JPH041555A - Measuring instrument for liquid penetration speed to power and granular material - Google Patents

Measuring instrument for liquid penetration speed to power and granular material

Info

Publication number
JPH041555A
JPH041555A JP10142190A JP10142190A JPH041555A JP H041555 A JPH041555 A JP H041555A JP 10142190 A JP10142190 A JP 10142190A JP 10142190 A JP10142190 A JP 10142190A JP H041555 A JPH041555 A JP H041555A
Authority
JP
Japan
Prior art keywords
pipe
liquid
container
measured
sample powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10142190A
Other languages
Japanese (ja)
Other versions
JP2721416B2 (en
Inventor
Noriyoshi Namitani
彼谷 憲美
Hiroyuki Tsujimoto
広行 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP10142190A priority Critical patent/JP2721416B2/en
Publication of JPH041555A publication Critical patent/JPH041555A/en
Application granted granted Critical
Publication of JP2721416B2 publication Critical patent/JP2721416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve measuring accuracy by stopping driving when a relative position between a pipe for sample powder fluid packing and a penetration liquid container is set at a preset position. CONSTITUTION:The pipe 1 provided with a bottom part through which liquid can be penetrated freely is suspended under a weigher 2, and a container 5 is placed on a board 4 on which a driving device 3 for elevation is mounted, and the container 5 is brought near the pipe 1 by elevation, and the liquid L in the container 5 is penetrated from the bottom part of the pipe 1 to sample powder fluid S, and the change of the weight of the pipe 1 according to penetration to the powder fluid S is measured. It is decided whether or not the relative position is set at a preset relative position where the powder fluid S is brought into contact with fluid L by the computing element B of a computer C, and the device 3 is stopped by a controller A. In such a way, the measuring accuracy can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉粒体への液体の浸透速度を測定するために
、通液自在な底部を有する試料粉粒体充填用パイプと、
そのパイプ内の試料粉粒体に前記底部から浸透させる液
体を収納する容器を上下方向で接近させる駆動装置を設
け、前記パイプ内の試料粉粒体を前記容器内の液体に接
触させた後前記パイプと容器の接近を停止するように前
記駆動装置を自動操作する制御器を設け、前記パイプ内
の試料粉粒体への液体浸透に伴う前記パイプの重量変化
を測定する計量器を備えた装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a pipe for filling a sample powder or granule having a bottom portion through which liquid can freely flow, in order to measure the permeation rate of liquid into the powder or granule;
A driving device is provided for vertically approaching a container containing a liquid to be permeated into the sample powder in the pipe from the bottom, and after the sample powder in the pipe is brought into contact with the liquid in the container, An apparatus including a controller that automatically operates the drive device to stop the approach of the pipe and the container, and a measuring device that measures a change in the weight of the pipe as liquid permeates into the sample powder in the pipe. Regarding.

〔従来の技術〕[Conventional technology]

従来、測定開始操作に伴ってタイマーを作動させ、タイ
マーにより設定した時間だけパイプと容器を接近させて
、パイプ内の試料粉粒体を容器内の液体に、パイプの通
液自在な底部を介し接触させるように構成していた。
Conventionally, when a measurement is started, a timer is activated, and the pipe and container are brought close together for the time set by the timer, and the sample powder in the pipe is transferred to the liquid in the container through the liquid-flowable bottom of the pipe. It was configured to make contact.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、測定誤差が大きく、再現性に優れた高精度な測
定を実現することが困難であった。
However, measurement errors were large, making it difficult to achieve highly accurate measurements with excellent reproducibility.

本発明の目的は、測定誤差が大きくなる原因を究明して
、高精度な測定を容易確実に実行できるようにする点に
ある。
An object of the present invention is to investigate the cause of large measurement errors and to enable highly accurate measurements to be easily and reliably performed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴構成は、上記〔産業上の利用分野〕の項に
おいて明示した粉粒体への液体浸透速度測定装置におい
て、 パイプ内の試料粉粒体を容器内の液体に接触させるに際
して、前記パイプと容器の相対位置が、前記試料粉粒体
と液体が接触する設定相対位置になったか否かを判定す
る位置判定手段を設け、 その位置判定手段からの停止指示に基いて前記パイプと
容器の相対位置が設定相対位置になると前記駆動装置を
停止させる出力手段を設けたことにあり、その作用効果
は次の通りである。
The characteristic configuration of the present invention is that in the apparatus for measuring the rate of liquid penetration into powder and granule specified in the above [Industrial Application Field] section, when bringing the sample powder and granule in the pipe into contact with the liquid in the container, A position determining means is provided for determining whether the relative positions of the pipe and the container have reached a set relative position where the sample powder and granule come into contact with the liquid, and the pipe and the container are adjusted based on a stop instruction from the position determining means. The present invention is based on the provision of an output means for stopping the drive device when the relative position of the drive device reaches a set relative position, and its effects are as follows.

〔作 用〕[For production]

従来、測定誤差が大きくなっていた原因を追究したとこ
ろ、パイプと容器の初期レベル差が一定せず、その初期
レベル差に見合ってタイマーの設定時間を調節している
が、実際にはパイプ内の試料粉粒体を容器内の液体に浸
漬させる深さにかなり大きなバラツキを生じ、その浸漬
深さのバラツキに起因して液圧の影響で測定誤差が大き
くなっている事実が判明した。
In the past, when we investigated the cause of the large measurement error, we found that the initial level difference between the pipe and the container was not constant, and the timer setting time was adjusted according to the initial level difference, but in reality, It was found that there was considerable variation in the depth at which sample powder and granular material was immersed in the liquid in the container, and that measurement errors were large due to the influence of liquid pressure due to the variation in immersion depth.

そこで、位置判定手段によりパイプと容器の相対位置が
設定相対位置になったか否かを判定させ、その設定位置
になったことが確認されると、出力手段によって自動的
に駆動装置を停止させ、パイプと容器の初期レベル差い
かんにかかわらず、試料粉粒体が液体に一定の深さで浸
漬されるように構成したところ、誤差が小さくて再現性
の良い高精度な測定を容易確実に実行できるようになっ
た。
Therefore, the position determination means determines whether the relative position of the pipe and the container has reached the set relative position, and when it is confirmed that the set position has been reached, the output means automatically stops the drive device. By configuring the sample powder to be immersed in the liquid at a constant depth regardless of the initial level difference between the pipe and container, high-precision measurements with small errors and good reproducibility can be easily and reliably performed. Now you can.

〔発明の効果〕 その結果、測定精度及び操作性において一段と優れた、
極めて高性能な粉粒体への液体浸透速度測定装置を提供
できるようになった。
[Effects of the invention] As a result, the measurement accuracy and operability are further improved.
It is now possible to provide an extremely high-performance device for measuring the rate of liquid penetration into powder and granular materials.

請求項2に記載のように、間歇移動実行手段と間歇移動
指示手段によりパイプと容器の接近を間歇的に行わせ、
駆動装置の停止時に計量器による計測重量を計測値記憶
手段により読取らせて、パイプや容器の動慣性による計
測誤差を無くし、そして、計測値記憶手段により複数の
計測重量を読取って記憶させ、その複数の計測重量の偏
差が設定範囲になったことが偏差判定手段により確認さ
れるまで、計測値記憶手段により計測重量を読取って記
憶させ、偏差が設定範囲になると、その安定した計測重
量に基いて記憶すべき計測重量を記憶値決定手段により
決定させて、決定値記憶手段に記憶される決定計測重量
をパイプや液体の揺れによる誤差を無くすと、試料粉粒
体の液体への浸漬深さを一層厳密に一定化でき、測定精
度向上を一段と効果的に図ることができる。
As described in claim 2, the pipe and the container are caused to approach each other intermittently by the intermittent movement execution means and the intermittent movement instruction means,
When the drive device is stopped, the weight measured by the scale is read by the measured value storage means to eliminate measurement errors due to the dynamic inertia of the pipe or the container, and the measured value storage means reads and stores a plurality of measured weights, The measured weight is read and stored by the measured value storage means until the deviation determination means confirms that the deviation of the plurality of measured weights is within the set range, and when the deviation falls within the set range, the stable measured weight is When the measured weight to be stored is determined by the memorized value determining means based on the determined value and the determined measured weight stored in the determined value memorizing means is free from errors caused by shaking of the pipe or liquid, the immersion depth of the sample powder or granule in the liquid is determined. This makes it possible to more precisely stabilize the temperature and improve measurement accuracy even more effectively.

〔実施例〕〔Example〕

次に、実施例を示す。 Next, examples will be shown.

第1図に示すように、ろ紙製底等の通液自在な底部を有
するパイプ(1)を、電子天秤等の計量器(2)に吊下
げ、リニアへラドモータ等の昇降用駆動装置(3)に取
付けた台(4)に容器(5)を載せ、容器(5)を駆動
装置(3)で上昇させてパイプ(1)に接近させ、パイ
プ(1)内に充填した試料粉粒体(S)に容器(5)内
の液体(L)をパイプ(1)底部から浸透させ、試料粉
粒体(S)への液体(L)浸透に伴うパイプ(1)の重
量変化を計量器(2)で測定するように構成しである。
As shown in Figure 1, a pipe (1) with a bottom made of filter paper or the like through which liquid can freely flow is suspended from a measuring instrument (2) such as an electronic balance, and a lifting drive device (3) such as a linear helical motor is suspended. ) The container (5) is placed on a stand (4) attached to a table (4), and the container (5) is raised by the drive device (3) to approach the pipe (1), and the sample powder filled in the pipe (1) is removed. The liquid (L) in the container (5) is infiltrated into (S) from the bottom of the pipe (1), and the weight change of the pipe (1) as the liquid (L) permeates into the sample powder (S) is measured using a measuring instrument. It is configured to measure in (2).

駆動装置(3)の操作及び計量器(2)からの情報の処
理を自動的に実行するコンピュータ(C)を設け、コン
ピュータ(C)に対する入力器(6)、及び、コンピュ
ータ(C)で求められた測定結果を表示する表示器(7
)を設けてある。
A computer (C) that automatically operates the drive device (3) and processes information from the measuring instrument (2) is provided, and an input device (6) for the computer (C) and information obtained by the computer (C) are provided. A display (7) displays the measured results.
) is provided.

コンピュータ(C)は、駆動装置(3)を自動操作する
制御器(A)と、計量器(2)の計測重量変化に基いて
各種のデータを算出する演算器(B)とから成っている
The computer (C) consists of a controller (A) that automatically operates the drive device (3) and a calculator (B) that calculates various data based on changes in weight measured by the weighing device (2). .

制御器(A)に、第2図に示すように下記(a)項ない
しくh)項の手段を設けてある。
As shown in FIG. 2, the controller (A) is provided with the following means (a) to h).

(a)  入力器(6)からの測定開始指示に基いて、
駆動装置(3)を間歇作動させる間歇移動実行手段(8
)にパイプ(1)の液体(L)中への浸漬、つまり、容
器(5)の上昇を指示するパイプ浸漬指示手段(9)。
(a) Based on the measurement start instruction from the input device (6),
intermittent movement execution means (8) for intermittently operating the drive device (3);
) for instructing the pipe (1) to be immersed in the liquid (L), that is, to raise the container (5).

尚、間歇移動実行手段(8)は例えば1回当す0.2秒
程度の微小時間だけ駆動装置(3)を作動させる。
Incidentally, the intermittent movement execution means (8) operates the drive device (3) for a minute period of about 0.2 seconds each time, for example.

(b)  間歇移動実行手段(8)からの情報に基いて
駆動装置(3)の停止時に、計量器(2)による計測重
量の複数を読取って記憶する計測値記憶手段(11)。
(b) Measured value storage means (11) for reading and storing a plurality of weights measured by the scale (2) when the drive device (3) is stopped based on information from the intermittent movement execution means (8).

(C)計測値記憶手段(11)からの情報に基いて前記
複数の計測重量の偏差が設定範囲になったか否かを判別
する偏差判定手段(12)。
(C) Deviation determining means (12) for determining whether the deviations of the plurality of measured weights are within a set range based on information from the measured value storage means (11).

つまり、例えば3個以上の設定数の最新読取り計測重量
の全てがその平均値に対して設定範囲の偏差になったか
否かを判別させるようにプログラムしである。
In other words, the program is programmed to determine whether or not all of the set number of recently read measured weights, for example three or more, are within a set range of deviations from the average value.

(d)  偏差判定手段(12)からの情報に基いて偏
差が設定範囲内になると、計測値記憶手段(11)から
の情報に基いて記憶すべき計測重量を決定する記憶値決
定手段(13)。
(d) When the deviation falls within the set range based on the information from the deviation determining means (12), the stored value determining means (13) determines the measured weight to be stored based on the information from the measured value storing means (11). ).

つまり、例えば上記平均値、その平均値に最も近い計測
重量、最新の計測重量などの適当な値が、記憶すべき計
測重量に決定されるようにプログラムしである。
That is, the program is such that, for example, an appropriate value such as the average value, the measured weight closest to the average value, or the latest measured weight is determined as the measured weight to be stored.

(e)  記憶値決定手段(13)からの決定計測重量
を記憶する決定値記憶手段(14)。
(e) Determined value storage means (14) for storing the determined measured weight from the stored value determination means (13).

げ)偏差判定手段(12)からの情報に基いて偏差が設
定範囲内になると、間歇移動実行手段(8)に次の間歇
移動、つまり容器(5)の上昇を指示する間歇移動指示
手段(15)。
(g) intermittent movement instruction means () which instructs the intermittent movement execution means (8) to carry out the next intermittent movement, that is, to raise the container (5), when the deviation falls within the set range based on the information from the deviation determination means (12); 15).

(g)  前記決定値記憶手段(14)からの情報に基
いて、決定計測重量が増大したか否かを判別する記憶値
変化状態判定手段(16)。
(g) Storage value change state determination means (16) for determining whether the determined measured weight has increased based on the information from the determined value storage means (14).

(h)  記憶値変化状態判定手段(16)からの情報
に基いて決定計測重量が増大すると、駆動装置(3)の
停止指示を出力手段(17)に発信する停止位置決定手
段(18)。
(h) Stop position determining means (18) for transmitting a stop instruction for the drive device (3) to the output means (17) when the determined measured weight increases based on information from the storage value change state determining means (16).

演算器(B)に、第3図に示すように下記(イ)項ない
しくす)項の手段を設けてある。
As shown in FIG. 3, the computing unit (B) is provided with the means described in (a) to (d) below.

(イ)入力器(6)からのρ51 ws、 Hに基いて
試料粉粒体層の断面積Sを下記式 %式% により算出するS算出手段(19)。
(a) S calculation means (19) for calculating the cross-sectional area S of the sample powder layer based on ρ51 ws, H from the input device (6) using the following formula % formula %.

尚、ρ5は、パイプ(1)に充填された試料粉粒体(S
)の真密度、W5は試料粉粒体(S)の重量、Hは試料
粉粒体(S)の充填高さである。
In addition, ρ5 is the sample powder (S) filled in the pipe (1).
), W5 is the weight of the sample powder (S), and H is the filling height of the sample powder (S).

(ロ)入力器(6)からのρ5. Ws+ Hに基いて
試料粉粒体層の空隙率εを下記式 %式%) により算出するε算出手段(20)。
(b) ρ5 from input device (6). ε calculation means (20) for calculating the porosity ε of the sample powder layer based on Ws+H using the following formula (% formula %);

(ハ)出力手段(17)からの情報により駆動装置(3
)が停止されるとスタートする測定用タイマー(21)
(c) Drive device (3) based on information from output means (17)
) is stopped, the measurement timer (21) starts.
.

(ニ)第4図に示すような、計量器(2)からの測定重
量W1と測定用タイマー(21)からの測定時間tの相
関を記憶するW、−を相関記憶手段(22)。
(d) Correlation storage means (22) for storing the correlation between the measured weight W1 from the scale (2) and the measurement time t from the measurement timer (21) as shown in FIG.

(ホ)測定用タイマー(21)からの情報に基いて設定
測定時間が経過すると、W、−を相関記憶手段(22)
からの情報に基いて、第5図に示すようなdW、/d 
tと1/W1の相関を解析して記憶するdW、/d t
 −1/W、相関記憶手段(23)。
(e) When the set measurement time has elapsed based on the information from the measurement timer (21), W, - is stored in the correlation storage means (22).
Based on the information from dW, /d as shown in Fig.
Analyze and store the correlation between t and 1/W1 dW, /d t
-1/W, correlation storage means (23).

(へ)  dW、/dt−1/W、相関記憶手段(23
)からの情報に基いて、第5図に示すように、傾斜αと
y細切片βを判定するα、β判定手段(24)。
(to) dW, /dt-1/W, correlation storage means (23
), as shown in FIG. 5, α and β determination means (24) for determining the slope α and the y-slice β.

(ト)  α、β判定手段(24)からの情報に基いて
、試料粉粒体(S)に対する液体(L)浸透が平衡に達
した時間における浸透液体重量W美を下記式 %式% により算出するWω算出手段(25)。
(g) Based on the information from the α and β determination means (24), the permeated liquid weight W at the time when liquid (L) permeation into the sample powder (S) reaches equilibrium is calculated using the following formula: Wω calculating means (25) for calculating.

(チ)入力器(6)からのρ1.η、g、s算出手段(
19)からのS18算出手段(20)からのε、α、β
判定手段(24)からのβに基いて、試料粉粒体層の平
均毛細管半径rを下記式 により算出するr算出手段(26)。
(H) ρ1 from the input device (6). η, g, s calculation means (
ε, α, β from S18 calculation means (20) from 19)
r calculation means (26) for calculating the average capillary radius r of the sample powder layer according to the following formula based on β from the determination means (24);

尚、ρ、は容器(5)内の液体(L)の密度、ηは液体
(シ)の粘度、gは重力加速度である。
In addition, ρ is the density of the liquid (L) in the container (5), η is the viscosity of the liquid (Sh), and g is the gravitational acceleration.

(iハ 入力器(6)からのrt、g、S算出手段(1
9)からのS、ε算出手段(20)からのε、Woo算
出手段(25)からのWooSr算出手段(26)から
のrに基いて、第6図に示すような試料粉粒体(S)と
液体(L)の間の接触角θ、及び、付着張力TLcos
θを下記式 により算aするθ算出手段(27)。
(i) rt, g, S calculation means (1) from input device (6)
9), ε from the ε calculation means (20), WooSr from the Woo calculation means (25), r from the calculation means (26), the sample powder (S) as shown in FIG. ) and the liquid (L), the contact angle θ and the adhesion tension TLcos
θ calculating means (27) for calculating θ using the following formula.

尚、T、は液体(L)の表面張力であり、円環法により
予め実測されたものである。
Note that T is the surface tension of the liquid (L), which was actually measured in advance by the ring method.

次に、上記装置による測定について第7図により説明す
る。
Next, measurement using the above device will be explained with reference to FIG.

(1)入力器(6)によりρSI WS、  H,ρ【
、η。
(1) Using the input device (6), ρSI WS, H, ρ[
,η.

γt、gを入力すると、手段(19)、 (20>  
によりSとεが算出される。
When γt and g are input, means (19), (20>
S and ε are calculated.

〔2〕入力器(6)により測定開始を指示すると、容器
(5)が間歇的に上昇される。そして、容器(5)の停
止毎に、複数の計測重量が読取られると共に、偏差が判
別されて、計測が安定したか否かが判別される。
[2] When the input device (6) instructs to start measurement, the container (5) is intermittently raised. Then, each time the container (5) is stopped, a plurality of measured weights are read, a deviation is determined, and it is determined whether or not the measurement is stable.

(3)計測が安定すると、記憶すべき計測重量が決定さ
れて記憶される。また、決定計測重量が増大したか否か
が判別される。
(3) When the measurement becomes stable, the measured weight to be stored is determined and stored. Further, it is determined whether the determined measured weight has increased.

(4)その結果、パイプ(1)内の試料粉粒体(S)が
液体(L)から離れている時間帯では、決定計測重量は
増大しないため、容器(5)の間歇上昇が継続される。
(4) As a result, during the time period when the sample powder (S) in the pipe (1) is away from the liquid (L), the determined measurement weight does not increase, so the intermittent rise of the container (5) continues. Ru.

(5)試料粉粒体(S)が液体(L)に接近して、表面
張力で液体(L)が試料粉粒体(S)に付着した時点に
おいて液体(L)の表面張力により決定計測重量が急激
に増大すると、容器(5)の上昇が停止されると共に、
測定用タイマー(21)がスタートされる。
(5) Measurement determined by the surface tension of the liquid (L) when the sample powder (S) approaches the liquid (L) and the liquid (L) adheres to the sample powder (S) due to surface tension. If the weight suddenly increases, the lifting of the container (5) is stopped and
A measurement timer (21) is started.

(6)手段(22)によりW、とtとの相関が記憶され
、設定測定時間が経過すると、第4図に示すようなW、
−を相関図が表示器(7)で作成される。
(6) The means (22) stores the correlation between W and t, and when the set measurement time elapses, W, as shown in FIG.
- A correlation diagram is created on the display (7).

(7)W、−を相関図に基いて第5図に示すようなdW
、/dtと1/W、の相関が手段(23)により記憶さ
れ、dW、/d t −1/W、相関図が表示器(7)
で作成される。
(7) dW as shown in Figure 5 based on the correlation diagram of W, -
, /dt and 1/W are stored by means (23), and a correlation diagram of dW, /d t -1/W is displayed on a display (7).
Created with.

(8)dW、/dt−1/W、相関図に基いて第5図に
示すようにα、βが手段(24)により判定される。
(8) Based on dW, /dt-1/W, and the correlation diagram, α and β are determined by the means (24) as shown in FIG.

(9)ρ1.ηtgl  ε+S+ βに基し)てrが
手段(26)により算出される。
(9) ρ1. r is calculated by means (26) based on ηtgl ε+S+β.

(10)  7+、g、  e、  S、 W”、  
rに基いてθ。
(10) 7+, g, e, S, W",
θ based on r.

γ+CO3θが手段(27)により算出される。γ+CO3θ is calculated by means (27).

αυ ρS+WS+ H,ρ+、 77 + 7 +、
 g +WoO+ e + r Tγ+CO5θ、θが
表示器(7)に示される。
αυ ρS+WS+ H, ρ+, 77 + 7 +,
g + WoO+ e + r Tγ+CO5θ, θ is shown on the display (7).

〔別実施例〕[Another example]

次の別実施例を説明する。 The following another embodiment will be described.

パイプ(1)内の試料粉粒体(S)を容器(5)内の液
体(L)に接触させるに際して、駆動装置(3)により
パイプ(1)を下降させてもよく、また、パイプ(1)
と容器(5)の相対位置が、試料粉粒体(S)と液体(
L)が接触する設定相対位置になったか否かを判定する
に、各種の位置判定手段を利用できる。例えば、光学式
などの無接触式センサーでパイプ(1)と容器(5)の
相対位置関係を検出して、そのセンサーからの情報で出
力手段(17)により駆動装置(3)を停止するように
構成してもよい。
When bringing the sample powder (S) in the pipe (1) into contact with the liquid (L) in the container (5), the pipe (1) may be lowered by the drive device (3). 1)
The relative position of the container (5) and the sample powder (S) and the liquid (
Various position determining means can be used to determine whether or not L) has reached the set relative position where it makes contact. For example, the relative positional relationship between the pipe (1) and the container (5) may be detected using a non-contact sensor such as an optical sensor, and the output means (17) may be used to stop the drive device (3) based on the information from the sensor. It may be configured as follows.

表示器(7)により表示させるデータはWl−を相関図
、dW、/dt−1/W、相関図、γ+CO3θ、θの
少なくとも1個があればよい。
The data to be displayed on the display (7) may include at least one of Wl-, a correlation diagram, dW, /dt-1/W, a correlation diagram, γ+CO3θ, and θ.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明の実施例を示し、第1図は
装置の概念図、第2図は制御器のブロック図、第3図は
演算器のブロック図、第4図はW、−を相関図、第5図
はdW、/d t −1/W1相関図、第6図は接触角
θの説明図、第7図は動作説明のフローチャートである
。 (1)・・・・・・パイプ、(2)・・・・・・計量器
、(3)・・・・・・駆動装置、(5)・・・・・・容
器、(8)・・・・・・間歇移動実行手段、(11)・
・・・・・計測値記憶手段、(12)・・・・・・偏差
判定手段、(13)・・・・・・記憶値決定手段、(1
4)・・・・・・決定値記憶手段、(15)・・・・・
・間歇移動指示手段、(16)・・・・・・記憶値変化
状態判定手段、(17)・・・・・・出力手段、(18
)・・・・・・停止位置決定手段、(L)・・・・・・
液体、(S)・・・・・・試料粉粒体。
1 to 7 show embodiments of the present invention, FIG. 1 is a conceptual diagram of the device, FIG. 2 is a block diagram of the controller, FIG. 3 is a block diagram of the arithmetic unit, and FIG. 4 is a W , - is a correlation diagram, FIG. 5 is a dW, /d t -1/W1 correlation diagram, FIG. 6 is an explanatory diagram of the contact angle θ, and FIG. 7 is a flowchart for explaining the operation. (1) Pipe, (2) Measuring device, (3) Drive device, (5) Container, (8) ...Intermittent movement execution means, (11).
. . . Measured value storage means, (12) . . . Deviation judgment means, (13) . . . Memory value determination means, (1
4)... Determined value storage means, (15)...
・Intermittent movement instruction means, (16)...Memorized value change state determination means, (17)...Output means, (18)
)... Stop position determining means, (L)...
Liquid, (S)... Sample granular material.

Claims (1)

【特許請求の範囲】 1、通液自在な底部を有する試料粉粒体充填用パイプ(
1)と、そのパイプ(1)内の試料粉粒体(S)に前記
底部から浸透させる液体(L)を収納する容器(5)を
上下方向で接近させる駆動装置(3)を設け、前記パイ
プ(1)内の試料粉粒体(S)を前記容器(5)内の液
体(L)に接触させた後前記パイプ(1)と容器(5)
の接近を停止するように前記駆動装置(3)を自動操作
する制御器を設け、前記パイプ(1)内の試料粉粒体(
S)への液体(L)浸透に伴う前記パイプ(1)の重量
変化を測定する計量器(2)を備えた装置であって、 前記パイプ(1)内の試料粉粒体(S)を前記容器(5
)内の液体(L)に接触させるに際して、前記パイプ(
1)と容器(5)の相対位置が、前記試料粉粒体(S)
と液体(L)が接触する設定相対位置になったか否かを
判定する位置判定手段を設け、 その位置判定手段からの停止指示に基いて 前記パイプ(1)と容器(5)の相対位置が設定相対位
置になると前記駆動装置(3)を停止させる出力手段(
17)を設けてある粉粒体への液体浸透速度測定装置。 2、前記駆動装置(3)を間歇作動させる間歇移動実行
手段(8)を設け、 前記位置判定手段を形成するに、下記(イ)項ないし(
ト)項の手段、つまり、 (イ)前記間歇移動実行手段(8)からの情報に基いて
前記駆動装置(3)の停止時に、前記計量器(2)によ
る計測重量の複数を読取って記憶する計測値記憶手段(
11)、 (ロ)その計測値記憶手段(11)からの情報に基いて
前記複数の計測重量の偏差が設定範囲になったか否かを
判別する偏差判定手段 (12)、 (ハ)その偏差判定手段(12)からの情報に基いて偏
差が設定範囲内になると、前記計測値記憶手段(11)
からの情報に基いて記憶すべき計測重量を決定する記憶
値決定手段(13)、(ニ)その記憶値決定手段(13
)からの決定計測手段を記憶する決定値記憶手段(14
)、 (ホ)前記偏差判定手段(12)からの情報に基いて偏
差が設定範囲内になると、前記間歇移動実行手段(8)
に次の間歇移動を指示する間歇移動指示手段(15)、 (ヘ)前記決定値記憶手段(14)からの情報に基いて
、決定計測重量が増大したか否かを判別する記憶値変化
状態判定手段(16)、 (ト)その記憶値変化状態判定手段(16)からの情報
に基いて決定計測重量が増大すると、 前記出力手段(17)に停止指示を発信する停止位置決
定手段(18)を設けてある請求項1記載の粉粒体への
液体浸透速度測定装置。
[Claims] 1. A pipe for filling sample powder or granular material having a bottom portion through which liquid can freely flow (
1) and a container (5) for storing a liquid (L) to be infiltrated into the sample powder (S) in the pipe (1) from the bottom thereof in a vertical direction. After bringing the sample powder (S) in the pipe (1) into contact with the liquid (L) in the container (5), the pipe (1) and container (5)
A controller is provided to automatically operate the drive device (3) to stop the approach of the sample powder (1) in the pipe (1).
A device equipped with a measuring device (2) for measuring a change in the weight of the pipe (1) as liquid (L) permeates into the pipe (S), the device comprising: The container (5
) When bringing the liquid (L) into contact with the liquid (L) in the pipe (
The relative position of 1) and the container (5) is such that the sample powder (S)
A position determining means is provided for determining whether or not a set relative position is reached at which the pipe (1) and the liquid (L) come into contact with each other, and the relative positions of the pipe (1) and the container (5) are determined based on a stop instruction from the position determining means. output means (for stopping the drive device (3) when the set relative position is reached;
17) A device for measuring the rate of liquid penetration into a powder or granular material. 2. An intermittent movement execution means (8) for intermittently operating the drive device (3) is provided, and the following items (a) to (a) are provided to form the position determination means.
(a) Based on the information from the intermittent movement execution means (8), when the drive device (3) is stopped, a plurality of weights measured by the weighing device (2) are read and stored; measurement value storage means (
11), (b) deviation determining means (12) for determining whether the deviations of the plurality of measured weights are within a set range based on the information from the measured value storage means (11); (c) the deviation; When the deviation falls within the set range based on the information from the determination means (12), the measured value storage means (11)
(d) storage value determining means (13) for determining the measured weight to be stored based on information from;
) determined value storage means (14) for storing determined measuring means from
), (e) When the deviation falls within the set range based on the information from the deviation determination means (12), the intermittent movement execution means (8)
an intermittent movement instructing means (15) for instructing the next intermittent movement; determining means (16); (g) stop position determining means (18) for transmitting a stop instruction to the output means (17) when the determined measured weight increases based on information from the stored value change state determining means (16); ) The device for measuring the rate of liquid penetration into powder or granular material according to claim 1.
JP10142190A 1990-04-17 1990-04-17 Liquid permeation rate measuring device for powder Expired - Lifetime JP2721416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10142190A JP2721416B2 (en) 1990-04-17 1990-04-17 Liquid permeation rate measuring device for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10142190A JP2721416B2 (en) 1990-04-17 1990-04-17 Liquid permeation rate measuring device for powder

Publications (2)

Publication Number Publication Date
JPH041555A true JPH041555A (en) 1992-01-07
JP2721416B2 JP2721416B2 (en) 1998-03-04

Family

ID=14300247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10142190A Expired - Lifetime JP2721416B2 (en) 1990-04-17 1990-04-17 Liquid permeation rate measuring device for powder

Country Status (1)

Country Link
JP (1) JP2721416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278430A (en) * 2013-05-23 2013-09-04 长江大学 Low-permeability rock core start-up pressure gradient testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278430A (en) * 2013-05-23 2013-09-04 长江大学 Low-permeability rock core start-up pressure gradient testing device

Also Published As

Publication number Publication date
JP2721416B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US5900547A (en) Differential level hydrometer
CA2490264C (en) Liquid extrusion porosimeter and method
CN110646323A (en) Device and method for measuring liquid density by using equal-volume static buoyancy comparison method
JPH041555A (en) Measuring instrument for liquid penetration speed to power and granular material
US20210208043A1 (en) A densimeter
US5447063A (en) Liquid density monitoring apparatus
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer
CN206132767U (en) Concrete expansion rate apparatus
JPH10318899A (en) Apparatus for measuring volume weight of sample such as grain, etc.
JPS60162936A (en) Device for measuring contact angle between powder and granular material and liquid
CN211825543U (en) Solid density measuring device
JP2672679B2 (en) Surface tension measuring device
JP4018301B2 (en) Surface tension measurement method
JP5989537B2 (en) Viscosity measuring method and viscosity measuring apparatus
JPS6157565B2 (en)
JPS5821124A (en) Measuring device for volume and specific gravity of rubber test piece or the like
JPH081478Y2 (en) Specific gravity measuring device
CN217032677U (en) Material level sensor
CN210401124U (en) Cement or mineral admixture powder density measuring device for concrete
JP2020148731A5 (en)
CN115468878B (en) Powder material wetting contact angle measuring method and device, equipment and storage medium
JPS59122916A (en) Liquid quantity measuring device
JPH0213961Y2 (en)
Dolz et al. An inexpensive and accurate tensiometer using an Electronic Balance
JPH0530757U (en) Liquid concentration meter using load cell