JPH04155987A - Semiconductor distribution feedback laser device and its manufacture - Google Patents

Semiconductor distribution feedback laser device and its manufacture

Info

Publication number
JPH04155987A
JPH04155987A JP28269990A JP28269990A JPH04155987A JP H04155987 A JPH04155987 A JP H04155987A JP 28269990 A JP28269990 A JP 28269990A JP 28269990 A JP28269990 A JP 28269990A JP H04155987 A JPH04155987 A JP H04155987A
Authority
JP
Japan
Prior art keywords
refractive index
layer
active layer
index layer
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28269990A
Other languages
Japanese (ja)
Other versions
JPH0744316B2 (en
Inventor
Kunio Tada
多田 邦雄
Yoshiaki Nakano
義昭 中野
Takeshi Inoue
武史 井上
Takeshi Irita
入田 丈司
Shinichi Nakajima
眞一 中島
Takeshi Ra
毅 羅
Hideto Iwaoka
秀人 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP2282699A priority Critical patent/JPH0744316B2/en
Priority to EP91917810A priority patent/EP0507956B1/en
Priority to DE69117488T priority patent/DE69117488T2/en
Priority to PCT/JP1991/001418 priority patent/WO1992007401A1/en
Priority to US07/899,860 priority patent/US5289494A/en
Publication of JPH04155987A publication Critical patent/JPH04155987A/en
Publication of JPH0744316B2 publication Critical patent/JPH0744316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress the cyclic perturbation of refractive index and perform light distribution feedback mainly consisting of the cyclic perturbation of gain coefficient by providing a low refractive index layer at each apex of the irregularity provided in an active layer, and providing a layer, whose refractive index is between that of active layer and that of the low refractive index layer, in contact with the irregularity. CONSTITUTION:Each layer of double hetero junction structure is epitaxially grown separately in two stages. In the first stage, a clad layer 3, an active layer 5, and a low refractive index layer 6 are crystal-grown in order on a substrate 1. Next, by interfering exposure method and chemical etching, a diffraction grating (irregularity) is marked in a low refractive index layer 6 and an active layer 5. In the second stage, a middle refractive index layer 7 is grown on the active layer 5 and the low refractive index layer 6. At this time, the top of the middle refractive index layer 7 is flattened. Further thereon, a clad layer 8 and a contact layer 9 are grown in order continuously to complete double hetero junction structure. Next, an SiO2 insulating layer 12 is stacked on the contact layer 9, and a stripe-shaped window is made, and then electrode layers 11 and 10 are deposited. Furthermore, this is cleaved to complete individual semiconductor laser elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気光変換素子として利用する半導体分布帰還
型レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor distributed feedback laser device used as an electro-optical conversion element.

本発明は、長距離大容量光通信装置、光情報処理装置、
光記録装置、光応用計測装置、その地元電子装置の光源
として利用するに適する。
The present invention relates to a long-distance large-capacity optical communication device, an optical information processing device,
Suitable for use as a light source for optical recording devices, optical measurement devices, and local electronic devices.

〔概 要〕〔overview〕

本発明は、回折格子としての周期的な凹凸形状が活性層
に設けられた半導体分布帰還型レーザ装置において、 その凹凸形状の各頂部に低屈折率層を設け、凹凸形状に
接して活性層と低屈折率層の中間の屈折率の層を設ける
ことにより、 屈折率の周期的摂動を抑制し、利得係数の周期的摂動を
主とした光分布帰還を行うものである。
The present invention provides a semiconductor distributed feedback laser device in which an active layer is provided with a periodic uneven shape as a diffraction grating. By providing a layer with a refractive index intermediate to the low refractive index layer, periodic perturbations in the refractive index are suppressed and light distribution feedback is performed mainly based on periodic perturbations in the gain coefficient.

〔従来の技術〕[Conventional technology]

活性層の近傍に設けた回折格子により活性層に光の分布
帰還を施して誘導放出光を発生させる半導体分布帰還型
レーザ装置は、一般に、比較的簡単な構成により優れた
発振スペクトル特性の誘導放出光が得られるので、従来
から幾多の研究開発が進められ、長距離大容量光通信、
光情報処理および記録、光応用計測などに用いる好適な
光源装置としてその有用性が期待されている。
Semiconductor distributed feedback laser devices, which generate stimulated emission light by performing distributed feedback of light to the active layer using a diffraction grating provided near the active layer, generally have a relatively simple configuration and generate stimulated emission with excellent oscillation spectrum characteristics. Since light can be obtained, a lot of research and development has been carried out in the past, and long-distance, high-capacity optical communication,
It is expected to be useful as a light source device suitable for use in optical information processing and recording, optical applied measurement, and the like.

このような半導体分布帰還型レーザ装置では、活性層を
透明なヘテロ接合半導体層などにより囲み、効率よく誘
導放出光を発生させる光導波路構造が採られている。特
に、活性層にごく近接した透明な導波路層の活性層から
遠い側の界面に例えば三角波状の断面形状をもつ回折格
子を形成し、導波路屈折率を周期的に変化させることに
より光分布帰還を施す方向の研究開発が専ら進釣られて
いる。
Such a semiconductor distributed feedback laser device employs an optical waveguide structure in which the active layer is surrounded by a transparent heterojunction semiconductor layer or the like to efficiently generate stimulated emission light. In particular, a diffraction grating with a triangular wave cross section is formed on the interface of a transparent waveguide layer in close proximity to the active layer on the side far from the active layer, and light distribution is achieved by periodically changing the waveguide refractive index. Research and development aimed at implementing repatriation is currently being pursued.

しかし、このような屈折率結合による光分布帰還におい
ては、先導波路層の層厚変化の周期に対応して反射する
ブラッグ波長の光に対して、光位相についての適正な帰
還が行われない。このため、安定なレーザ発振が得られ
ず、ブラッグ波長から上下に対称に離隔した二つの波長
の縦モード発振が同時に生じる可能性が高い。また、こ
のような二つの波長の縦モード発振のうちの一方のみが
生じる場合にも、二つの波長のうちのいずれの波長の縦
モード発振を行わせるかをあらかじめ選定することが困
難であるため、発振波長設定の精度が著しく損なわれる
ことになる。
However, in such optical distribution feedback using refractive index coupling, appropriate feedback regarding the optical phase is not performed for light having a Bragg wavelength that is reflected in accordance with the period of layer thickness change of the leading waveguide layer. For this reason, stable laser oscillation cannot be obtained, and there is a high possibility that longitudinal mode oscillations of two wavelengths symmetrically spaced above and below the Bragg wavelength will occur simultaneously. Furthermore, even when only one of these two wavelengths of longitudinal mode oscillation occurs, it is difficult to select in advance which of the two wavelengths to cause longitudinal mode oscillation. , the accuracy of setting the oscillation wavelength will be significantly impaired.

すなわち、先導波路層における屈折率の周期的摂動に基
づく屈折率結合を利用した光分布帰還では、原理的に、
二波長縦モード発振縮重の問題が生じてしまい、これを
避けることは困難である。
In other words, in optical distribution feedback using refractive index coupling based on periodic perturbations of the refractive index in the leading waveguide layer, in principle,
The problem of dual-wavelength longitudinal mode oscillation degeneracy arises, and it is difficult to avoid this problem.

もちろん、このような困難を解決する手段も従来から種
々検討されている。しかし、例えば回折格子のほぼ中央
で4分の1波長分だけ位相シフトさせる構造など、いず
れも、レーザ装置の構造を複雑化し、縮重解消のための
みの製造工程を付加する必要があり、その上、レーザ素
子端面に反射防止膜を形成する必要があった。
Of course, various means for solving such difficulties have been studied in the past. However, in any case, for example, a structure in which the phase is shifted by a quarter wavelength at approximately the center of the diffraction grating, the structure of the laser device becomes complicated, and a manufacturing process just to eliminate degeneracy needs to be added. First, it was necessary to form an antireflection film on the end face of the laser element.

一方、上述のように屈折率結合により光分布帰還を行う
とブラッグ波長領域に発振阻止帯域が生じるが、利得係
数の周期的摂動に基づく利得結合により光分布帰還を行
うとすれば、発振阻止帯域は現れず完全に単一波長の縦
モード発振が得られるはずであるとの原理的な理論が、 コゲルニツタ他、「分布帰還レーザの結合波理論」、ア
プライド・フィツクス、1972年、第43巻、第23
27頁ないし第2335頁(”Coupled−Wav
eTheory of  Distributed  
Feedback  La5ers”。
On the other hand, if distributed optical feedback is performed using refractive index coupling as described above, an oscillation stop band will occur in the Bragg wavelength region, but if distributed optical feedback is performed using gain coupling based on periodic perturbations of the gain coefficient, then the oscillation stop band will be generated in the Bragg wavelength region. The fundamental theory that states that complete single-wavelength longitudinal mode oscillation should be obtained without the appearance of any 23rd
Pages 27 to 2335 (“Coupled-Wav
eTheory of Distributed
Feedback La5ers”.

Journal of  Applied  Phys
ics、 1972 Vol、43゜pp 2327−
2335) に示されている。しかし、コゲルニツタの論文はあくま
でも原理的な検討結果であって、具体的な構造について
は示されていない。
Journal of Applied Phys.
ics, 1972 Vol, 43°pp 2327-
2335). However, Kogernitsutta's paper is just the result of a theoretical study, and does not provide any concrete structure.

本願発明者の一部は、上記コゲルニツタ他の基礎理論を
適用した新しい半導体レーザ装置を発明し、以下の特許
出願をした。
Some of the inventors of this application invented a new semiconductor laser device applying the basic theory of Kogelnitsu et al. and filed the following patent application.

特願昭63−189593 、昭和63年7月30日出
願特願平1−168729、平成1年6月30日出願特
願平1−185001〜185005、同年7月18日
出願。
Japanese Patent Application No. 1-189593, filed on July 30, 1988, Japanese Patent Application No. 1-168729, filed on June 30, 1999, Japanese Patent Application No. 1-185001 to 185005, filed on July 18 of the same year.

これらの特許出願のそれぞれの明細書および図面に示し
た構造により、利得結合による光分布帰還を実現できた
The structures shown in the specifications and drawings of each of these patent applications made it possible to realize distributed light feedback by gain coupling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の特許出願の多くは、活性層の表面に周期的な凹凸
形状を設け、このときの厚みの変化による利得係数の周
期的な摂動を利用したものである。
Many of the above-mentioned patent applications provide periodic uneven shapes on the surface of the active layer and utilize periodic perturbations in the gain coefficient due to changes in thickness at this time.

光を閉じ込める必要性から、活性層の屈折率はその周囲
の層と異なるのが一般的である。このたと1活性層に凹
凸形状を形成することは、必然的に屈折率の周期変化を
もたらしてしまう。すなわち、活性層に凹凸形状を設け
た構造では、利得結合のみによる光分布帰還を得ている
わけではなく、屈折率結合的な摂動による効果が残って
いた。
Because of the need to confine light, the active layer typically has a different refractive index than its surrounding layers. In this case, forming an uneven shape in one active layer inevitably causes a periodic change in the refractive index. That is, in the structure in which the active layer is provided with a concavo-convex shape, the optical distribution feedback is not obtained only by gain coupling, but the effect of perturbation like refractive index coupling remains.

これを抑制して利得結合的な摂動のみになるよう設計で
きることを本願発明者め一部はアプライド・フィジック
ス・レターズ、1990年、第56巻、第1620頁な
いし第1622頁(”Purely gain−cou
pleddistributed feedback 
 semiconductor 1asers”。
The present inventors have shown that it is possible to suppress this and design only gain-coupled perturbations, as described in Applied Physics Letters, 1990, Vol.
pleddistributedfeedback
Semiconductor 1asers”.

Applied Physics Letters、 
1990.Vol、56.pp、1620−1622)
に示した。
Applied Physics Letters,
1990. Vol, 56. pp, 1620-1622)
It was shown to.

しかし、この構造では凹凸上に成長した活性層の形状に
依存しているため、屈折率結合の成分を精密に制御する
ことは困難であった。
However, since this structure depends on the shape of the active layer grown on the uneven surface, it has been difficult to precisely control the refractive index coupling component.

本発明は、このような課題を解決し、屈折率結合による
光分布帰還を抑制し、利得結合を主とする光分布帰還が
得られる半導体分布帰還型レーザ装置を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve such problems and provide a semiconductor distributed feedback laser device that suppresses distributed optical feedback due to refractive index coupling and obtains distributed optical feedback mainly based on gain coupling.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体分布帰還型レーザ装置は、活性層の表面
に回折格子として設けられた凹凸形状の各頂部に、活性
層より屈折率の低い低屈折率層を備え、凹凸形状に接し
て、低屈折率層より屈折率が高く活性層より屈折率の低
い中間屈折率層を備えたことを特徴とする。
The semiconductor distributed feedback laser device of the present invention includes a low refractive index layer having a lower refractive index than the active layer on each top of the uneven shape provided as a diffraction grating on the surface of the active layer. It is characterized by comprising an intermediate refractive index layer having a higher refractive index than the refractive index layer and a lower refractive index than the active layer.

活性層、中間屈折率層および低屈折率層のそれぞれの屈
折率、凹凸形状の深さおよび中間屈折率層の厚さは、活
性層と中間屈折率層とによって生じる屈折率実部の周期
的変化と、低屈折率層と中間屈折率層とによって生じる
屈折率実部の周期的変化とが互いに打ち消し合うように
設定されることが望ましい。
The refractive index of the active layer, the intermediate refractive index layer, and the low refractive index layer, the depth of the uneven shape, and the thickness of the intermediate refractive index layer are determined based on the periodicity of the real part of the refractive index caused by the active layer and the intermediate refractive index layer. It is desirable that the change and the periodic change in the real part of the refractive index caused by the low refractive index layer and the intermediate refractive index layer cancel each other out.

このようなレーザ装置を製造するには、基板上に活性層
およびこの活性層より屈折率の低い低屈折率層を成長さ
せ、低屈折率層および活性層に回折格子としての周期的
な凹凸形状を印刻し、さらに、低屈折率層より屈折率が
高く活性層よりは屈折率の低い中間屈折率層を成長させ
る。
To manufacture such a laser device, an active layer and a low refractive index layer having a lower refractive index than the active layer are grown on a substrate, and a periodic uneven shape as a diffraction grating is formed on the low refractive index layer and the active layer. Further, an intermediate refractive index layer having a higher refractive index than the low refractive index layer and lower than the active layer is grown.

ここで、中間屈折率層の屈折率と厚さを、低屈折率層と
活性層に印刻した回折格子の形状にあわせて調整するこ
とにより、屈折率結合的な成分を精密に制御できる。
Here, by adjusting the refractive index and thickness of the intermediate refractive index layer according to the shape of the diffraction grating imprinted on the low refractive index layer and the active layer, the refractive index coupling component can be precisely controlled.

本明細書において「上」とは、製造時における結晶成長
の方向と同じ方向をいう。また、「下」とはその逆の方
向をいう。
In this specification, "upper" refers to the same direction as the direction of crystal growth during manufacturing. Moreover, "down" refers to the opposite direction.

〔作 用〕[For production]

活性層の厚さを周期的に変化させることで、利得係数の
周期的摂動を得る。このとき、活性層の表面の凹凸形状
の各頂部に低屈折率層を設け、さらに、凹凸形状に接し
て中間屈折率層を設けると、凹凸形状の溝の部分を通っ
て活性層−中間屈折率層一活性層一中間屈折率層・・・
の周期構造が形成され、頂部を通って低屈折率層−中間
屈折率層一低屈折率層一中間屈折率層・・・の周期構造
が形成される。これを屈折率でみると、 溝側:高(活性層)−中一高一中−・・・頂側:  低
   −中一低一中一・・・となる。すなわち、溝側と
頂側とのそれぞれの周期構造が逆相となり、互いの屈折
率実部の周期変化を打ち消し合うことができる。
By periodically changing the thickness of the active layer, a periodic perturbation of the gain coefficient is obtained. At this time, if a low refractive index layer is provided on each top of the uneven shape on the surface of the active layer, and an intermediate refractive index layer is further provided in contact with the uneven shape, the active layer-intermediate refractive index layer passes through the groove portion of the uneven shape. index layer, active layer, intermediate refractive index layer...
A periodic structure is formed, and a periodic structure of a low refractive index layer, an intermediate refractive index layer, a low refractive index layer, an intermediate refractive index layer, etc. is formed through the top. Looking at this in terms of refractive index, it becomes: Groove side: high (active layer) - middle one, high one, middle -...Top side: low - middle one, low, one middle... That is, the periodic structures on the groove side and the top side have opposite phases, and the periodic changes in the real part of the refractive index can be canceled out.

すなわち、屈折率の周期的摂動が抑制され、活性層の厚
さの周期的な変化による利得係数の周期的摂動を主とし
た光分布帰還が行われ、安定な単一モード発振が得られ
る。
That is, periodic perturbations in the refractive index are suppressed, optical distribution feedback is performed mainly based on periodic perturbations in the gain coefficient due to periodic changes in the thickness of the active layer, and stable single mode oscillation is obtained.

〔実施例〕〔Example〕

第1図は本発明実施例の半導体分布帰還型レーザ装置の
構造を示す。
FIG. 1 shows the structure of a semiconductor distributed feedback laser device according to an embodiment of the present invention.

このレーザ装置は、誘導放出光を発生させる活性層5を
備え、この活性層5が発生した誘導放出光に光分布帰還
を施す回折格子が、活性層5の表面の凹凸形状として形
成されている。
This laser device includes an active layer 5 that generates stimulated emission light, and a diffraction grating that performs optical distribution feedback on the stimulated emission light generated by the active layer 5 is formed as an uneven shape on the surface of the active layer 5. .

ここで本実施例の特徴とするところは、凹凸形状の各頂
部には活性層5より屈折率の低い低屈折率層6が設けら
れ、凹凸形状に接して、低屈折率層6より屈折率が高く
活性層5より屈折率の低い中間屈折率層7を備えたこと
にある。
Here, the feature of this embodiment is that a low refractive index layer 6 having a lower refractive index than the active layer 5 is provided on each top of the uneven shape. This is because the intermediate refractive index layer 7 has a high refractive index and a lower refractive index than the active layer 5.

このレーザ装置の構造について、製造方法と共にさらに
詳しく説明する。ここでは、InP系、すなわち各層を
fnPに格子整合させる場合を例に説明する。
The structure of this laser device will be explained in more detail along with the manufacturing method. Here, an example of an InP system, that is, a case where each layer is lattice matched to fnP, will be explained.

まず、高濃度n形1nP基板1上にダブルへテロ接合構
造の各層を二段階にわけてエピタキシャル成長させる。
First, each layer of a double heterojunction structure is epitaxially grown in two stages on a highly doped n-type 1nP substrate 1.

各層はInP基板1に格子整合させる。Each layer is lattice matched to the InP substrate 1.

エピタキシャル成長の第一段階では、基板1の上に、例
えば、11tr+1厚のn形1nPクラッド層3と、0
.12μm厚の低純物濃度1no、 63Gao、 a
Js活性層5と、4Qnm厚のp形1nP低屈折率層6
とを順次結晶成長させる。次に、干渉露光法と化学エツ
チングにより、低屈折率層6と活性層5とに周期256
nm 、深さ80nmの回折格子(凹凸形状)を印刻す
る。
In the first stage of epitaxial growth, for example, an n-type 1nP cladding layer 3 with a thickness of 11tr+1 and an 0.
.. 12μm thick low purity concentration 1no, 63Gao, a
Js active layer 5 and 4Qnm thick p-type 1nP low refractive index layer 6
and are sequentially grown as crystals. Next, by interference exposure method and chemical etching, the low refractive index layer 6 and the active layer 5 are etched with a period of 256.
A diffraction grating (uneven shape) with a depth of 80 nm and a depth of 80 nm is imprinted.

エピタキシャル成長の第二段階では、回折格子を印刻し
た活性層5と低屈折率層6との上に、平均5Qnm厚の
p形ino、72Ga0.2sAso、 81P0.3
9中間屈折率層7を成長させる。このとき、中間屈折率
層7の上面が平坦になるようにする。さらにこの上に、
1即厚のp形1nPクラッド層8と、0.5p厚の高濃
度p形Ino、 s、Gao、 4ff^Sコンタクト
層9とを順に連続して成長させ、ダブルへテロ接合構造
を完成させる。
In the second stage of epitaxial growth, p-type ino, 72Ga0.2sAso, 81P0.3 with an average thickness of 5 Qnm are deposited on the active layer 5 with the diffraction grating imprinted thereon and the low refractive index layer 6.
9. Grow intermediate refractive index layer 7. At this time, the upper surface of the intermediate refractive index layer 7 is made flat. Furthermore, on top of this
A p-type 1nP cladding layer 8 with a thickness of 1 and a high concentration p-type Ino, S, Gao, 4ff^S contact layer 9 with a thickness of 0.5p are successively grown in order to complete a double heterojunction structure. .

ここで、エツチング後の結晶成長では活性層5の側面が
露出しているため、直前にごくわずかなエツチング等の
処理を行い、欠陥が生じないようにすることが必要であ
る。InP系では、適切な処理をした場合には欠陥の発
生の問題が生じないことが報告されている(ジャーナル
・オブ・クリスタルグロース第93巻1988年第36
5頁から第369頁(J、Cryst、Growth、
 93(1988) pp、365−369))。
Here, since the side surfaces of the active layer 5 are exposed during crystal growth after etching, it is necessary to perform a very slight etching process immediately before to prevent defects from occurring. It has been reported that the problem of defect generation does not occur in the InP system if it is treated appropriately (Journal of Crystal Growth, Vol. 93, 1988, No. 36).
Pages 5 to 369 (J, Crystal, Growth,
93 (1988) pp, 365-369)).

二回目のエピタキシャル成長が終了した後、5102絶
縁層12をコンタクト層9の上面に堆積させ、例えば幅
10鴻のストライブ状窓を形成し、その後に電極層11
および10を蒸着する。さらに、これを襞間して、個々
の半導体レーザ素子を完成する。
After the second epitaxial growth is completed, a 5102 insulating layer 12 is deposited on the top surface of the contact layer 9 to form a striped window, e.g.
and 10 are deposited. Furthermore, this is folded to complete individual semiconductor laser devices.

有機金属気相成長による成長条件としては、例えば、 〔原料〕ホスフィン     PH3 アルシン      AsH。As growth conditions for metal organic vapor phase epitaxy, for example, [Raw material] Phosphine PH3 Arsin AsH.

トリエチルインジウム(C2H5)31nトリエチルガ
リウム (C2H5)3Gaジメチルジンク    (
CH,) 2Zn硫化水素      H,S 〔条件〕圧力   76 Torr 全流量   5 sin 基板温度 700℃(1回目)、 650℃(2回目) とする。
Triethyl indium (C2H5) 31n triethyl gallium (C2H5) 3Ga dimethyl zinc (
CH,) 2Zn hydrogen sulfide H,S [Conditions] Pressure: 76 Torr Total flow rate: 5 sin Substrate temperature: 700°C (first time), 650°C (second time).

上述した各層の導電型および組成を表にまとめて示す。The conductivity type and composition of each layer described above are summarized in a table.

(以下本頁余白) 第2図は上述の実施例の活性層近傍の層構造を示し、第
3図右よび第4図はそれぞれ第2図の線3−3.4−4
に沿った屈折率分布を示す。
(Hereinafter, this page margin) Figure 2 shows the layer structure in the vicinity of the active layer of the above-mentioned embodiment, and the right side of Figure 3 and Figure 4 are lines 3-3, 4-4 in Figure 2, respectively.
It shows the refractive index distribution along.

回折格子が印刻された活性層5とその間を埋める中間屈
折率層7とによって生じる屈折率実部の摂動は、切断さ
れた低屈折率層6とその間を埋める中間屈折率層7とに
よって生じる位相が逆の屈折率実部の摂動によって打ち
消される。上述した組成や厚さは屈折率実部の摂動がほ
ぼ零となるように設計した一例である。
The perturbation in the real part of the refractive index caused by the active layer 5 on which the diffraction grating is imprinted and the intermediate refractive index layer 7 filling in between is the phase caused by the cut low refractive index layer 6 and the intermediate refractive index layer 7 filling in between. is canceled by the perturbation of the opposite real part of the refractive index. The composition and thickness described above are examples designed so that the perturbation of the real part of the refractive index is approximately zero.

中間屈折率層7の上面を平坦にするのは、設計計算を簡
単にするためのものであって、この上面に凹凸が残る場
合には、その屈折率実部の摂動も考慮し、全体として摂
動を打ち消すようにする。
The purpose of making the upper surface of the intermediate refractive index layer 7 flat is to simplify design calculations.If any unevenness remains on this upper surface, the perturbation of the real part of the refractive index is also taken into consideration, and the overall Try to cancel the perturbation.

このようにして、屈折率実部の摂動を抑制し、回折格子
が印刻された活性層5による屈折率虚部、すなわち利得
係数の摂動が主となる光分布帰還を実現でき、利得係数
の周期に対応したブラッグ波長で単一モード発振を行う
半導体分布帰還型レーザ装置が得られる。
In this way, it is possible to suppress the perturbation of the real part of the refractive index and realize optical distribution feedback in which the imaginary part of the refractive index, that is, the perturbation of the gain coefficient, is mainly caused by the active layer 5 on which the diffraction grating is imprinted, and the period of the gain coefficient. A semiconductor distributed feedback laser device that performs single mode oscillation at a Bragg wavelength corresponding to .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体分布帰還型レーザ
装置は、屈折率実部の全体としての変化が小さく、屈折
率の周期的摂動が抑制される。これにより、活性層の厚
さの周期的な変化による利得係数の周期的摂動を主とし
た光分布帰還が行われ、単一モードで発振させることが
できる。
As described above, in the semiconductor distributed feedback laser device of the present invention, the overall change in the real part of the refractive index is small, and periodic perturbations in the refractive index are suppressed. As a result, optical distribution feedback mainly based on periodic perturbations in the gain coefficient due to periodic changes in the thickness of the active layer is performed, making it possible to oscillate in a single mode.

また、利得結合によって光分布帰還を達成しているので
、従来の屈折率結合型半導体分布帰還型レーザ装置とは
異なり、完全に単一の波長の縦モード発振が行われ、従
来装置におけるような発振波長の不確定性も見られない
と考えられる。もっとも、従来の半導体分布帰還型レー
ザ装置でも完全単一縦モード化は可能であるが、いずれ
も半導体レーザ装置の構成が複雑化し、その上、レーザ
素子端面への反射防止膜形成が必要など、その製造工程
数が増大するのに対し、本発明装置では、従来の製造工
程をほとんど変えることなく、反射防止措置も要らずに
簡単に完全単一縦モード化を実現できる。
In addition, since distributed optical feedback is achieved through gain coupling, unlike conventional index-coupled semiconductor distributed feedback laser devices, longitudinal mode oscillation of a single wavelength is performed, which is different from conventional devices. It is thought that there is no uncertainty in the oscillation wavelength. However, although it is possible to achieve a completely single longitudinal mode with conventional semiconductor distributed feedback laser devices, in both cases the configuration of the semiconductor laser device becomes complicated, and in addition, it is necessary to form an anti-reflection film on the end face of the laser element, etc. In contrast to the increase in the number of manufacturing steps, the device of the present invention can easily realize a complete single longitudinal mode with almost no changes to the conventional manufacturing steps and without the need for anti-reflection measures.

さらに、利得結合による光分布帰還を利用しているため
、近端あるいは遠端からの反射戻り光などによって誘起
される干渉雑音は、生じたとしても、従来の屈折率結合
による場合に比較して格段に小さくなることが期待され
る。
Furthermore, since optical distribution feedback using gain coupling is used, interference noise induced by reflected return light from the near end or far end, etc., is reduced compared to the case using conventional refractive index coupling. It is expected that it will become significantly smaller.

また、本発明の半導体分布帰還型レーザ装置では、共振
器が電流注入による利得の周期分布に起因するため、高
速電流変調において超短パルス発生が可能であり、かつ
発振波長のチャーピングも小さいと期待される。
In addition, in the semiconductor distributed feedback laser device of the present invention, since the resonator has a periodic distribution of gain due to current injection, it is possible to generate ultrashort pulses in high-speed current modulation, and the chirping of the oscillation wavelength is also small. Be expected.

したがって、本発明の半導体分布帰還型レーザ装置は、
長距離光通信、波長多重通信などに必要な高性能光源と
して有望であるばかりでなく、光情報処理および記録や
、光応用計測、高速光学現象の光源などの分野で従来用
いられていた気体レーザ装置や固体レーザ装置に代替し
ろる高性能の小型光源としての利用が見込まれる。
Therefore, the semiconductor distributed feedback laser device of the present invention has the following characteristics:
Gas lasers are not only promising as high-performance light sources necessary for long-distance optical communications and wavelength division multiplexing communications, but also have traditionally been used in fields such as optical information processing and recording, optical applied measurement, and light sources for high-speed optical phenomena. It is expected to be used as a high-performance, compact light source that can replace solid-state laser devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例半導体分布帰還型レーザ装置の構
造を示す斜視図。 第2図は活性層近傍の層構造を示す断面図。 第3図は第2図の線3−3に沿った屈折率分布を示す図
。 第4図は第2図の線4−4に沿った屈折率分布を示す図
。 1・・・基板、3.8・・・クラッド層、5・・・活性
層、6・・・低屈折率層、7・・・中間屈折率層、9・
・・コンタクト層、10.11・・・電極層、12・・
・絶縁層。
FIG. 1 is a perspective view showing the structure of a semiconductor distributed feedback laser device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the layer structure near the active layer. FIG. 3 is a diagram showing the refractive index distribution along line 3-3 in FIG. FIG. 4 is a diagram showing the refractive index distribution along line 4--4 in FIG. DESCRIPTION OF SYMBOLS 1... Substrate, 3.8... Clad layer, 5... Active layer, 6... Low refractive index layer, 7... Intermediate refractive index layer, 9...
...Contact layer, 10.11...Electrode layer, 12...
・Insulating layer.

Claims (1)

【特許請求の範囲】 1、誘導放出光を発生させる活性層と、 この活性層が発生した誘導放出光に光分布帰還を施す回
折格子と を備え、 この回折格子は前記活性層の表面の凹凸形状として形成
された 半導体分布帰還型レーザ装置において、 前記凹凸形状の各頂部には前記活性層より屈折率の低い
低屈折率層が設けられ、 前記凹凸形状に接して、前記低屈折率層より屈折率が高
く前記活性層より屈折率の低い中間屈折率層を備えた ことを特徴とする半導体分布帰還型レーザ装置。 2、活性層、中間屈折率層および低屈折率層のそれぞれ
の屈折率、凹凸形状の深さおよび中間屈折率層の厚さは
、前記活性層と前記中間屈折率層とによって生じる屈折
率実部の周期的変化と、前記低屈折率層と前記中間屈折
率層とによって生じる屈折率実部の周期的とが互いに打
ち消し合うように設定された請求項1記載の半導体分布
帰還型レーザ装置。 3、基板上に活性層およびこの活性層より屈折率の低い
低屈折率層を成長させる工程と、 前記低屈折率層および前記活性層に回折格子としての周
期的な凹凸形状を印刻する工程と、前記低屈折率層より
屈折率が高く前記活性層よりは屈折率の低い中間屈折率
層を成長させる工程と を含む半導体分布帰還型レーザ装置の製造方法。
[Claims] 1. An active layer that generates stimulated emission light, and a diffraction grating that performs optical distribution feedback on the stimulated emission light generated by the active layer, and the diffraction grating is formed by adjusting the irregularities on the surface of the active layer. In the semiconductor distributed feedback laser device formed as a shape, a low refractive index layer having a lower refractive index than the active layer is provided at each top of the uneven shape, and in contact with the uneven shape, the layer has a lower refractive index than the low refractive index layer. A semiconductor distributed feedback laser device comprising an intermediate refractive index layer having a high refractive index and a lower refractive index than the active layer. 2. The refractive index of the active layer, the intermediate refractive index layer, and the low refractive index layer, the depth of the uneven shape, and the thickness of the intermediate refractive index layer are determined based on the refractive index effect produced by the active layer and the intermediate refractive index layer. 2. The semiconductor distributed feedback laser device according to claim 1, wherein the periodic change in the real part of the refractive index and the periodic change in the real part of the refractive index caused by the low refractive index layer and the intermediate refractive index layer cancel each other out. 3. A step of growing an active layer and a low refractive index layer having a lower refractive index than the active layer on the substrate; and a step of imprinting a periodic uneven shape as a diffraction grating on the low refractive index layer and the active layer. . A method for manufacturing a semiconductor distributed feedback laser device, comprising: growing an intermediate refractive index layer having a higher refractive index than the low refractive index layer and a lower refractive index than the active layer.
JP2282699A 1990-10-19 1990-10-19 Semiconductor distributed feedback laser device and manufacturing method thereof Expired - Lifetime JPH0744316B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2282699A JPH0744316B2 (en) 1990-10-19 1990-10-19 Semiconductor distributed feedback laser device and manufacturing method thereof
EP91917810A EP0507956B1 (en) 1990-10-19 1991-10-17 Distributed feedback semiconductor laser
DE69117488T DE69117488T2 (en) 1990-10-19 1991-10-17 SEMICONDUCTOR LASER WITH DISTRIBUTED FEEDBACK
PCT/JP1991/001418 WO1992007401A1 (en) 1990-10-19 1991-10-17 Distributed feedback semiconductor laser
US07/899,860 US5289494A (en) 1990-10-19 1991-10-17 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282699A JPH0744316B2 (en) 1990-10-19 1990-10-19 Semiconductor distributed feedback laser device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04155987A true JPH04155987A (en) 1992-05-28
JPH0744316B2 JPH0744316B2 (en) 1995-05-15

Family

ID=17655905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282699A Expired - Lifetime JPH0744316B2 (en) 1990-10-19 1990-10-19 Semiconductor distributed feedback laser device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0744316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661571A (en) * 1992-08-05 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Distribution light reflection device and semiconductor laser using the same
US5960023A (en) * 1996-04-15 1999-09-28 Sharp Kabushiki Kaisha Distributed feedback semiconductor laser diode, method for producing the same, and exposure method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171685A (en) * 1974-12-18 1976-06-21 Nippon Telegraph & Telephone BUNPUKI KANGATA HANDOT AIREEZA
JPS526093A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Production method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171685A (en) * 1974-12-18 1976-06-21 Nippon Telegraph & Telephone BUNPUKI KANGATA HANDOT AIREEZA
JPS526093A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Production method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661571A (en) * 1992-08-05 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Distribution light reflection device and semiconductor laser using the same
US5960023A (en) * 1996-04-15 1999-09-28 Sharp Kabushiki Kaisha Distributed feedback semiconductor laser diode, method for producing the same, and exposure method therefor

Also Published As

Publication number Publication date
JPH0744316B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
CN1945365B (en) Buried heterostructure device fabricated by single step MOCVD
JP2984365B2 (en) Distributed feedback laser
EP0507956B1 (en) Distributed feedback semiconductor laser
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
JPS6180882A (en) Semiconductor laser device
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPH04155987A (en) Semiconductor distribution feedback laser device and its manufacture
JPH05145169A (en) Semiconductor distributed feedback laser apparatus
JP2009059843A (en) Quantum well structure, optical confinement type quantum well structure, semiconductor laser, distributed feedback semiconductor laser, spectrograph, and manufacturing method of the quantum well structure
JPS61242090A (en) Semiconductor laser
JP2957198B2 (en) Semiconductor laser device
JPH04146679A (en) Distributed feedback semiconductor laser device
JPH04155986A (en) Semiconductor distribution feedback type laser device
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61202487A (en) Distributed feedback type semiconductor laser
JPH0936496A (en) Semiconductor light emitting element and fabrication thereof
JPS61220389A (en) Integrated type semiconductor laser
JPH0316288A (en) Semiconductor laser element and manufacture thereof
JP3075821B2 (en) Semiconductor distributed feedback laser device and method of manufacturing the same
JPS6381888A (en) Manufacture of semiconductor laser
JPH0334489A (en) Semiconductor laser and manufacture thereof
JPH08330665A (en) Manufacture of optical semiconductor laser
JPH0349286A (en) Semiconductor laser device and manufacturing process
JPH0555686A (en) Semiconductor distributed feedback type laser device
JPH05235465A (en) Semiconductor distributed feedback type laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees