JP2672696B2 - Capillary radius and contact angle measuring device for powder layer - Google Patents

Capillary radius and contact angle measuring device for powder layer

Info

Publication number
JP2672696B2
JP2672696B2 JP18682590A JP18682590A JP2672696B2 JP 2672696 B2 JP2672696 B2 JP 2672696B2 JP 18682590 A JP18682590 A JP 18682590A JP 18682590 A JP18682590 A JP 18682590A JP 2672696 B2 JP2672696 B2 JP 2672696B2
Authority
JP
Japan
Prior art keywords
pipe
liquid
granular material
material layer
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18682590A
Other languages
Japanese (ja)
Other versions
JPH0472543A (en
Inventor
憲美 彼谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP18682590A priority Critical patent/JP2672696B2/en
Publication of JPH0472543A publication Critical patent/JPH0472543A/en
Application granted granted Critical
Publication of JP2672696B2 publication Critical patent/JP2672696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉粒体層の毛細管半径と接触角とを測定す
るために、通液自在な底部を有する試料粉粒体層充填用
パイプと、そのパイプ内の試料粉粒体層に前記底部から
浸透させる液体を収納する容器を上下方向で接近させる
駆動装置を設け、前記パイプ内の試料粉粒体層を前記容
器内の液体に接触させた後前記パイプと容器の接近を停
止するように前記駆動装置を自動操作する制御器を設
け、前記パイプ内の試料粉粒体層への液体浸透に伴う前
記パイプの重量変化を測定する計量器を備え、前記パイ
プ内の試料粉粒体層を前記容器内の液体に接触させるに
際して、前記パイプと容器の相対位置が、前記試料粉粒
体層と液体が接触する設定相対位置になったか否かを判
定する位置判定手段を設け、その位置判定手段からの停
止指示に基いて前記パイプと容器の相対位置が設定相対
位置になると前記駆動装置を停止させる出力手段とを備
えた装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a sample granular material layer filling pipe having a bottom through which liquid can flow in order to measure the capillary radius and contact angle of the granular material layer. And a drive device for vertically approaching a container containing a liquid to be permeated from the bottom into the sample powder layer in the pipe, and contacting the sample powder layer in the pipe with the liquid in the container After that, a controller for automatically operating the drive device is provided so as to stop the approach of the pipe and the container, and the weight change of the pipe due to the liquid permeation into the sample granular material layer in the pipe is measured. And a relative position between the pipe and the container when the sample powder / particle layer in the pipe is brought into contact with the liquid in the container is a set relative position in which the sample powder / particle layer and the liquid are in contact with each other. A position determination means for determining whether or not Based on the stop instruction from the position determining means relates to a device and output means for stopping the drive device and the relative position of the pipe and the container reaches the set relative position.

〔従来の技術〕[Conventional technology]

従来、この種の装置は、測定開始操作に伴ってタイマ
ーを作動させ、タイマーにより設定した時間だけパイプ
と容器を接近させて、パイプ内の試料粉粒体層を容器内
の液体に、パイプの通液自在な底部を介し接触させるよ
うに構成していた。
Conventionally, this type of device operates a timer with a measurement start operation, and brings a pipe and a container close to each other for a time set by the timer, so that a sample granular material layer in the pipe becomes a liquid in the container, It was configured to be in contact with the bottom through which liquid can freely pass.

しかし、この装置はパイプ内の試料粉粒体層を容器内
の液体に浸透させる深さに大きなバラツキを生じて、結
局、測定誤差が大きく高精度の測定を実現することは難
しかった。
However, this device causes a large variation in the depth at which the sample granular material layer in the pipe penetrates into the liquid in the container, and in the end, it is difficult to realize a highly accurate measurement with a large measurement error.

更に、この装置を改良発展させたものとして、パイプ
と容器の相対位置を判定する位置判定手段を設けるとと
もに、パイプの容器が設定相対位置に達したときに駆動
装置を停止させる出力手段を設けた装置が発明された
(特願平2−101421)。
Further, as an improvement and development of this device, a position determination means for determining the relative position of the pipe and the container is provided, and an output means for stopping the drive device when the container of the pipe reaches the set relative position is provided. A device was invented (Japanese Patent Application No. 2-101421).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、かかる装置は測定装置の精度に改善が見られ
たものの、求めるべき粉粒体層の毛細管半径と接触角を
夫々別々に判定し表示していたので、必要な測定結果を
迅速に求めることはできなかった。これでは能率的でな
く、必要な粉粒体層の物性を早く求めるべくもなかっ
た。
However, although such a device showed an improvement in the accuracy of the measuring device, the capillary radius and contact angle of the granular layer to be sought were separately determined and displayed, so it is necessary to quickly obtain the necessary measurement results. I couldn't. This was not efficient, and it was not possible to quickly obtain the required physical properties of the granular material layer.

本発明の目的は、粉粒体層と液体との親和性に関する
基本的な評価手段ともいうべく毛細管半径と接触角とを
短時間の内に同時に、かつ精度を落とすことなく測定で
きる装置を提供することにある。
An object of the present invention is to provide a device capable of measuring a capillary radius and a contact angle at the same time within a short time and without sacrificing accuracy, which is also called a basic evaluation means relating to the affinity between a granular material layer and a liquid. To do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の特徴構成は、上記〔産業上の利用分野〕の項
において明示した粉粒体層の毛細管半径の接触角測定装
置において、 前記計量器による重量増加があった場合に前記計量器
による測定重量の時間変化を記憶する手段と、 その記憶された重量の時間変化から次式におけるパラ
メータaを最小二乗法により算出する手段と、 Wt 2=a・t+b ついで、次式におけるパラメータAを最小二乗法によ
り算出する手段と、 Wt=t/(A・t+B) 前記a,Aの測定結果が実質的に変化しなくなったかど
うかを判定する手段と、 前記a,Aの測定結果が実質的に変化しなくなったなった
とき、a算出手段,A算出手段より算出されたa,Aから粉
粒体層の毛細管半径rと接触角θを次式に従い算出する
手段と、 (但し、ρは液密度、gは重力加速度、εは粉粒体層
の空隙率、γは液体の表面張力、ηは液粘性、Sは
粉粒体層の断面積である) 毛細管半径r,接触角θ算出手段より算出された粉粒体
層の毛細管半径rと接触角θとを表示する手段と を設けたことにあり、その作用効果は次の通りである。
The characteristic configuration of the present invention is, in the contact angle measuring device for the capillary radius of the powder / granular material layer specified in the section of [Industrial application], in the case where there is an increase in weight by the measuring device, measurement by the measuring device. A means for storing the time change of the weight, a means for calculating the parameter a in the following equation from the stored time change of the weight by the least square method, and W t 2 = a · t + b, and then a parameter A in the following equation Means for calculating by the square method, W t = t / (A · t + B) means for determining whether or not the measurement results of the a and A are substantially unchanged, and the measurement results of the a and A are substantially And a means for calculating the capillary radius r and the contact angle θ of the powder / particle layer from the a and A calculated by the a calculating means and the A calculating means according to the following equation, (However, ρ L is the liquid density, g is the acceleration of gravity, ε is the porosity of the powder layer, γ L is the surface tension of the liquid, η L is the liquid viscosity, and S is the cross-sectional area of the powder layer.) A means for displaying the capillary radius r and the contact angle θ of the powder / granular material layer calculated by the capillary radius r and the contact angle θ calculation means is provided, and the operation and effect thereof are as follows.

〔作 用〕(Operation)

従来の装置のように、粉粒体層の毛細管半径rと接触
角θを別々に算出して、個別に表示するものではなく、
1回の測定で粉粒体層の毛細管半径rと接触角θとが同
時に求めることができ、かつ浸透液が平衡条件に達しな
くとも近似式から飽和状態での浸透重量を容易に予測で
きるので、測定時間が大幅に短縮されることとなる。
Unlike the conventional device, the capillary radius r and the contact angle θ of the granular layer are calculated separately and are not individually displayed.
Since the capillary radius r and the contact angle θ of the granular layer can be obtained at the same time with one measurement, and the permeation weight in the saturated state can be easily predicted from the approximate expression even if the permeate does not reach the equilibrium condition. , The measurement time will be greatly shortened.

又、パラメータの算出に最小二乗法を用いて解析を行
っているので、測定データのバラツキは吸収されて、粉
粒体層の毛細管半径rと接触角θの精度のよい測定が可
能となる。
Further, since the least squares method is used for the calculation of the parameters, the variation in the measurement data is absorbed, and the capillary radius r and the contact angle θ of the granular layer can be measured with high accuracy.

〔発明の効果〕〔The invention's effect〕

その結果、粉粒体層と液体との親和性に関する基本的
な評価手段ともいうべく毛細管半径と接触角とを短時間
の内に同時に、かつ精度を落とすことなく測定できる装
置を提供できるようになった。
As a result, it is possible to provide a device capable of measuring the capillary radius and the contact angle at the same time within a short time, and also as a basic evaluation means relating to the affinity between the granular material layer and the liquid, and without lowering the accuracy. became.

請求項2に記載のように、間歇移動実行手段と間歇移
動指示手段によりパイプと容器の接近を間歇的に行わ
せ、駆動装置の停止時に計量器による計測重量を計測値
記憶手段により読取らせて、パイプや容器の動慣性によ
る計測誤差を無くし、そして、計測値記憶手段により複
数の計測重量を読取って記憶させ、その複数の計測重量
の偏差が設定範囲になったことが偏差判定手段により確
認されるまで、計測値記憶手段により計測重量を読取っ
て記憶させ、偏差が設定範囲になると、その安定した計
測重量に基いて記憶すべき計測重量を記憶値決定手段に
より決定させて、決定値記憶手段に記憶される決定計測
重量をパイプや液体の揺れによる誤差を無くすと、試料
粉粒体層の液体への浸漬深さを一層厳密に一定化でき、
従って、粉粒体層の毛細管半径と接触角の同時測定の精
度向上を一段と効果的に図ることができる。
As described in claim 2, the intermittent movement execution means and the intermittent movement instruction means cause the pipe and the container to approach each other intermittently, and the weight measured by the measuring instrument is read by the measured value storage means when the drive device is stopped. Then, the measurement error due to the dynamic inertia of the pipe or the container is eliminated, and a plurality of measured weights are read and stored by the measured value storage means, and the deviation determination means that the deviation of the plurality of measured weights is within the set range. Until it is confirmed, the measured weight is read and stored by the measured value storage means, and when the deviation is within the set range, the stored value determination means determines the measured weight to be stored based on the stable measured weight, and the determined value. By eliminating the error in the determined measured weight stored in the storage means due to the shaking of the pipe and the liquid, the immersion depth of the sample granular material layer in the liquid can be made more strictly constant,
Therefore, the accuracy of simultaneous measurement of the radius of the capillary and the contact angle of the powder / granular layer can be improved more effectively.

〔実施例〕〔Example〕

次に、本発明にかかる粉粒体層の毛細管半径と接触角
測定装置の実施例を、図面を参照して詳細に説明する。
Next, an example of a device for measuring a capillary radius of a granular material layer and a contact angle according to the present invention will be described in detail with reference to the drawings.

第1図に示すように、ろ紙製底等の通液自在な底部を
有するパイプ(1)を、電子天秤等の計量器(2)に吊
下げ、リニアヘッドモータ等の昇降用駆動装置(3)に
取付けた台(4)に容器(5)を載せ、容器(5)を駆
動装置(3)で上昇させてパイプ(1)に接近させ、パ
イプ(1)内に充填した試料粉粒体層(P)に容器
(5)内の液体(L)をパイプ(1)底部から浸透さ
せ、試料粉粒体層(P)への液体(L)浸透に伴うパイ
プ(1)の重量変化を計量器(2)で測定するように構
成してある。
As shown in FIG. 1, a pipe (1) having a liquid-permeable bottom such as a filter paper bottom is hung on a measuring device (2) such as an electronic balance to elevate a driving device (3) such as a linear head motor. ), The container (5) is placed on the table (4), and the container (5) is moved up by the driving device (3) to approach the pipe (1), and the sample granular material filled in the pipe (1) The liquid (L) in the container (5) is permeated into the layer (P) from the bottom of the pipe (1), and the weight change of the pipe (1) due to the permeation of the liquid (L) into the sample granular material layer (P) is caused. It is configured to measure with a scale (2).

更に、駆動装置(3)の操作及び計量器(2)からの
情報の処理を自動的に実行するコンピュータ(C)を設
け、コンピュータ(C)に対する入力器(6)、及び、
コンピュータ(C)で求められた測定結果を表示する表
示器(7)を設けてある。
Further, a computer (C) for automatically executing the operation of the driving device (3) and the processing of the information from the weighing instrument (2) is provided, and the input device (6) for the computer (C), and
A display device (7) for displaying the measurement result obtained by the computer (C) is provided.

コンピュータ(C)は、駆動装置(3)を自動操作す
る制御器(A)と、計量器(2)の計測重量変化に基い
て各種のデータを算出する演算器(B)とからなってい
る。
The computer (C) is composed of a controller (A) for automatically operating the drive unit (3) and an arithmetic unit (B) for calculating various data based on a change in measured weight of the weighing machine (2). .

制御器(A)には、第2図に示すように、下記(a)
項ないし(h)項の手段が設けられている。
As shown in FIG. 2, the controller (A) has the following (a)
The means of the items (h) to (h) are provided.

a) 入力器(6)からの測定開始指示に基いて、駆動
装置(3)を間歇作動させる間歇移動実行手段(8)に
パイプ(1)の液体(L)中への浸漬、つまり、容器
(5)の上昇を指示するパイプ浸漬指示手段(9)。
a) Immersion of the pipe (1) into the liquid (L), that is, a container, in the intermittent movement execution means (8) that intermittently operates the drive device (3) based on the measurement start instruction from the input device (6) Pipe dipping instruction means (9) for instructing the ascent of (5).

尚、間歇移動実行手段(8)は例えば1回当り0.2秒
程度の微小時間だけ駆動装置(3)を作動させる。
The intermittent movement executing means (8) actuates the driving device (3) for a very short time of, for example, 0.2 seconds per time.

b) 間歇移動実行手段(8)からの情報に基いて駆動
装置(3)の停止時に、計量器(2)による計測重量の
複数を読取って記憶する計測値記憶手段(11)。
b) Measured value storage means (11) for reading and storing a plurality of weights measured by the weighing machine (2) when the drive device (3) is stopped based on the information from the intermittent movement execution means (8).

c) 計測記憶手段(11)からの情報に基いて前記複数
の計測重量の偏差が設定範囲になったか否かを判別する
偏差判定手段(12)。
c) Deviation determining means (12) for determining whether or not the deviations of the plurality of measured weights are within a set range based on the information from the measurement storage means (11).

つまり、例えば3個以上の設定数の最新読取り計測重
量の全てがその平均値に対して設定範囲の偏差になった
か否かを判別させるようにプログラムしてある。
That is, for example, it is programmed to determine whether all of the latest read measured weights of three or more set numbers have deviations in the set range from the average value.

d) 偏差判定手段(12)からの情報に基いて偏差が設
定範囲内になると、計測値記憶手段(11)からの情報に
基いて記憶すべき計測重量を決定する記憶値決定手段
(13)。
d) Stored value determination means (13) for determining the measured weight to be stored based on the information from the measured value storage means (11) when the deviation is within the set range based on the information from the deviation determination means (12). .

例えば上記平均値、その平均値に最も近い計測重量、
最新の計測重量などの適当な値が、記憶すべき計測重量
に決定されるようにプログラムしてある。
For example, the above average value, the measured weight closest to the average value,
A suitable value, such as the latest measured weight, is programmed to determine the measured weight to be stored.

e) 記憶値決定手段(13)からの決定計測重量を記憶
する決定値記憶手段(14)。
e) A determined value storage means (14) for storing the determined measured weight from the stored value determination means (13).

f) 偏差判定手段(12)からの情報に基いて偏差が設
定範囲内になると、間歇移動実行手段(8)に次の間歇
移動、つまり容器(5)の上昇を指示する間歇移動指示
手段(15)。
f) When the deviation falls within the set range based on the information from the deviation determination means (12), the intermittent movement execution means (8) instructs the next intermittent movement, that is, the intermittent movement instruction means (8) for raising the container (5). 15).

g) 前記決定値記憶手段(14)からの情報に基いて、
決定計測重量が増大したか否かを判別する記憶値変化状
態判定手段(16)。
g) Based on the information from the determined value storage means (14),
Memorized value change state judging means (16) for judging whether or not the determined measured weight has increased.

h) 記憶値変化状態判定手段(16)からの情報に基い
て決定計測重量が増大すると、駆動装置(3)の停止指
示を出力手段(17)に発信する停止位置決定手段(1
8)。
h) Stop position determining means (1) for transmitting a stop instruction of the driving device (3) to the output means (17) when the determined measured weight increases based on the information from the stored value change state determining means (16).
8).

つまり、計測重量が増大していなければ、駆動装置
(3)が停止せず、間歇移動実行手段(8)による間歇
移動が続行され従前の動作が繰り返される。
That is, if the measured weight has not increased, the drive device (3) does not stop, the intermittent movement by the intermittent movement execution means (8) is continued, and the previous operation is repeated.

演算器(B)には、第3図に示すように、下記(イ)
項ないし(チ)項の手段が設けられている。
As shown in FIG. 3, the computing unit (B) has the following (a)
The means of items (h) to (h) are provided.

(イ) 入力器(6)からのρs,Ws,Hに基いて試料粉粒
体層の断面積Sを下記式 S=WS/(ρ・H) により算出するS算出手段(19)。
(A) S calculation means (19) for calculating the cross-sectional area S of the sample granular material layer based on ρs, Ws, H from the input device (6) by the following formula S = W S / (ρ S · H) .

尚、ρは、パイプ(1)に充填された試料粉粒体層
(P)の真密度、Wsは試料粉粒体層(P)の重量、Hは
試料粉粒体層(P)の充填高さである。
In addition, ρ s is the true density of the sample granular material layer (P) filled in the pipe (1), W s is the weight of the sample granular material layer (P), and H is the sample granular material layer (P). Is the filling height of.

(ロ) 入力器(6)からのρs,Ws,Hに基いて試料粉粒
体層の空隙率εを下記式 により算出するε算出手段(20)。
(B) Based on ρs, Ws, and H from the input device (6), calculate the porosity ε of the sample granular material layer by the following formula. Ε calculating means (20) for calculating by.

(ハ) 出力手段(17)からの情報により駆動装置
(3)が停止されるとスタートする測定用タイマー(2
1)。
(C) The measurement timer (2) which starts when the drive (3) is stopped by the information from the output means (17)
1).

(ニ) 計量器(2)からの測定重量Wtと測定用タイマ
ー(21)からの測定時間tの相関を記憶するWt−t相関
記憶手段(22)。
W t -t correlation storing means for storing the measurement correlation time t from (d) measuring instrument and measuring the weight Wt from (2) measuring timer (21) (22).

(ホ) Wt−t相関記憶手段(22)からの情報に基づ
き、計量器(2)からの測定重量Wtと測定開始からの測
定時間tのデータを、次式で近似して最小二乗法により
パラメータaを算出する手段(23)。
(E) W t on the basis of information from -t correlation storing means (22), meter data of measurement time t from the measured weight Wt and the measurement starting from (2), the least squares method approximated by the following equation Means (23) for calculating the parameter a by.

Wt 2=a・t+b 尚、パラメータbは切片を表すが毛細管半径、接触角の
算出に関係しないので、ここではaのみを求める。
W t 2 = a · t + b Note that the parameter b represents the intercept, but since it is not related to the calculation of the capillary radius and the contact angle, only a is obtained here.

(ヘ) ついで、Wt−t相関記憶手段(22)からの情報
に基づき、設定測定時間が経過すると、測定重量Wtと測
定開始からの測定時間tのデータを次式で近似して最小
二乗法によりパラメータAを算出する手段(24)。
(F) Then, W t based on information from -t correlation storing means (22), when the lapse of set measurement time, minimize the data of measurement time t from the measured weight W t and the measurement start approximated by the following equation Means (24) for calculating the parameter A by the square method.

Wt=t/(A・t+B) (ト) a,Aの測定結果が一定以上の十分な精度で収束
し、実質的に変化しなくなったかどうかを判定する手段
(25)。
W t = t / (A · t + B) (G) A means (25) for determining whether or not the measurement results of a and A converge with sufficient accuracy above a certain level and are substantially unchanged.

つまり、前記a,Aのi番目の測定値ai,Aiが夫々a,Aの
i−1番目の測定値ai-1,Ai-1にほぼ等しくなるかどう
か、あるいは測定値ai,Aiと測定値ai-1,Ai-1との差が設
定した値以下に収束したかどうかを判断する。
That is, whether or not the i-th measured value a i , A i of a, A is approximately equal to the i-1 -th measured value a i-1 , A i-1 of a, A respectively, or whether the measured value a i It is determined whether or not the difference between i , A i and the measured values a i-1 , A i-1 has converged to be less than or equal to the set value.

(チ) 入力器(6)からのρLL,g,γ、S算出手
段(19)からのS、ε算出手段(20)からのε、a算出
手段(23)からのa、A算出手段(24)からのAに基い
て、試料粉粒体層の平均毛細管半径r及び試料粉粒体層
(P)と液体(L)の間の接触角θを、粉粒体層への液
体浸透上昇に関するWashburn式の一般解に基づいて得ら
れる下記式 により算出するr,θ算出手段(26)。
( H ) ρ L , η L , g, γ L from the input device (6), S from the S calculating means (19), ε from the ε calculating means (20), and a from the a calculating means (23). , A based on A from the calculating means (24), the average capillary radius r of the sample granular material layer and the contact angle θ between the sample granular material layer (P) and the liquid (L) are calculated as follows. The following equation obtained based on the general solution of the Washburn equation regarding the increase of liquid permeation into the R, θ calculating means (26) for calculating by.

尚、ρは容器(5)内の液体(L)の密度、η
液体(L)の粘度、gは重力加速度である。γは液体
(L)の表面張力であって、円環法などの表面張力測定
法により予め決定されたものである。
Note that ρ L is the density of the liquid (L) in the container (5), η L is the viscosity of the liquid (L), and g is the acceleration of gravity. γ L is the surface tension of the liquid (L), which is determined in advance by a surface tension measuring method such as a ring method.

次に、上記装置による測定について、第4図を参照し
て説明する。
Next, the measurement by the above device will be described with reference to FIG.

1) 入力器(6)によりρS,WS,H,ρL,η,γL,gを入
力すると、手段(19),(20)によりSとεが算出され
る。
1) When ρ S , W S , H, ρ L , η, γ L , g is input by the input device (6), S and ε are calculated by the means (19), (20).

2) 入力器(6)により測定開始を指示すると、容器
(5)が間歇的に上昇される。そして、容器(5)の停
止毎に、表面張力または浮力が検出できるかどうかが判
別される。
2) When the start of measurement is instructed by the input device (6), the container (5) is intermittently raised. Then, each time the container (5) is stopped, it is judged whether the surface tension or the buoyancy can be detected.

3) 表面張力または浮力が検出できないようであれ
ば、容器(5)の間歇上昇が継続される。
3) If the surface tension or buoyancy cannot be detected, the intermittent rise of the container (5) is continued.

4) 表面張力または浮力が検出できるようにあれば、
容器(5)の間歇上昇が中止されると共に、測定用タイ
マー(21)がスタートし時間読み込みが開始される。
4) If surface tension or buoyancy can be detected,
The intermittent rise of the container (5) is stopped, the measurement timer (21) is started, and the time reading is started.

5) 手段(22)によりWtとtとの相関が記憶され測定
時間が経過すると、Wtとtの測定値をWt 2=a・t+b
で近似して、最小二乗法によりaを算出する。
5) If the correlation between W t and t by means (22) has elapsed is stored measurement time, the measurement value of W t and t W t 2 = a · t + b
And is calculated by the method of least squares.

6) ついで、更に測定時間が経過すると、Wtとtの測
定値をWt=t/(A・t+B)で近似して、最小二乗法に
よりAを算出する。
6) Then, after a lapse of further measurement time, by approximating the measured values of the Wt and t in W t = t / (A · t + B), to calculate the A by the least squares method.

7) Wtとtの測定値を上記近似式に代入してa,Aが変
動するかどうか(a,Aが十分な精度で収束するかどう
か)を判断し、収束していないと判断される場合には、
再度容器(5)の間歇上昇が行われ測定が繰り返され
る。
7) Substitute the measured values of W t and t into the above approximation formula to determine whether or not a and A fluctuate (whether or not a and A converge with sufficient accuracy). If
The container (5) is again raised intermittently and the measurement is repeated.

8) a,Aの変動が少ない場合には、このa,AとρL,
η、γL,g,ε,Sに基いてcosθ又は必要に応じてcos
θからθがrと共に手段(26)により算出される。
8) When the fluctuations of a, A are small, this a, A and ρ L ,
cos θ based on η L , γ L , g, ε, S or cos as required
θ to θ are calculated together with r by means (26).

9) r,cos θ又は必要に応じてθ、更に又、必要に応
じてρS,WS,H,ρL,η,γL,g,W,ε,rが表示器(7)に
より示される。
9) r, cos θ or θ if necessary, and ρ S , W S , H, ρ L , η, γ L , g, W, ε, r as required by the display (7). Shown.

〔別実施例〕(Another embodiment)

次に別実施例を説明する。 Next, another embodiment will be described.

パイプ(1)内の試料粉粒体層(P)を容器(5)内
の液体(L)に接触させるに際して、駆動装置(3)に
よりパイプ(1)を下降させてもよく、又、パイプ
(1)と容器(5)の相対位置が、試料粉粒体層(P)
と液体(L)が接触する設定相対位置になったか否かを
判定するに、各種の位置判定手段を利用できる。例え
ば、光学式などの無触媒式センサーでパイプ(1)と容
器(5)の相対位置関係を検出して、そのセンサーから
の情報で出力手段(17)により駆動装置(3)を停止す
るように構成してもよい。
When the sample granular material layer (P) in the pipe (1) is brought into contact with the liquid (L) in the container (5), the pipe (1) may be lowered by the driving device (3), or the pipe (1) may be lowered. The relative position of (1) and the container (5) is the sample powder layer (P).
Various position determination means can be used to determine whether or not the set relative position in which the liquid (L) and the liquid (L) come into contact with each other. For example, a non-catalytic sensor such as an optical sensor is used to detect the relative positional relationship between the pipe (1) and the container (5), and information from the sensor is used to stop the driving device (3) by the output means (17). You may comprise.

測定用タイマーは必ずしも必要ではないが、用いると
測定時間を定量化できて便利である。
A measurement timer is not always necessary, but it is convenient to use it because it can quantify the measurement time.

表示器(7)により表示させるデータは少なくとも
r、cos θ又はθであればよい。
The data displayed by the display (7) may be at least r, cos θ or θ.

尚、特許請求の範囲の項に図面との対照を便利にする
為に符号を記すが、該記入により本発明は添付図面の構
造に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the structure shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第4図は本発明の実施例を示し、第1図は
装置の概念図、第2図は制御器のブロック図、第3図は
演算器のブロック図、第4図は動作説明のフローチャー
トである。 (1)……パイプ、(2)……計量器、(3)……駆動
装置、(5)……容器、(7)……表示手段(表示
器)、(8)……間歇移動実行手段、(11)……計測値
記憶手段、(12)……偏差判定手段、(13)……記憶値
決定手段、(14)……決定値記憶手段、(15)……間歇
移動指示手段、(16)……記憶値変化状態判定手段、
(17)……出力手段、(18)……停止位置決定手段、
(22)……測定重量の時間変化を記憶する手段、(23)
……パラメータa算出手段、(24)……パラメータA算
出手段、(25)……パラメータa,A変化判定手段、(2
6)……毛細管半径r,接触角θ算出手段、(A)……制
御器、(L)……液体、(P)……試料粉粒体層。
1 to 4 show an embodiment of the present invention, FIG. 1 is a conceptual diagram of the apparatus, FIG. 2 is a block diagram of a controller, FIG. 3 is a block diagram of an arithmetic unit, and FIG. 4 is an operation. It is a flow chart of explanation. (1) ... pipe, (2) ... measuring instrument, (3) ... driving device, (5) ... container, (7) ... display means (display), (8) ... intermittent movement execution Means, (11) ... measured value storage means, (12) ... deviation determination means, (13) ... memorized value determination means, (14) ... determined value storage means, (15) ... intermittent movement instruction means , (16) ... Memorized value change state determination means,
(17) …… Output means, (18) …… Stop position determination means,
(22) …… Means for storing the time change of the measured weight, (23)
...... Parameter a calculation means, (24) ...... Parameter A calculation means, (25) ...... Parameter a, A change determination means, (2
6) ... Capillary radius r, contact angle θ calculation means, (A) ... controller, (L) ... liquid, (P) ... sample powder layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】通液自在な底部を有する試料粉粒体層充填
用パイプ(1)と、そのパイプ(1)内の試料粉粒体層
(P)に前記底部から浸透させる液体(L)を収納する
容器(5)を上下方向で接近させる駆動装置(3)を設
け、前記パイプ(1)内の試料粉粒体層(P)を前記容
器(5)内の液体(L)に接触させた後前記パイプ
(1)と容器(5)の接近を停止するように前記駆動装
置(3)を自動操作する制御器(A)を設け、前記パイ
プ(1)内の試料粉粒体層(P)への液体(L)浸透に
伴う前記パイプ(1)の重量変化を測定する計量器
(2)と、 前記パイプ(1)内の試料粉粒体層(P)を前記容器
(5)内の液体(L)に接触させるに際して、前記パイ
プ(1)と容器(5)の相対位置が、前記試料粉粒体層
(P)と液体(L)が接触する設定相対位置になったか
否かを判定する位置判定手段を設け、 その位置判定手段からの停止指示に基いて前記パイプ
(1)と容器(5)の相対位置が設定相対位置になると
前記駆動装置(3)を停止させる出力手段(17)を備え
た粉粒体層の毛細管半径と接触角測定装置であって、 前記計量器(2)による重量増加があった場合に前記計
量器(2)による測定重量(Wt)の時間(t)変化を記
憶する手段(22)と、 その記憶された重量の時間変化から次式におけるパラメ
ータaを最小二乗法により算出する手段(23)と、 Wt 2=a・t+b ついで、次式におけるパラメータAを最小二乗法により
算出する手段(24)と、 Wt=t/(A・t+B) 前記a,Aの測定結果が実質的に変化しなくなったかどう
かを判定する手段(25)と、 前記a,Aの測定結果が実質的に変化しなくなったとき、
前記a算出手段(23),A算出手段(24)より算出された
a,Aから粉粒体層の毛細管半径rと接触角θを次式に従
い算出する手段(26)と、 (但し、ρは液密度、gは重力加速度、εは粉粒体層
の空隙率、γは液体の表面張力、ηは液粘性、Sは
粉粒体層の断面積である) 前記毛細管半径r,接触角θ算出手段(26)より算出され
た粉粒体層の毛細管半径rと接触角θとを表示する手段
(7)と、 を設けてあることを特徴とする粉粒体層の毛細管半径と
接触角測定装置。
1. A pipe (1) for filling a sample powder or granular material layer having a freely permeable bottom portion, and a liquid (L) for permeating the sample powder or granular material layer (P) in the pipe (1) from the bottom portion. A drive device (3) for bringing the container (5) for accommodating the liquid into close proximity in the vertical direction is provided, and the sample granular material layer (P) in the pipe (1) is brought into contact with the liquid (L) in the container (5). After that, a controller (A) for automatically operating the drive device (3) is provided so as to stop the approach of the pipe (1) and the container (5), and the sample granular material layer in the pipe (1) is provided. A measuring instrument (2) for measuring the weight change of the pipe (1) due to the permeation of the liquid (L) into the (P), and a sample granular material layer (P) in the pipe (1) are provided in the container (5). ), The relative position of the pipe (1) and the container (5) is set so that the sample granular material layer (P) and the liquid (L) are in contact with each other. ) Is provided with position determining means for determining whether or not the relative position of the pipe (1) and the container (5) is set to the set relative position based on a stop instruction from the position determining means. In this case, the device is a device for measuring the radius of a capillary and the contact angle of a granular material layer, which is provided with an output means (17) for stopping the drive device (3), wherein the weighing is performed by the weighing device (2). Means (22) for storing the time (t) change of the measured weight (Wt) by the instrument (2), and means (23) for calculating the parameter a in the following equation from the stored time change of the weight by the least square method. And W t 2 = a · t + b, and means (24) for calculating the parameter A in the following equation by the least squares method, and W t = t / (A · t + B). A means to determine whether it has stopped changing (25) a, when the measurement results of A is no longer substantially change,
Calculated by the a calculating means (23) and the A calculating means (24)
A means (26) for calculating the capillary radius r and the contact angle θ of the granular layer from a and A according to the following equations, (However, ρ L is the liquid density, g is the acceleration of gravity, ε is the porosity of the powder layer, γ L is the surface tension of the liquid, η L is the liquid viscosity, and S is the cross-sectional area of the powder layer.) Means (7) for displaying the capillary radius r and the contact angle θ of the powder / granular material layer calculated by the capillary radius r, the contact angle θ calculation means (26); Device for measuring capillary radius and contact angle of body layer.
【請求項2】前記駆動装置(3)を間歇作動させる間歇
移動実行手段(8)を設け、 前記位置判定手段を形成するに、下記(イ)項ないし
(ト)項の手段、つまり、 (イ) 前記間歇移動実行手段(8)からの情報に基い
て前記駆動装置(3)の停止時に、前記計量器(2)に
よる計測重量の複数を読取って記憶する計測値記憶手段
(11)、 (ロ) その計測値記憶手段(11)からの情報に基いて
前記複数の計測重量の偏差が設定範囲になったか否かを
判別する偏差判定手段(12)、 (ハ) その偏差判定手段(12)からの情報に基いて偏
差が設定範囲内になると、前記計測値記憶手段(11)か
らの情報に基いて記憶すべき計測重量を決定する記憶値
決定手段(13)、 (ニ) その記憶値決定手段(13)からの決定計測手段
を記憶する決定値記憶手段(14)、 (ホ) 前記偏差判定手段(12)からの情報に基いて偏
差が設定範囲内になると、前記間歇移動実行手段(8)
に次の間歇移動を指示する間歇移動指示手段(15)、 (ヘ) 前記決定値記憶手段(14)からの情報に基い
て、決定計測重量が増大したか否かを判別する記憶値変
化状態判定手段(16)、 (ト) その記憶値変化状態判定手段(16)からの情報
に基いて決定計測重量が増大すると、前記出力手段(1
7)に停止指示を発信する停止位置決定手段(18)を設
けてある請求項1記載の粉粒体層の毛細管半径と接触角
測定装置。
2. An intermittent movement executing means (8) for intermittently actuating the drive device (3) is provided, and in forming the position determining means, means (a) to (g) below, that is, B) Measured value storage means (11) for reading and storing a plurality of weights measured by the weighing machine (2) when the drive device (3) is stopped based on the information from the intermittent movement execution means (8), (B) Deviation determination means (12) for determining whether or not the deviations of the plurality of measured weights are within a set range based on the information from the measured value storage means (11), (c) the deviation determination means ( When the deviation falls within the set range based on the information from 12), the stored value determination means (13) for determining the measured weight to be stored based on the information from the measured value storage means (11), (d) Determined value storage means for storing the determined measuring means from the stored value determining means (13) (14), when the deviation is within the set range on the basis of the information from the (e) said offset determining means (12), the intermittently moving execution means (8)
(F) intermittent movement instruction means for instructing the next intermittent movement, and (f) a storage value change state for determining whether the determined measured weight has increased based on information from the determined value storage means (14). Determining means (16), (g) when the determined measured weight increases based on the information from the stored value change state determining means (16), the output means (1
7. The device for measuring the capillary radius and the contact angle of the powder / particle layer according to claim 1, further comprising stop position determining means (18) for transmitting a stop instruction to 7).
JP18682590A 1990-07-12 1990-07-12 Capillary radius and contact angle measuring device for powder layer Expired - Lifetime JP2672696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18682590A JP2672696B2 (en) 1990-07-12 1990-07-12 Capillary radius and contact angle measuring device for powder layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18682590A JP2672696B2 (en) 1990-07-12 1990-07-12 Capillary radius and contact angle measuring device for powder layer

Publications (2)

Publication Number Publication Date
JPH0472543A JPH0472543A (en) 1992-03-06
JP2672696B2 true JP2672696B2 (en) 1997-11-05

Family

ID=16195273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18682590A Expired - Lifetime JP2672696B2 (en) 1990-07-12 1990-07-12 Capillary radius and contact angle measuring device for powder layer

Country Status (1)

Country Link
JP (1) JP2672696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986134B (en) * 2010-09-20 2012-08-15 华北电力大学(保定) Automatic detection method of static contact angle
CN112710588B (en) * 2020-11-23 2023-10-13 重庆大学 Method and system for calculating and testing static contact angle of inner surface of capillary tube

Also Published As

Publication number Publication date
JPH0472543A (en) 1992-03-06

Similar Documents

Publication Publication Date Title
JPS59107236A (en) Viscosity measuring method
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer
CN106443809B (en) Acceleration of gravity experimental system and method based on laser measurement rotating liquid difference in height
US6684685B2 (en) Liquid extrusion porosimeter and method
JP2721416B2 (en) Liquid permeation rate measuring device for powder
CN206178167U (en) Acceleration of gravity experimental system based on rotatory liquid height of laser survey is poor
JPH0310059B2 (en)
JP2672679B2 (en) Surface tension measuring device
JP2020148731A5 (en)
CN115468878B (en) Powder material wetting contact angle measuring method and device, equipment and storage medium
JPH081478Y2 (en) Specific gravity measuring device
JP4018301B2 (en) Surface tension measurement method
JPS6117007A (en) Automatic measuring apparatus of contact angle
US4186608A (en) Method and apparatus for verifying declared contents of contents of certain solids
JPH0213961Y2 (en)
SU881523A1 (en) Device for determination of base tilt
JPH0126017B2 (en)
SU1002843A1 (en) Liquid media level checking method
US3108476A (en) Recording apparatus for measuring small changes in gas volume in reaction vessels
CN111220231B (en) Rock sample total volume measuring device and method
JP3206153B2 (en) Ship tilt test measurement method
SU1571510A1 (en) Device for measuring parameters of flow
US3922906A (en) Method of locating the center of gravity etc.
RU2006823C1 (en) Method of determination of physical and chemical parameters of water-and-oil emulsion
SU380976A1 (en) METHOD FOR DETERMINING THE COORDINATES OF THE CENTER FOR GRAVITY OF A PARTICULAR BODY