例1と
同様にして異方性ポンド磁石を作製したところ、第1表
に示す結果となった。
The average particle diameter of the obtained finely pulverized magnetic powder was 4.23μ.
m, 2.19 μm. When an anisotropic pound magnet was produced using these in the same manner as in Example 1, the results are shown in Table 1.

第1表に示した実施例1のデータに示されるように本発
明のごとく粉砕溶媒としてバーフルオロカーボン不活性
液体を用いることによって保磁力(iHc)を向上させ
ることができると同時に配向度の向上による残留磁束密
度(Br)の向上も達成できることがわかった。これら
に対して従来技術であるヘキサンを粉砕溶媒に用いた場
合(比較例1)、得られるボンド磁石は保磁力は高いも
のの残留磁束密度が不充分であり、またエタノールの粉
砕溶媒を用いた場合(比較例2)に得られるボンド磁石
は、残留磁束密度は高いものの保磁力が不充分である。
As shown in the data of Example 1 shown in Table 1, coercive force (iHc) can be improved by using a barfluorocarbon inert liquid as a grinding solvent as in the present invention, and at the same time, the degree of orientation can be improved. It has been found that an improvement in residual magnetic flux density (Br) can also be achieved. On the other hand, when hexane, which is a conventional technique, was used as the grinding solvent (Comparative Example 1), the resulting bonded magnet had a high coercive force but insufficient residual magnetic flux density, and when ethanol was used as the grinding solvent, The bonded magnet obtained in Comparative Example 2 has a high residual magnetic flux density but an insufficient coercive force.

このように比較例1.2で示された磁粉は、いずれも総
合的な磁気特性においては低しルベルのものにしかなら
なかった。
As described above, all of the magnetic powders shown in Comparative Examples 1 and 2 had poor overall magnetic properties, only those of Lebel.

第1表 〔発明の効果〕 以上、詳述したように本発明によれば高い保磁力を有し
、かつ高い残留磁束密度を有する異方性ボンド磁石用磁
粉を作製することが可能である。
Table 1 [Effects of the Invention] As detailed above, according to the present invention, it is possible to produce magnetic powder for an anisotropic bonded magnet having a high coercive force and a high residual magnetic flux density.

そして、本発明は特定の組成を主成分とする合金をバー
フルオロカーボン不活性液体中で機械的粉砕法によって
平均粒子径が0.5〜50μmとなるように粉砕するだ
けで得ることができるので、製造工程も複雑化すること
はなく、したがって当該磁粉を用いた異方性ポンド磁石
を良好な生産性をもって提供することができる。
The present invention can be obtained by simply pulverizing an alloy having a specific composition as a main component in a barfluorocarbon inert liquid using a mechanical pulverization method so that the average particle size is 0.5 to 50 μm. The manufacturing process is not complicated, and therefore an anisotropic pound magnet using the magnetic powder can be provided with good productivity.

Claims (1)

【特許請求の範囲】[Claims] (1)R(但し、Rはイットリウムを含む希土類元素の
少なくとも1種):10〜30原子%、ホウ素:2〜2
8原子%、M(但し、MはFe,Co,Niの少なくと
も1種以上):65〜82原子%を主成分とする合金を
バーフルオロカーボン不活性液体中で機械的粉砕法によ
って平均粒子径が0.5〜50μmとなるように粉砕す
ることを特徴とする異方性ボンド磁石用磁粉の製造方法
(1) R (where R is at least one rare earth element including yttrium): 10 to 30 atomic%, boron: 2 to 2
8 at%, M (where M is at least one of Fe, Co, and Ni): An alloy whose main component is 65 to 82 at% is milled in a barfluorocarbon inert liquid by mechanical pulverization to reduce the average particle size. A method for producing magnetic powder for an anisotropic bonded magnet, which comprises pulverizing magnetic powder to a particle size of 0.5 to 50 μm.
JP2287528A 1990-10-24 1990-10-24 Production of magnetic powder for anisotropic bond magnet Pending JPH04160105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287528A JPH04160105A (en) 1990-10-24 1990-10-24 Production of magnetic powder for anisotropic bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287528A JPH04160105A (en) 1990-10-24 1990-10-24 Production of magnetic powder for anisotropic bond magnet

Publications (1)

Publication Number Publication Date
JPH04160105A true JPH04160105A (en) 1992-06-03

Family

ID=17718507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287528A Pending JPH04160105A (en) 1990-10-24 1990-10-24 Production of magnetic powder for anisotropic bond magnet

Country Status (1)

Country Link
JP (1) JPH04160105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
US6402066B1 (en) 1999-03-19 2002-06-11 Cabot Corporation Method of making niobium and other metal powders
AU768524B2 (en) * 1999-03-19 2003-12-18 Cabot Corporation Making niobium and other metal powders by milling
JP2004500480A (en) * 1999-03-19 2004-01-08 キャボット コーポレイション Production of niobium and other metal powders by grinding
US6706240B2 (en) 1999-03-19 2004-03-16 Cabot Corporation Method of making niobium and other metal powders
US7156893B2 (en) 1999-03-19 2007-01-02 Cabot Corporation Method of making niobium and other metal powders
CN100381234C (en) * 1999-03-19 2008-04-16 卡伯特公司 Making niobium and other metal powders by milling

Similar Documents

Publication Publication Date Title
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
EP0626703A2 (en) Magnetically anisotropic spherical powder
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH0320046B2 (en)
JPH04160105A (en) Production of magnetic powder for anisotropic bond magnet
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPS60159152A (en) Permanent magnet alloy
JP3037917B2 (en) Radial anisotropic bonded magnet
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPH04116101A (en) Magnetic powder for high-coercive-force anisotropic bond magnet and its production
JPH0467324B2 (en)
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
Trout Permanent Magnets based on the Lanthanides
JPH04342103A (en) Manufacture of magnetic powder for anisotropic bonded magnet use
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH04340205A (en) Magnetic particle for anisotropic bonded magnet and manufacture thereof
JPH04318152A (en) Rare earth magnetic material and its manufacture
JPH04116102A (en) Magnetic powder for anisotropic bond magnet and its production
JPH04159701A (en) Production of anisotropic bond magnet magnetic powder
JPH04342102A (en) Manufacture of anisotropic bonded magnet
JPS63115307A (en) Manufacture of rare-earth magnet