JPH0310059B2 - - Google Patents

Info

Publication number
JPH0310059B2
JPH0310059B2 JP1897484A JP1897484A JPH0310059B2 JP H0310059 B2 JPH0310059 B2 JP H0310059B2 JP 1897484 A JP1897484 A JP 1897484A JP 1897484 A JP1897484 A JP 1897484A JP H0310059 B2 JPH0310059 B2 JP H0310059B2
Authority
JP
Japan
Prior art keywords
liquid
pipe
calculated
sample powder
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1897484A
Other languages
Japanese (ja)
Other versions
JPS60162936A (en
Inventor
Noryoshi Kaya
Toyokazu Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP1897484A priority Critical patent/JPS60162936A/en
Publication of JPS60162936A publication Critical patent/JPS60162936A/en
Publication of JPH0310059B2 publication Critical patent/JPH0310059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0208Investigating surface tension of liquids by measuring contact angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、通液自在な底部を有する試料粉粒体
充填用パイプ、そのパイプ内の試料粉粒体に前記
底部から浸透させる液体を収納する容器、試料粉
粒体への液体浸透に伴う前記パイプの重量変化を
測定する計測器を備え、その計測器からの情報に
基いて試料粉粒体と容器内液体の間の接触角、つ
まり第6図に示すように、液体Lの表面張力γL
固定Sの表面張力γS、固液界面の界面張力γSL
よつて定まる角度θを求めるための装置の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pipe for filling a sample powder or granule having a bottom portion through which liquid can freely flow, a container for storing a liquid to be permeated into the sample powder or granule in the pipe from the bottom, and a sample powder or granule. It is equipped with a measuring device that measures the weight change of the pipe due to liquid penetration into the pipe, and based on the information from the measuring device, the contact angle between the sample powder and the liquid in the container, that is, as shown in Fig. 6, is determined. , surface tension γ L of liquid L,
This invention relates to an improvement of an apparatus for determining the angle θ determined by the surface tension γ S of a fixed S and the interfacial tension γ SL of a solid-liquid interface.

従来の装置は、試料粉粒体への液体浸透に伴う
パイプの重量変化を、測定重量と測定時間の相関
を示すグラフに自動記録するように構成していた
が、試料粉粒体と液体の間の接触角を求めるため
には、グラフの解析による必要値の読取り、及
び、その読取値と設定値に基く接触角の計算を、
別途人為的に処理しなければならず、必要値の読
取りにおける誤差のために測定精度が低下した
り、計算に多くの時間と労力を要する等の欠点が
あつた。
Conventional devices were configured to automatically record changes in the weight of the pipe due to liquid permeation into the sample powder on a graph showing the correlation between the measured weight and measurement time. In order to find the contact angle between
This method has disadvantages such as requiring separate manual processing, decreasing measurement accuracy due to errors in reading required values, and requiring a lot of time and effort for calculations.

本発明の目的は、粉粒体と液体の間の接触角が
自動的に算出されかつ表示されるようにして、精
度の良い測定を確実にかつ迅速に行えるようにす
る点にある。
An object of the present invention is to automatically calculate and display the contact angle between a powder and a liquid, so that highly accurate measurement can be performed reliably and quickly.

本発明による接触角測定装置の特徴構成は、パ
イプ内に充填された試料粉粒体への液体浸透に伴
うパイプの重量変化を測定するための計測器によ
る測定重量Wtの時間的変化を記憶する手段、そ
の記憶された重量変化から1/Wtをx軸にかつ
dWt/dtをy軸とする座標における次式 y=KWx−K −(1) の傾斜KW及びy軸切片Kを算出する手段、そ
の算出されたK、並びに、入力手段で設定又はそ
の入力手段の設定値から演算された以下の値 ε:前記パイプ内の試料粉粒体充填層における空
〓率 S:上記試料粉粒体充填層の断面積 ρL:前記パイプ内の試料粉粒体に浸透させるため
の容器内の液体の密度 η:上記液体の粘度 g:重力加速度 に基いて、前記パイプ内の試料粉粒体充填層にお
ける平均毛細管半径rを次式 r=(8ηK/εSρL 2g)1/2 −(2) により算出する手段、その算出されたr、前記設
定又は演算されたε、S及びg、前記算出された
KW及びKから算出したW、並びに、入力手段
で設定又は計測装置で実測された前記容器内液体
の表面張力γLに基いて、前記パイプ内の試料粉粒
体と前記容器内の液体との間の接触角θを次式 cosθ=rgW/2εSγL −(3) により算出する手段を設け、その算出されたθを
表示する装置を設けたことにあり、その作用効果
は次の通りである。
A characteristic configuration of the contact angle measuring device according to the present invention is that it stores temporal changes in weight Wt measured by a measuring instrument for measuring changes in weight of a pipe due to liquid penetration into a sample powder filled in the pipe. Means, from its stored weight change 1/Wt on the x-axis and
A means for calculating the slope KW and the y-axis intercept K of the following equation y=KW x-K −(1) in the coordinates with dWt/dt as the y-axis, the calculated K, and the setting or The following value ε calculated from the setting value of the input means: Void ratio S in the sample powder packed bed in the pipe: Cross-sectional area ρ L of the sample powder packed bed in the pipe Density η of the liquid in the container for infiltrating the granules: Viscosity g of the liquid: Based on the gravitational acceleration, the average capillary radius r in the sample powder packed bed in the pipe is calculated by the following formula: r = (8ηK/ εSρ L 2 g) 1/2 − (2), the calculated r, the set or calculated ε, S and g, the calculated
Based on W calculated from KW and K, and the surface tension γ L of the liquid in the container set by the input means or actually measured by the measuring device, the sample powder in the pipe and the liquid in the container are determined. We have provided a means to calculate the contact angle θ between the That's right.

つまり、パイプ内の粉粒体充填層への液体の浸
透速度Uは原理的に次式(a)で表わされる。
In other words, the permeation speed U of liquid into the powder-filled layer in the pipe is theoretically expressed by the following equation (a).

U=dWt/dt=K(W/Wt−1) =KW・1/Wt−K −(a) 但し、Wは、試料粉粒体に対する液体浸透が
平衡に達した時間における浸透液体重量であり、
また、 K=r2εSρL 2g/8η −(b) である。
U=dWt/dt=K(W /Wt−1) =KW ・1/Wt−K −(a) However, W is the permeating liquid at the time when liquid permeation into the sample powder reaches equilibrium. weight,
Moreover, K=r 2 εSρ L 2 g/8η −(b).

したがつて、測定重量Wtの時間的変化を記憶
させ、第3図に示すように、その記憶された重量
変化から時間tにおける1/Wt及びdWt/dtを
求めさせて、その求めた値を、1/Wtをx軸に
かつdWt/dtをy軸とする座標上にプロツトさせ
ると、上記式(a)及び前述の式(1)から明らかなよう
に、第4図に示すような直線が得られる。そし
て、その直線の傾斜αがKWであり、y軸切片
BがKであり、αとβからW及びKが求められ
る。
Therefore, the temporal change in the measured weight Wt is stored, and as shown in Fig. 3, 1/Wt and dWt/dt at time t are calculated from the stored weight change, and the calculated values are calculated. , 1/Wt on the x-axis and dWt/dt on the y-axis, as is clear from the above equation (a) and the above equation (1), a straight line as shown in Figure 4 is drawn. is obtained. Then, the slope α of the straight line is KW , the y-axis intercept B is K, and W and K are found from α and β.

他方、上記式(b)を変換すると前述の式(2)とな
り、前述のようにKが求まれば、式(2)から、か
つ、入力されているε、S、ρL、η、gに基い
て、rを算出できる。
On the other hand, if the above equation (b) is converted, the above equation (2) is obtained, and if K is found as described above, from equation (2) and the input ε, S, ρ L , η, g Based on, r can be calculated.

そして、前述のようにW及びrが算出できれ
ば、前述の式(3)から、かつ入力されているε、
S、γL、gに基いて、接触角θを算出できるもの
であり、以上の情報処理及び演算処理がマイクロ
コンピユータにより処理され、かつ、求めた接触
角θが表示用装置で数値表示されるのである。
If W and r can be calculated as described above, then from the above formula (3) and the input ε,
The contact angle θ can be calculated based on S, γ L and g, and the above information processing and arithmetic processing are processed by a microcomputer, and the determined contact angle θ is numerically displayed on a display device. It is.

その結果、接触角θを、W及びKを求めるに
際しての解析誤差が無い状態で、かつ、演算誤差
が無い状態で、極めて正確に求められ、かつ、極
めて迅速に求められるようになり、塗料、薬品、
化粧品、食品などの広い分野で大きな実用価値の
ある測定装置を提供できるようになつた。
As a result, the contact angle θ can be determined extremely accurately and extremely quickly without any analytical errors or calculation errors when determining W and K. , drugs,
It is now possible to provide measuring devices that have great practical value in a wide range of fields such as cosmetics and food.

次に、実施例を示す。 Next, examples will be shown.

第1図に示すように、ろ紙製底等の通液自在な
底部を有するパイプ1を、電子天秤等の計測器2
に吊下げ、リニアヘツドモータ等の昇降用アクチ
ユエータ3に取付けた台4に容器5を載せ、もつ
て、パイプ1内に充填した試料粉粒体Sに容器5
内の液体Lを、容器5をアクチユエータ3で上昇
させて、パイプ1底部から浸透させ、試料粉粒体
Sへの液体L浸透に伴うパイプ1の重量変化を計
測器2で測定するように構成してある。
As shown in FIG.
The container 5 is placed on a stand 4 attached to a lifting actuator 3 such as a linear head motor, and then the container 5 is placed on the sample powder S filled in the pipe 1.
The container 5 is raised by an actuator 3 to infiltrate the liquid L in the pipe 1 from the bottom of the pipe 1, and the change in weight of the pipe 1 as the liquid L permeates into the sample powder S is measured by a measuring device 2. It has been done.

計測器2からの測定値、及び、キーボード等の
入力手段(6)からの設定値に基いて、X−Yプロツ
ター等の測定結果を表示する装置7を動作させる
と共に、アクチユエータ3の始動・停止を行う操
作部8に対して、入力手段(6)からの情報に基いて
操作指令を与え、かつ、測定開始指令をその操作
部8から受けるマイクロコンピユータ9を設けて
ある。尚、速度調節器10は、アクチユエータ3
による受皿5の上昇速度を人為的に設定するもの
である。
Based on the measured value from the measuring instrument 2 and the set value from the input means (6) such as a keyboard, the device 7 for displaying the measurement results such as an X-Y plotter is operated, and the actuator 3 is started and stopped. A microcomputer 9 is provided for giving operation commands to the operation section 8 based on information from the input means (6) and for receiving a measurement start command from the operation section 8. Note that the speed regulator 10 is connected to the actuator 3
This is to artificially set the rising speed of the saucer 5.

上記測定装置の動作ステツプを第2図のフロー
チヤートにより以下に説明する。
The operation steps of the above-mentioned measuring device will be explained below with reference to the flowchart of FIG.

(1) 入力手段(6)から下記の各種設定値を入力す
る。
(1) Input the following various setting values from the input means (6).

ρS:パイプ1に充填された試料粉粒体Sの真密
度 WS:上記試料粉粒体Sの重量 H:上記試料粉粒体Sの充填高さ T:測定時間 ρL:容器5内の液体Lの密度 η:上記液体Lの粘度 γL:上記液体Lの表面張力 g:重力加速度 (2) 設定値ρS,WS,Hに基いて、試料粉粒体層
の断面積S及び、空隙率εを、下記式(イ)、(ロ)に
より算出する。
ρ S : True density of the sample powder S filled in the pipe 1 W S : Weight of the sample powder S H: Filling height of the sample powder S T: Measurement time ρ L : Inside the container 5 Density of the liquid L η: Viscosity of the liquid L γ L : Surface tension of the liquid L g: Gravitational acceleration (2) Based on the set values ρ S , W S , H, the cross-sectional area S of the sample powder layer Then, the porosity ε is calculated using the following formulas (a) and (b).

S=WS/ρSH −(イ) ε=SH−(WS/ρS)/SH −(ロ) (3) 入力手段(6)からの測定開始指令によりアクチ
ユエータ3により容器5を上昇させ、液体Lが
パイプ1に接触すると同時に、アクチユエータ
3を停止すると共に測定用タイマーをスタート
させる。
S=W SS H −(a) ε=SH−(W SS )/SH −(b) (3) The actuator 3 raises the container 5 in response to the measurement start command from the input means (6). When the liquid L comes into contact with the pipe 1, the actuator 3 is stopped and a measurement timer is started.

(4) 計測器2による測定重量Wtが入力され、Wt
の増加が始まると同時に、測定用タイマーより
測定時刻tが入力される。
(4) The weight W t measured by measuring instrument 2 is input, and W t
At the same time as the start of increase, measurement time t is input from the measurement timer.

(5) Wtとtの相関をメモリーに記憶する。(5) Store the correlation between W t and t in memory.

(6) 測定時間Tが経過すると、記憶したWtとt
の相関に基いて、第3図に示すような浸透速度
曲線を表示装置7に作用する。
(6) When the measurement time T has elapsed, the memorized W t and t
Based on the correlation, a permeation rate curve as shown in FIG. 3 is displayed on the display device 7.

(7) 浸透速度曲線に基いて、第4図に示すような
dWt/dtと1/Wtの関係図を表示装置7に作
図する。
(7) Based on the penetration rate curve, as shown in Figure 4.
A relationship diagram between dWt/dt and 1/Wt is drawn on the display device 7.

(8) dWt/dtと1/Wtの傾斜αとy軸切片Bに
基いて、試料紛粒体Sに対する液体Lが平衡に
達した時間における浸透液体重量W、及び、
定数Kを下記式(ハ)、(ニ)により算出する。
(8) Based on the slope α of dWt/dt and 1/Wt and the y-axis intercept B, the penetrating liquid weight W at the time when the liquid L reaches equilibrium with respect to the sample powder S, and
The constant K is calculated using the following formulas (c) and (d).

W=α/K −(ハ) K=B −(ニ) (9) 設定値ρL、η、gおよび算出値ε、S、Kに
基いて、試料紛粒体層の平均毛細管半径rを、
下記式(ホ)により算出する。
W = α / K − (c) K = B − (d) (9) Based on the set values ρ L , η, g and the calculated values ε, S, K, the average capillary radius r of the sample powder layer of,
Calculated using the following formula (e).

r=(8ηK/εSρL 2g)1/2 −(ホ) (10) 設定値γL、g及び算出値ε、S、W、rに
基いて、試料粉粒体Sと液体Lの間の接触角
θ、及び、付着張力γLcosθを、下記式(ヘ)により
算出する。
r=(8ηK/εSρ L 2 g) 1/2 −(E) (10) Based on the set values γ L , g and the calculated values ε, S, W , r, calculate the difference between the sample powder S and the liquid L. The contact angle θ between and the adhesion tension γ L cos θ are calculated using the following formula (f).

γLcosθ=rgW/2εS −(ヘ) (11) 設定値ρS、WS、H、T、ρL、η、γL、g及
び算出値W、ε、r、γLcosθ、θを表示装置
7で記録表示する。
γ L cosθ=rgW /2εS −(f) (11) Set value ρ S , W S , H, T, ρ L , η, γ L , g and calculated value W , ε, r, γ L cosθ, θ is recorded and displayed on the display device 7.

(12) アクチユエータ3により容器5を下限設定
位置まで下降させて、測定を完了する。
(12) The actuator 3 lowers the container 5 to the lower limit setting position to complete the measurement.

次に、別の実施例を示す。 Next, another example will be shown.

試料粉粒体充填層の空隙率ε及び断面積Sを入
力手段(6)に人為設定するように構成してもよい。
The porosity ε and the cross-sectional area S of the sample powder packed bed may be manually set in the input means (6).

また、液体Lの表面張力γLを、円環法による測
定装置で実測させ、その実測値を入力手段(6)に自
動設定するように構成したり、あるいは、パイプ
1に代えて白金リングを計測器2に吊下げて、円
環法により予め液体Lの表面張力γLを実測すると
共に、その実測値を、マイクロコンピユータ9に
記憶させて、接触角θの測定時に入力させるよう
に構成してもよい。尚、円環法について、計測器
2を利用する場合を例にして、第7図により以下
に説明する。白金リング11をほぼ水平姿勢で索
具12により吊下げられるように構成したアタツ
チメントを、計測器2のフツク2aに吊下げ、容
器5の上昇により白金リング11を液体Lに接触
させ、次に、容器5を下降させて、最大荷重Pを
計測器2で測定させ、マイクロコンピユータ9に
おいて、下記式により表面張力γLを演算させる。
In addition, the surface tension γ L of the liquid L may be actually measured using a measuring device using the ring method, and the measured value may be automatically set in the input means (6), or a platinum ring may be used instead of the pipe 1. It is suspended from the measuring device 2 and is configured to actually measure the surface tension γ L of the liquid L in advance using the ring method, and to store the measured value in the microcomputer 9 and input it when measuring the contact angle θ. It's okay. The ring method will be explained below with reference to FIG. 7, using the measuring instrument 2 as an example. An attachment configured to allow the platinum ring 11 to be suspended by the rigging 12 in a substantially horizontal position is suspended from the hook 2a of the measuring instrument 2, and the platinum ring 11 is brought into contact with the liquid L by raising the container 5, and then, The container 5 is lowered, the maximum load P is measured by the measuring device 2, and the microcomputer 9 calculates the surface tension γ L using the following formula.

γL=FP/4πR 但し、Fは補正係数、πは円周率、Rは白金リ
ング11の半径である。
γ L =FP/4πR where F is a correction coefficient, π is pi, and R is the radius of the platinum ring 11.

表示装置7により少くとも接触角θが表示され
ればよく、したがつて、マイクロコンピユータ9
は少くとも第5図に示す機能を備えていればよ
い。
It is sufficient that the display device 7 displays at least the contact angle θ, and therefore the microcomputer 9
It suffices if it has at least the functions shown in FIG.

容器5昇降を人為的に行うように構成して、計
測器2による測定重量Wtの変化状態からマイク
ロコンピユータ9による測定開始及び接触角θ算
出開始のタイミングを決定するように構成しても
よい。
The container 5 may be raised and lowered artificially, and the timing for the start of measurement and the start of calculation of the contact angle θ by the microcomputer 9 may be determined based on the state of change in the weight Wt measured by the measuring instrument 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す概略図であ
る。第2図は、本発明の実施例における動作状態
を示すフローチヤートである。第3図はWt−t
線図であり、第4図はdWt/dt−1/Wt線図で
ある。第5図はマイクロコンピユータのクレーム
対応図である。第6図は接触角θの説明図であ
る。第7図は円環法の説明図である。 1……パイプ、2……計測器、5……容器、S
……試料粉粒体、L……液体。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. FIG. 2 is a flowchart showing the operating state in the embodiment of the present invention. Figure 3 shows Wt-t
FIG. 4 is a dWt/dt-1/Wt diagram. FIG. 5 is a diagram showing how microcomputers respond to complaints. FIG. 6 is an explanatory diagram of the contact angle θ. FIG. 7 is an explanatory diagram of the circular ring method. 1... Pipe, 2... Measuring instrument, 5... Container, S
...Sample powder, L...Liquid.

Claims (1)

【特許請求の範囲】 1 通液自在な底部を有する試料粉粒体充填用パ
イプ1、そのパイプ1内の試料粉粒体Sに前記底
部から浸透させる液体Lを収納する容器5、試料
粉粒体Sへの液体L浸透に伴う前記パイプ1の重
量変化を測定する計測器2を備えた装置であつ
て、前記計測器2による測定重量Wtの時間的変
化を記憶する手段、その記憶された重量変化から
1/Wtをx軸にかつdWt/dtをy軸とする座標
における次式 y=KWx−K −(1) の傾斜KW及びy軸切片Kを算出する手段、そ
の算出されたK、並びに、入力手段(6)で設定又は
その入力手段の設定値から演算された以下の値 ε:前記パイプ1内の試料粉粒体S充填層におけ
る空〓率 S:上記試料粉粒体S充填層の断面積 ρL:前記容器5内の液体Lの密度 η:上記液体Lの粘度 g:重力加速度 に基いて、前記パイプ1内の試料粉粒体S充填層
における平均毛細管半径rを次式 r=(8ηK/εSΡL 2g)1/2 −(2) により算出する手段、その算出されたr、前記設
定又は演算されたε、S及びg、前記算出された
KW及びKから算出したW、並びに、入力手段
6で設定又は計測装置で実測された前記容器5内
液体Lの表面張力γLに基いて、前記パイプ1内の
試料粉粒体Sと前記容器5内の液体Lとの間の接
触角θを次式 cosθ=rgW/2εSγL −(3) により算出する手段を設け、その算出されたθを
表示する装置7を設けてある粉粒体と液体の間の
接触角測定装置。
[Scope of Claims] 1. A pipe 1 for filling a sample powder or granule material having a bottom portion through which liquid can freely flow, a container 5 for storing a liquid L to be permeated into the sample powder material S in the pipe 1 from the bottom, and a sample powder material. A device comprising a measuring device 2 for measuring a change in the weight of the pipe 1 as the liquid L permeates into the body S, a means for storing a temporal change in the weight Wt measured by the measuring device 2; Means for calculating slope KW ∞ and y-axis intercept K of the following equation y=KW ∞ x -K −(1) in coordinates with 1/Wt on the x-axis and dWt/dt on the y-axis from weight change, and its calculation and the following value ε set in the input means (6) or calculated from the set value of the input means: void ratio S in the packed bed of the sample powder S in the pipe 1: the above sample powder Cross-sectional area of the packed layer of the granular material S ρ L : Density of the liquid L in the container 5 η : Viscosity of the liquid L g : Average capillarity in the packed bed of the sample granular material S in the pipe 1 based on gravitational acceleration Means for calculating the radius r by the following formula r = (8ηK/εSΡ L 2 g) 1/2 - (2), the calculated r, the set or calculated ε, S and g, the calculated
Based on W calculated from KW and K, and the surface tension γ L of the liquid L in the container 5 set by the input means 6 or actually measured by the measuring device, the sample powder S in the pipe 1 and The powder is provided with means for calculating the contact angle θ with the liquid L in the container 5 using the following formula cosθ=rgW /2εSγ L −(3), and is provided with a device 7 for displaying the calculated θ. Contact angle measuring device between particles and liquid.
JP1897484A 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid Granted JPS60162936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1897484A JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1897484A JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Publications (2)

Publication Number Publication Date
JPS60162936A JPS60162936A (en) 1985-08-24
JPH0310059B2 true JPH0310059B2 (en) 1991-02-12

Family

ID=11986605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1897484A Granted JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Country Status (1)

Country Link
JP (1) JPS60162936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446382B2 (en) 2007-08-20 2016-09-20 Jnc Corporation Porous cellulose gel, method for producing the same, and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760880B2 (en) * 1989-09-05 1998-06-04 ホソカワミクロン株式会社 Powder processing equipment
DK1099104T3 (en) * 1998-07-23 2002-09-30 Fraunhofer Ges Forschung Imitation measuring apparatus for determining the wettability of powdered materials
JP4911567B2 (en) * 2005-12-16 2012-04-04 株式会社トプコン Charged particle beam equipment
CN103245591A (en) * 2012-02-13 2013-08-14 广东中显科技有限公司 Method and equipment for measuring surface cleanliness of glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446382B2 (en) 2007-08-20 2016-09-20 Jnc Corporation Porous cellulose gel, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JPS60162936A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
US5666295A (en) Apparatus and method for dynamic weighing of loads in hydraulically operated lifts
Adams et al. A portable rainfall‐simulator infiltrometer and physical measurements of soil in place
US4244218A (en) Fluid measuring device
JPS59184827A (en) Weight measuring device for helicopter
CN106680148A (en) Viscosity testing device and testing method thereof
JPH0310059B2 (en)
US4815316A (en) Diffusion measurement
US5526683A (en) Method and apparatus for determining the fullness and emptiness of silos
US20030233865A1 (en) Liquid extrusion porosimeter and method
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer
CN113375778B (en) Intelligent jitter-eliminating control system for Internet of things crane scale
JP2721416B2 (en) Liquid permeation rate measuring device for powder
CA1255512A (en) Head for a bubble tube
JP2889640B2 (en) Method and apparatus for measuring adhesion of powder and granular material
JPH10318899A (en) Apparatus for measuring volume weight of sample such as grain, etc.
JPH081478Y2 (en) Specific gravity measuring device
JP2672679B2 (en) Surface tension measuring device
JP4018301B2 (en) Surface tension measurement method
JPS60135747A (en) Surface tension measuring device
JPS61278735A (en) Instrument for measuring grain size distribution
JPS5910579Y2 (en) Liquid level measuring device
JPH0530757U (en) Liquid concentration meter using load cell
JPH06129975A (en) Method and device for viscosity measurement
JP3206153B2 (en) Ship tilt test measurement method
JPH0152688B2 (en)