JPH04155986A - Semiconductor distribution feedback type laser device - Google Patents

Semiconductor distribution feedback type laser device

Info

Publication number
JPH04155986A
JPH04155986A JP28269890A JP28269890A JPH04155986A JP H04155986 A JPH04155986 A JP H04155986A JP 28269890 A JP28269890 A JP 28269890A JP 28269890 A JP28269890 A JP 28269890A JP H04155986 A JPH04155986 A JP H04155986A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
laser device
grown
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28269890A
Other languages
Japanese (ja)
Inventor
Kunio Tada
多田 邦雄
Yoshiaki Nakano
義昭 中野
Takeshi Inoue
武史 井上
Takeshi Ra
毅 羅
Takeshi Irita
入田 丈司
Shinichi Nakajima
眞一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP28269890A priority Critical patent/JPH04155986A/en
Publication of JPH04155986A publication Critical patent/JPH04155986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form gain regions and absorptive regions alternately so as to get a large intermode gain by providing light absorbing layer at each apex of a semiconductor layer. CONSTITUTION:Each layer of double hetero junction structure is epitaxially grown separately in two stages. In the first stage, a clad layer 3, a semiconductor layer 4, a light absorbing layer 3 are grown on a substrate 1. Next, by interfering exposure method and chemical etching, irregularities equivalent to the diffraction grating 256nm in cycle are marked at the light absorbing layer 13 and the semiconductor layer 4. In the second stage, a shock absorbing layer 6 is grown on the light absorbing layer 13 and the semiconductor layer 4, and further an active layer 7, a clad layer 8, and a contact layer 9 are grown in order continuously to complete double hetero structure. Next, an SiO2 insulating layer 12 is stacked on the top of the contact layer 9 to form a stripe-shaped window, for example, 10mum in width, and then electrode layers 11 and 10 are deposited. Furthermore, this is cleaved to complete individual semiconductor laser elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気光変換素子として利用する半導体分布帰還
型レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor distributed feedback laser device used as an electro-optical conversion element.

本発明は、長距離大容量光通信装置、光情報処理装置、
光記録装置、光応用計測装置、その他光電子装置の光源
として利用するに適する。
The present invention relates to a long-distance large-capacity optical communication device, an optical information processing device,
It is suitable for use as a light source for optical recording devices, optical application measurement devices, and other optoelectronic devices.

〔概 要〕 、 本発明は、回折格子に相応する凹凸形状が設けられた半
導体層に緩衝層および活性層を成長させ、活性層に周期
的な厚みの変化を設けた半導体分布帰還型レーザ装置に
おいて、 半導体層の各頂部に光吸収層を設けることにより、 利得領域と吸収領域とを交互に形成して大きなモード間
利得差を得るものである。
[Overview] The present invention provides a semiconductor distributed feedback laser device in which a buffer layer and an active layer are grown on a semiconductor layer provided with an uneven shape corresponding to a diffraction grating, and the active layer is provided with periodic thickness changes. By providing a light absorption layer on each top of the semiconductor layer, gain regions and absorption regions are alternately formed to obtain a large gain difference between modes.

〔従来の技術〕[Conventional technology]

活性層の近傍に設けた回折格子により活性層に光の分布
帰還を施して誘導放出光を発生させる半導体分布帰還型
レーザ装置は、一般に、比較的簡単な構成により優れた
発振スペクトル特性の誘導放出光が得られるので、従来
から幾多の研究開発が進められ、長距離大容量光通信、
光情報処理および記録、光応用計測などに用いる好適な
光源装置としてその有用性が期待されている。
Semiconductor distributed feedback laser devices, which generate stimulated emission light by performing distributed feedback of light to the active layer using a diffraction grating provided near the active layer, generally have a relatively simple configuration and generate stimulated emission with excellent oscillation spectrum characteristics. Since light can be obtained, a lot of research and development has been carried out in the past, and long-distance, high-capacity optical communication,
It is expected to be useful as a light source device suitable for use in optical information processing and recording, optical applied measurement, and the like.

このような半導体分布帰還型レーザ装置では、活性層を
透明なペテロ接合半導体層などにより囲み、効率よく誘
導放出光を発生させる光導波路構造が採られている。特
に、活性層にごく近接した透明な導波路層の活性層から
遠い側の界面に例えば三角波状の断面形状をもつ回折格
子を形成し、導波路屈折率を周期的に変化させることに
より光分布帰還を施す方向の研究開発が専ら進められて
いる。
Such a semiconductor distributed feedback laser device employs an optical waveguide structure in which the active layer is surrounded by a transparent petrojunction semiconductor layer or the like to efficiently generate stimulated emission light. In particular, by forming a diffraction grating with, for example, a triangular wave cross-section on the interface of a transparent waveguide layer in close proximity to the active layer on the side far from the active layer, and periodically changing the waveguide refractive index, light distribution is achieved. Research and development toward repatriation is currently underway.

しかし、このような屈折率結合による光分布帰還におい
ては、先導波路層の層厚変化の周期に対応して反射する
ブラッグ波長の光に対して、光位相についての適正な帰
還が行われない。このため、安定なレーザ発振が得られ
ず、ブラッグ波長から上下に対称に離隔した二つの波長
の縦モード発振が同時に生じる可能性が高い。また、こ
のような二つの波長の縦モード発振のうちの一方のみが
生じる場合にも、二つの波長のうちのいずれの波長の縦
モード発振を行わせるかをあらかじめ選定することが困
難であるため、発振波長設定の精度が著しく損なわれる
ことになる。
However, in such optical distribution feedback using refractive index coupling, appropriate feedback regarding the optical phase is not performed for light having a Bragg wavelength that is reflected in accordance with the cycle of layer thickness change of the leading waveguide layer. For this reason, stable laser oscillation cannot be obtained, and there is a high possibility that longitudinal mode oscillations of two wavelengths symmetrically spaced above and below the Bragg wavelength will occur simultaneously. Furthermore, even when only one of these two wavelengths of longitudinal mode oscillation occurs, it is difficult to select in advance which of the two wavelengths to cause longitudinal mode oscillation. , the accuracy of setting the oscillation wavelength will be significantly impaired.

すなわち、光導波路層における屈折率の周期的摂動に基
づく屈折率結合を利用した光分布帰還では、原理的に、
二波長縦モード発振縮重の問題が生じてしまい、これを
避けることは困難である。
In other words, in optical distributed feedback using refractive index coupling based on periodic perturbation of the refractive index in the optical waveguide layer, in principle,
The problem of dual-wavelength longitudinal mode oscillation degeneracy arises, and it is difficult to avoid this problem.

もちろん、このような困難を解決する手段も従来から種
々検討されている。しかし、例えば回折格子のほぼ中央
で4分の1波長分だけ位相シフトさせる構造など、いず
れも、レーザ装置の構造を複雑化し、縮重解消のための
みの製造工程を付加する必要があり、その上、レーザ素
子端面に反射防止膜を形成する必要があった。
Of course, various means for solving such difficulties have been studied in the past. However, in any case, for example, a structure in which the phase is shifted by a quarter wavelength at approximately the center of the diffraction grating, the structure of the laser device becomes complicated, and a manufacturing process just to eliminate degeneracy needs to be added. First, it was necessary to form an antireflection film on the end face of the laser element.

一方、上述のように屈折率結合により光分布帰還を行う
とブラッグ波長領域に発振阻止帯域が生じるが、利得係
数の周期的摂動に基づく利得結合により光分布帰還を行
うとすれば、発振阻止帯域は現れず完全に単一波長の縦
モード発振が得られるはずであるとの原理的な理論が、 コゲルニック化、「分布帰還レーザの結合波理論」、ア
プライド・フィツクス、1972年、第43巻、第23
27頁ないし第2335頁(”Coupled−Wav
eTheory of  Distributed  
Feedback  La5ers”。
On the other hand, if distributed optical feedback is performed using refractive index coupling as described above, an oscillation stop band will occur in the Bragg wavelength region, but if distributed optical feedback is performed using gain coupling based on periodic perturbations of the gain coefficient, then the oscillation stop band will be generated in the Bragg wavelength region. The fundamental theory that a completely single-wavelength longitudinal mode oscillation should be obtained without the appearance of any 23rd
Pages 27 to 2335 (“Coupled-Wav
eTheory of Distributed
Feedback La5ers”.

Journal of  Applied  Phys
ics、 1972 Vol、43゜pp 2327−
2335) に示されている。しかし、コゲルニックの論文はあくま
でも原理的な検討結果であって、具体的な構造について
は示されていない。
Journal of Applied Phys.
ics, 1972 Vol, 43°pp 2327-
2335). However, Kogelnick's paper is just the result of a theoretical study, and does not provide any concrete structure.

本願発明者の一部は、上記コゲルニック化の基礎理論を
適用した新しい半導体レーザ装置を発明し、以下の特許
出願をした。
Some of the inventors of the present invention invented a new semiconductor laser device applying the above-mentioned basic theory of cogelnication, and filed the following patent application.

特願昭63−189593 、昭和63年7月30日出
願特願平1−168729、平成1年6月30日出願特
願平1−185001〜185005、同年7月18日
出願。
Japanese Patent Application No. 1-189593, filed on July 30, 1988, Japanese Patent Application No. 1-168729, filed on June 30, 1999, Japanese Patent Application No. 1-185001 to 185005, filed on July 18 of the same year.

これらの特許出願のそれぞれの明細書および図面に示し
た構造により、利得結合による光分布帰還を実現できた
The structures shown in the specifications and drawings of each of these patent applications made it possible to realize distributed light feedback by gain coupling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述の特許出願で示した構造は、コゲルニック
の理論のうち、利得係数または吸収係数のどちらかに周
期的な変化をもたせたものであった。
However, the structure shown in the above-mentioned patent application was based on Kogelnick's theory in which either the gain coefficient or the absorption coefficient was changed periodically.

コゲルニックの論文にはさらに、利得係数の平均値より
も利得係数の摂動量が大きくなる場合、すなわち利得領
域と吸収領域とが交互に存在するような場合についても
検討があり、大きなモード間利得差が得られるなどの利
点があることが示されている。
Kogelnick's paper also discusses the case where the amount of perturbation of the gain coefficient is larger than the average value of the gain coefficient, that is, the case where gain regions and absorption regions exist alternately, and there is a large gain difference between modes. It has been shown that there are advantages such as the ability to obtain

本発明は、このような、利得領域と吸収領域とが交互に
存在する構造の半導体分布帰還型レーザ装置を提供する
ことを目的とする。
An object of the present invention is to provide such a semiconductor distributed feedback laser device having a structure in which gain regions and absorption regions alternate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体分布帰還型レーザ装置は、回折格子の周
期に相応する凹凸形状が印刻された半導体層と、この半
導体層に接して前記凹凸形状に相応する周期的な形状を
上面に残して形成された半導体緩衝層と、この緩衝層に
接して形成され前記周期的な形状に相応する厚みの変化
が設けられた活性層とを備えた半導体分布帰還型レーザ
装置において、前記凹凸形状の各頂部に光吸収層を備え
たことを特徴とする。
The semiconductor distributed feedback laser device of the present invention is formed by forming a semiconductor layer having a concavo-convex shape imprinted thereon corresponding to the period of a diffraction grating, and a periodic shape corresponding to the concave-convex shape remaining in contact with the semiconductor layer on the upper surface. In the semiconductor distributed feedback laser device, the semiconductor distributed feedback laser device is provided with a semiconductor buffer layer formed in the same manner as described above, and an active layer formed in contact with the buffer layer and provided with a thickness change corresponding to the periodic shape. It is characterized by having a light absorption layer.

本明細書において「上」とは、製造時における結晶成長
の方向と同じ方向をいう。また、「下」とはその逆の方
向をいう。
In this specification, "upper" refers to the same direction as the direction of crystal growth during manufacturing. Moreover, "down" refers to the opposite direction.

このような半導体分布帰還型レーザ装置を製造するには
、光吸収層を含む層の表面に回折格子に相応する凹凸形
状を印刻し、この層の表面にその凹凸形状の影響を残し
ながら緩衝層を成長させ、この緩衝層の表面に現れる周
期的な凹凸が回折格子となり、かつその凹凸の凹部を埋
めるように活性層を成長させる。
To manufacture such a semiconductor distributed feedback laser device, an uneven shape corresponding to a diffraction grating is imprinted on the surface of a layer including a light absorption layer, and a buffer layer is formed while leaving the influence of the uneven shape on the surface of this layer. The active layer is grown so that the periodic unevenness appearing on the surface of the buffer layer becomes a diffraction grating, and fills the concave portions of the unevenness.

緩衝層の厚さは、緩衝層の上面に周期的な凹凸が残るよ
うに選択する。成長条件によっては、この周期的な凹凸
を緩衝層の下地の層の凹凸形状とほぼ合同にすることも
できるが、必ずしも合同である必要はなく、凹部が埋ま
り易い成長条件でもよい。
The thickness of the buffer layer is selected such that periodic irregularities remain on the top surface of the buffer layer. Depending on the growth conditions, this periodic unevenness can be made to be approximately congruent with the uneven shape of the underlying layer of the buffer layer, but they do not necessarily have to be congruent, and the growth conditions may be such that the concave portions are easily filled.

活性層については、その上面で凹凸形状が平坦化するよ
うに成長させる。緩衝層の上面に周期的な凹凸が残って
いるうちに次の活性層の成長を開始することで、活性層
の下面に回折格子を形成することができる。
The active layer is grown so that the uneven shape becomes flat on its upper surface. By starting the growth of the next active layer while periodic irregularities remain on the upper surface of the buffer layer, a diffraction grating can be formed on the lower surface of the active layer.

〔作 用〕[For production]

活性層の厚さを周期的に変化させることで、利得係数の
周期的摂動を得る。これとともに、光吸収層の厚さも周
期的に変化させ、吸収係数の周期的摂動を得る。これら
の双方の効果により強い利得結合を得ることができ、そ
の光分布帰還によって、単一モードで発振するレーザ装
置を得ることができる。
By periodically changing the thickness of the active layer, a periodic perturbation of the gain coefficient is obtained. At the same time, the thickness of the light absorption layer is also changed periodically to obtain periodic perturbations in the absorption coefficient. Strong gain coupling can be obtained by both of these effects, and by the distributed optical feedback, a laser device that oscillates in a single mode can be obtained.

なお、光吸収層があると、全体の吸収が増加して、しき
い値電流の増加が危惧されるが、発振時の定在波の節の
部分にのみ光吸収層を配置することができるので、大き
な問題になることはない。
Note that if there is a light absorption layer, there is a concern that the overall absorption will increase and the threshold current will increase, but the light absorption layer can be placed only at the nodes of the standing wave during oscillation. , it won't be a big problem.

〔実施例〕〔Example〕

第1図は本発明実施例の半導体分布帰還型レーザ装置の
構造を示し、第2図は活性層近傍の層構造を示す。
FIG. 1 shows the structure of a semiconductor distributed feedback laser device according to an embodiment of the present invention, and FIG. 2 shows the layer structure in the vicinity of the active layer.

このレーザ装置は、回折格子の周期に相応する凹凸形状
が印刻された半導体層4と、この半導体層4に接してそ
の凹凸形状に相応する周期的な形状を上面に残して形成
された半導体緩衝層6と、この緩衝層6に接して形成さ
れその周期的な形状に相応する厚みの変化が設けられた
活性層7とを備える。
This laser device consists of a semiconductor layer 4 on which a concavo-convex shape corresponding to the period of a diffraction grating is imprinted, and a semiconductor buffer formed in contact with this semiconductor layer 4 with a periodic shape corresponding to the concave-convex shape remaining on the top surface. The active layer 7 is formed in contact with the buffer layer 6 and has a thickness change corresponding to the periodic shape of the layer 6.

ここで本実施例の特徴とするところは、半導体層4に印
刻された凹凸形状の各頂部に光吸収層13を備えたこと
にある。
The feature of this embodiment is that a light absorption layer 13 is provided on each top of the uneven shape stamped on the semiconductor layer 4.

このレーザ装置の構造について、製造方法と共にさらに
詳しく説明する。ここでは、InP系、すなわち各層を
InPに格子整合させる場合を例に説明する。
The structure of this laser device will be explained in more detail along with the manufacturing method. Here, an example of an InP system, that is, a case where each layer is lattice matched to InP, will be explained.

まず、高濃度n形1nP基板1上にダブルへテロ接合構
造の各層を二段階にわけてエピタキシャル成長させる。
First, each layer of a double heterojunction structure is epitaxially grown in two stages on a highly doped n-type 1nP substrate 1.

各層はInP基板1に格子整合させる。Each layer is lattice matched to the InP substrate 1.

エピタキシャル成長の第一段階では、基板1の上に、例
えば、1μm厚のn形1nP クラッド層3と、0.1
μm厚のn形Ino、 t2Gao、 28AS0.6
IP0.3s半導体層4と、0.05μm厚のn形1n
o、 53GaO,47AS光吸収層13とを結晶成長
させる。次に、干渉露光法と化学エツチングにより、光
吸収層13および半導体層4に周期256nmの回折格
子に相応する凹凸形状5を印刻する。ここで、余分な吸
収を抑えるた島、凹凸形状5は光吸収層13を貫通して
いることが望ましい。
In the first stage of epitaxial growth, for example, an n-type 1nP cladding layer 3 with a thickness of 1 μm and a 0.1 μm thick n-type cladding layer 3 are formed on the substrate 1.
μm thick n-type Ino, t2Gao, 28AS0.6
IP0.3s semiconductor layer 4 and 0.05 μm thick n-type 1n
o, 53GaO, 47AS light absorption layer 13 is grown as a crystal. Next, an uneven shape 5 corresponding to a diffraction grating with a period of 256 nm is imprinted on the light absorption layer 13 and the semiconductor layer 4 by interference exposure method and chemical etching. Here, it is desirable that the islands and uneven shapes 5 that suppress excessive absorption penetrate the light absorption layer 13.

エピタキシャル成長の第二段階では、凹凸形状5を印刻
した光吸収層13および半導体層4の上に、平均30n
m厚のn形InP緩衝層6を成長させる。さらにこの緩
衝層6の上に、平均1100n厚の低不純物濃度1no
、 5IGa0.4?AS活性層7と、1 tttn厚
のp形InPクラッド層8と、0.5μm厚の高濃度p
形1no1%!JGao、 4JSコンタクト層9とを
順に連続して成長させ、ダブルへテロ接合構造を完成さ
せる。
In the second stage of epitaxial growth, an average of 30n
An m-thick n-type InP buffer layer 6 is grown. Further, on this buffer layer 6, a low impurity concentration 1no.
, 5IGa0.4? an AS active layer 7, a p-type InP cladding layer 8 with a thickness of 1 tttn, and a highly doped p-type InP layer 8 with a thickness of 0.5 μm.
Shape 1no1%! JGao and 4JS contact layers 9 are successively grown in this order to complete a double heterojunction structure.

次いで、5lO7絶縁層12をコンタクト層9の上面に
堆積させ、例えば幅10μmのストライプ状窓を形成し
、その後に電極層11および10を蒸着する。さらに、
これを襞間して、個々の半導体レーザ素子を完成する。
A 5lO7 insulating layer 12 is then deposited on the top surface of the contact layer 9, forming a striped window with a width of, for example, 10 μm, followed by the electrode layers 11 and 10 being vapor deposited. moreover,
This is folded to complete individual semiconductor laser devices.

回折格子に相応する凹凸形状5を印刻した光吸収層13
および半導体層4の上に緩衝層6および活性層7を成長
させるごときには、有機金属気相成長法を用いる。この
とき、緩衝層6については、凹凸形状が完全には平坦化
されないようにし、活性層7の成長時に、残った凹凸形
状の凹部を埋めるようにする。これにより、活性層7の
下面に回折格子を形成することができる。
A light absorption layer 13 with a concavo-convex shape 5 imprinted thereon corresponding to a diffraction grating
When growing the buffer layer 6 and the active layer 7 on the semiconductor layer 4, metal organic vapor phase epitaxy is used. At this time, the uneven shape of the buffer layer 6 is made not to be completely flattened, and the remaining uneven recesses are filled in when the active layer 7 is grown. Thereby, a diffraction grating can be formed on the lower surface of the active layer 7.

緩衝層6は、光吸収層13および半導体層4への印刻に
より発生した半導体結晶構造の欠陥の影響が活性層7に
及ぶのを防ぐ役割を果たす。この緩衝層6の成長時には
、凹部が埋まり易い条件であっても、緩衝層6の厚さを
光吸収層13および半導体層4に印刻した凹凸形状5よ
りも薄くすることて、緩衝層6の上面、すなわち活性層
7の下面に、凹凸を残すことができる。
The buffer layer 6 serves to prevent the active layer 7 from being affected by defects in the semiconductor crystal structure caused by the markings on the light absorption layer 13 and the semiconductor layer 4 . When growing the buffer layer 6, even under conditions where the recesses are easily filled, the thickness of the buffer layer 6 is made thinner than the uneven shape 5 imprinted on the light absorption layer 13 and the semiconductor layer 4. Unevenness can be left on the upper surface, that is, on the lower surface of the active layer 7.

有機金属気相成長による成長条件としては、例えば、 〔原料〕ホスフィン     PH3 アルシン      AsH3 トリエチルインジウム(CJs)31nトリエチルガリ
ウム (C2H5)3Gaジメチルジンク    (C
LLZn 硫化水素      H2S 〔条件〕圧力   76 Torr 全流量   651m 基板温度 700℃(1回目)、 650℃(2回目) とする。
Growth conditions for organometallic vapor phase epitaxy include, for example, [Raw materials] Phosphine PH3 Arsine AsH3 Triethylindium (CJs) 31n Triethylgallium (C2H5) 3Ga Dimethylzinc (C
LLZn Hydrogen sulfide H2S [Conditions] Pressure: 76 Torr Total flow rate: 651 m Substrate temperature: 700°C (first time), 650°C (second time).

上述した各層の導電形および組成を第1表にまとめて示
す。
The conductivity type and composition of each layer described above are summarized in Table 1.

第   1   表 このようにして、活性層7に形成された回折格子により
利得係数の周期的変化が得られ、さらに、凹凸形状の印
刻によって切断された光吸収層13により吸収係数の周
期的変化が得られる。これらの利得係数と吸収係数との
摂動に基づく光分布帰還により、これらの変化の周期に
対応したブラッグ波長で単一モード発振を起こす半導体
分布帰還型レーザ装置が得られる。
Table 1 In this way, a periodic change in the gain coefficient is obtained by the diffraction grating formed in the active layer 7, and a periodic change in the absorption coefficient is also obtained by the light absorption layer 13 cut by the uneven imprints. can get. By performing distributed optical feedback based on perturbations in these gain coefficients and absorption coefficients, a semiconductor distributed feedback laser device that causes single mode oscillation at a Bragg wavelength corresponding to the period of these changes can be obtained.

ここではInP系の場合について説明したが、同様の構
造をAlGaAs系でも実現できる。その場合の各層の
導電形および組成の例を第2表に示す。
Although the case of InP type has been described here, a similar structure can also be realized with AlGaAs type. Examples of the conductivity type and composition of each layer in that case are shown in Table 2.

第   2   表 以上の説明では、結晶成長法として有機金属気相成長法
を用いた場合の例について説明した。しかし、緩衝層6
の膜厚を精密に制御できることと、活性層7の上面で平
坦化できることとが満足されるなら、その他の結晶成長
法、例えば分子線エピタキシャル成長法を用いても本発
明を同様に実施できる。
Table 2 In the explanation above, an example was explained in which metal organic vapor phase epitaxy was used as the crystal growth method. However, the buffer layer 6
The present invention can be similarly implemented using other crystal growth methods, such as molecular beam epitaxial growth, as long as the ability to precisely control the film thickness and the ability to flatten the upper surface of the active layer 7 are satisfied.

C発明の効果〕 以上説明したように、本発明の半導体分布帰還型レーザ
装置は、活性層と光吸収層との双方に周期的な厚みの変
化を設け、利得領域と吸収領域とを交互に形成している
。この構造により、大きなモード間利得差が得られ、非
常に安定な単一縦モード発振が得られる効果がある。
C. Effects of the Invention] As explained above, the semiconductor distributed feedback laser device of the present invention provides periodic thickness changes in both the active layer and the light absorption layer, and alternates the gain region and the absorption region. is forming. This structure has the effect of obtaining a large gain difference between modes and very stable single longitudinal mode oscillation.

また、利得結合によって光分布帰還を達成しているので
、従来の屈折率結合型半導体分布帰還型レーザ装置とは
異なり、完全に単一の波長の縦モード発振が行われ、従
来装置におけるような発振波長の不確定性も見られない
と考えられる。もっとも、従来の半導体分布帰還型レー
ザ装置でも完全単一縦モード化は可能であるが、いずれ
も半導体レーザ装置の構成が複雑化し、その上、レーザ
素子端面への反射防止膜形成が必要など、その製造工程
数が増大するのに対し、本発明装置では、従来の製造工
程をほとんど変えることなく、反射防止措置も要らずに
簡単に完全単一縦モード化を実現できる。
In addition, since distributed optical feedback is achieved through gain coupling, unlike conventional index-coupled semiconductor distributed feedback laser devices, longitudinal mode oscillation of a single wavelength is performed, which is different from conventional devices. It is thought that there is no uncertainty in the oscillation wavelength. However, although it is possible to achieve a completely single longitudinal mode with conventional semiconductor distributed feedback laser devices, in both cases the configuration of the semiconductor laser device becomes complicated, and in addition, it is necessary to form an anti-reflection film on the end face of the laser element, etc. In contrast to the increase in the number of manufacturing steps, the device of the present invention can easily realize a complete single longitudinal mode with almost no changes to the conventional manufacturing steps and without the need for anti-reflection measures.

さらに、利得結合による光分布帰還を利用しているため
、近端あるいは遠端からの反射戻り光などによって誘起
される干渉雑音は、生じたとしても、従来の屈折率結合
による場合に比較して格段に小さくなることが期待され
る。
Furthermore, since optical distribution feedback using gain coupling is used, interference noise induced by reflected return light from the near end or the far end, even if it occurs, is much lower than when using conventional refractive index coupling. It is expected that it will become significantly smaller.

したがって、本発明の半導体分布帰還型レーザ装置は、
長距離光通信、波長多重通信などに必要な高性能光源と
して有望であるばかりでなく、光情報処理および記録や
、光応用計測、高速光学現象の光源などの分野で従来用
いられていた気体レーザ装置や固体レーザ装置に代替し
うる高性能の小型光源としての利用が見込まれる。
Therefore, the semiconductor distributed feedback laser device of the present invention has the following characteristics:
Gas lasers are not only promising as high-performance light sources necessary for long-distance optical communications and wavelength division multiplexing communications, but also have traditionally been used in fields such as optical information processing and recording, optical applied measurement, and light sources for high-speed optical phenomena. It is expected to be used as a high-performance, compact light source that can replace solid-state laser devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例半導体分布帰還型レーザ装置の構
造を示す斜視図。 第2図は活性層近傍の層構造を示す拡大断面図。 1・・・基板、3.8・・・クラッド層、4・・・半導
体層、5・・・凹凸形状、6・・・緩衝層、7・・・活
性層、9・・・コンタクト層、10.11・・・電極層
、12・・・絶縁層、13・・・光吸収層。 特許出願人 光計測技術開発株式会社 代理人 弁理士 井 出 直 孝
FIG. 1 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to an embodiment of the present invention. FIG. 2 is an enlarged sectional view showing the layer structure near the active layer. DESCRIPTION OF SYMBOLS 1... Substrate, 3.8... Clad layer, 4... Semiconductor layer, 5... Uneven shape, 6... Buffer layer, 7... Active layer, 9... Contact layer, 10.11... Electrode layer, 12... Insulating layer, 13... Light absorption layer. Patent applicant: Optical Measurement Technology Development Co., Ltd. Agent: Naotaka Ide, patent attorney

Claims (1)

【特許請求の範囲】 1、回折格子の周期に相応する凹凸形状が形成された半
導体層と、 この半導体層に接して前記凹凸形状に相応する周期的な
形状を上面に残して形成された半導体緩衝層と、 この緩衝層に接して形成され前記周期的な形状に相応す
る厚みの変化が設けられた活性層とを備えた半導体分布
帰還型レーザ装置において、前記凹凸形状の各頂部に光
吸収層を備えた ことを特徴とする半導体分布帰還型レーザ装置。 2、半導体層、光吸収層、緩衝層および活性層はそれぞ
れ実質的にInPに格子整合する材料で形成された請求
項1記載の半導体分布帰還型レーザ装置。 3、半導体層、光吸収層、緩衝層および活性層はそれぞ
れ実質的にGaAsに格子整合する材料で形成された請
求項1記載の半導体分布帰還型レーザ装置。
[Claims] 1. A semiconductor layer in which an uneven shape corresponding to the period of a diffraction grating is formed, and a semiconductor formed in contact with this semiconductor layer with a periodic shape corresponding to the uneven shape remaining on the upper surface. In a semiconductor distributed feedback laser device comprising a buffer layer and an active layer formed in contact with the buffer layer and having a thickness varying corresponding to the periodic shape, each peak of the uneven shape has a light absorbing layer. A semiconductor distributed feedback laser device characterized by comprising a layer. 2. The semiconductor distributed feedback laser device according to claim 1, wherein the semiconductor layer, the light absorption layer, the buffer layer and the active layer are each made of a material that is substantially lattice matched to InP. 3. The semiconductor distributed feedback laser device according to claim 1, wherein the semiconductor layer, the light absorption layer, the buffer layer and the active layer are each made of a material that is substantially lattice matched to GaAs.
JP28269890A 1990-10-19 1990-10-19 Semiconductor distribution feedback type laser device Pending JPH04155986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28269890A JPH04155986A (en) 1990-10-19 1990-10-19 Semiconductor distribution feedback type laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28269890A JPH04155986A (en) 1990-10-19 1990-10-19 Semiconductor distribution feedback type laser device

Publications (1)

Publication Number Publication Date
JPH04155986A true JPH04155986A (en) 1992-05-28

Family

ID=17655892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28269890A Pending JPH04155986A (en) 1990-10-19 1990-10-19 Semiconductor distribution feedback type laser device

Country Status (1)

Country Link
JP (1) JPH04155986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539766A (en) * 1993-08-19 1996-07-23 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539766A (en) * 1993-08-19 1996-07-23 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser
US5764682A (en) * 1993-08-19 1998-06-09 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for fabricating the same
US5960257A (en) * 1993-08-19 1999-09-28 Matsushita Electric Industrial Co., Ltd. Method distributed feedback semiconductor laser for fabricating

Similar Documents

Publication Publication Date Title
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
EP0507956B1 (en) Distributed feedback semiconductor laser
JPS6180882A (en) Semiconductor laser device
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
JPH05145169A (en) Semiconductor distributed feedback laser apparatus
JPH04155986A (en) Semiconductor distribution feedback type laser device
JPH0462195B2 (en)
JP2957198B2 (en) Semiconductor laser device
JPH04155987A (en) Semiconductor distribution feedback laser device and its manufacture
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
US5027368A (en) Semiconductor laser device
JPH01106489A (en) Semiconductor device and manufacture thereof
JP2903321B2 (en) Method of manufacturing semiconductor laser device
JPH04146679A (en) Distributed feedback semiconductor laser device
JP3215477B2 (en) Semiconductor distributed feedback laser device
JP3075821B2 (en) Semiconductor distributed feedback laser device and method of manufacturing the same
JPH0334489A (en) Semiconductor laser and manufacture thereof
JPS5947790A (en) Semiconductor laser device
JP3075822B2 (en) Semiconductor distributed feedback laser device
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JPH0437597B2 (en)
JPS59171187A (en) Semiconductor laser device
JPS59188187A (en) Semiconductor laser diode and manufacture thereof
JPH03174793A (en) Semiconductor laser
JPS617680A (en) Nanufacture of semiconductor laser