JPS60162936A - Device for measuring contact angle between powder and granular material and liquid - Google Patents

Device for measuring contact angle between powder and granular material and liquid

Info

Publication number
JPS60162936A
JPS60162936A JP1897484A JP1897484A JPS60162936A JP S60162936 A JPS60162936 A JP S60162936A JP 1897484 A JP1897484 A JP 1897484A JP 1897484 A JP1897484 A JP 1897484A JP S60162936 A JPS60162936 A JP S60162936A
Authority
JP
Japan
Prior art keywords
liquid
calculated
sample powder
pipe
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1897484A
Other languages
Japanese (ja)
Other versions
JPH0310059B2 (en
Inventor
Noriyoshi Kaya
彼谷 憲美
Toyokazu Yokoyama
豊和 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Hosokawa Funtai Kogaku Kenkyusho KK
Original Assignee
Hosokawa Micron Corp
Hosokawa Funtai Kogaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp, Hosokawa Funtai Kogaku Kenkyusho KK filed Critical Hosokawa Micron Corp
Priority to JP1897484A priority Critical patent/JPS60162936A/en
Publication of JPS60162936A publication Critical patent/JPS60162936A/en
Publication of JPH0310059B2 publication Critical patent/JPH0310059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0208Investigating surface tension of liquids by measuring contact angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To speed up measurement and to improve the accuracy thereof by storing the change with time of the measured weight Wt of a pipe immersed with a liquid in the sample powder and granular material therein and calculating and displaying the contact angle from the inclination of the specific equations of the coordinate plane having both axes at 1/Wt, dWt/dt. CONSTITUTION:The liquid L in a vessel 5 is penetrated into the sample powder and granular material S in a pipe 1 from the bottom and the weight Wt of the pipe 1 is measured by a measuring instrument 2 and is stored by a microcomputer 9. An inclination KWinfinity, y-axis intercept K are calculated from the equation I on the coordinate plane with 1/Wt, dWt/dt as x-axis, y-axis and the weight Winfinity after the equil. state is determined. Voids epsilon of the packed layer of the material S in the pipe 1, the sectional area of the packed layer of the material S, etc. are set from an input means 6 and the average capillary radius (r) in the packed layer of the material S is calculated; further the surface tension gammaL of the liquid L is set by the means 6 and a contact angle theta is calculated by using the equation II (r; average capillary radius) and is displayed on a display device 7.

Description

【発明の詳細な説明】 本発明に、通液自在な底部を有する試料粉粒体充填用パ
イプ、七のパイプ内の試料粉粒体に前記底部から浸透さ
せる液体を収納する容器、試料粉粒体への液体浸透に伴
う前記パイプの重量変化を測定する計測器を備え、その
計測器からの情報に基いて試料粉粒体と容器内液体の間
の接触角、つまり第6図に示すように、液体fLlの表
面張力γL、固体+81の表面張力γ8、固液界面の界
面張力γ、Lによって定まる角度θに、tめるための装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a pipe for filling a powder sample having a bottom through which liquid can freely flow, a container for storing a liquid to be permeated into the sample powder in the pipe from the bottom, and a sample powder. It is equipped with a measuring device that measures the weight change of the pipe as the liquid permeates into the body, and based on the information from the measuring device, the contact angle between the sample powder and the liquid in the container, as shown in Fig. 6, is installed. The present invention relates to an improvement in an apparatus for setting t to an angle θ determined by the surface tension γL of the liquid fLl, the surface tension γ8 of the solid +81, and the interfacial tension γ and L at the solid-liquid interface.

従来の装置は、試料粉粒体への液体浸透に伴うパイプの
重量変化を、測定重量と測定時間の相関を示すグラフに
自動記録するように構成していたが、試料粉粒体と液体
の間の接触角をめるためには、グラフの解析による必要
値の読取り、及び、その読取値と設定値に基く接触角の
計算を、別途人為的に処理しなければならず、必要値の
読取りにおける誤差のために測定精度が低下したり、計
算に多くの時間と労力を要する等の欠点があった。
Conventional devices were configured to automatically record changes in the weight of the pipe due to liquid permeation into the sample powder on a graph showing the correlation between the measured weight and measurement time. In order to find the contact angle between the There are disadvantages such as a decrease in measurement accuracy due to errors in reading, and a large amount of time and effort required for calculation.

本発明の目的は、粉粒体と液体の間の接触角が自動的に
算出されかつ表示されるようにして、精度の良い測定を
確実にかつ迅速に行えるようにする点にある。
An object of the present invention is to automatically calculate and display the contact angle between a powder and a liquid, so that highly accurate measurement can be performed reliably and quickly.

本発明による接触角測定装置の特徴構成は、パイプ内に
充填された試料粉粒体への液体浸透に伴うパイプの重量
変化を測定するための計測器による測定型1iftの時
間的変化を記憶する手段、その記憶された重量変化から
しW、をr軸にかつdWt/dt2 y軸とする座標に
おける次式%式% の傾斜KW−及びy軸脚片Kを算出する手段、その算出
されたに1並びに、入力手段で設定又はその入力手段の
設定値から演算された以下の値ε:前記パイプ内の試料
粉粒体充填層における空隙率 S:上記試料粉粒体充填層の断面積 PL=前記パイプ内の試料粉粒体に浸透させるための容
器内の液体の密度 η:上記液体の粘度 g:重力加速度 に基いて、前記パイプ内の試料粉粒体充填層における平
均毛細管半径rを次式 設定又は演算されたε、S及びg1前記算出されたKW
〜及びに7)−ら算出したWoa 、並びに、入力手段
で設定又は計測装置で実測された前記容器内液体の表向
張力γ□に基いて、前記パイプ内の試料粉粒体と前記容
器内の液体との間の接触角θを次式 により算出する手段を設け、その算出されたθを表示す
る装置を設けたことにあり、その作用効果は次の通りで
ある。
A characteristic configuration of the contact angle measuring device according to the present invention is that a measuring device for measuring a change in weight of a pipe due to liquid permeation into a sample powder filled in the pipe memorizes the temporal change in the measurement type 1ift. means for calculating the slope KW- and the y-axis leg K of the following formula % in coordinates with W as the r-axis and dWt/dt2 as the y-axis from the stored weight change; 1 and the following value ε set by the input means or calculated from the set value of the input means: porosity S of the sample powder packed bed in the pipe: cross-sectional area PL of the sample powder packed bed = Density of the liquid in the container for infiltrating the sample powder in the pipe η: Viscosity of the liquid g: Based on the gravitational acceleration, calculate the average capillary radius r in the sample powder packed layer in the pipe. ε, S and g1 set or calculated by the following formula KW calculated above
Based on the Woa calculated from ~ and 7)- and the surface tension γ□ of the liquid in the container set by the input means or actually measured by the measuring device, the sample powder in the pipe and the surface tension in the container are determined. A means for calculating the contact angle θ between the liquid and the liquid is provided, and a device for displaying the calculated θ is provided, and its effects are as follows.

つまり、パイプ内の粉粒体充填層への液体の浸透速度U
は原理的に次式(a)で表わされる。
In other words, the permeation rate U of liquid into the packed bed of powder and granular material inside the pipe
is expressed in principle by the following equation (a).

= KW66−−− K −(a) t 但し、W、、、は、試料粉粒体に対する液体浸透が平衡
に達した時間における浸透液体重量であり、lた、 である。
= KW66 --- K - (a) t However, W, ... is the weight of the permeated liquid at the time when liquid permeation into the sample powder reaches equilibrium, and is 1.

したがって、測定型NWtO時間的変化を記憶させ、第
8図に示すように、その記憶された重量変化から時間t
における看及びdW鴇をめさせて、七のめた値をN X
/W(k−r軸にかつdWZ、−2y軸とする座標上に
プロットさせると、上記式(a)及び前述の式+1)か
ら明らかなように、第4図に示すような直線が得られる
。 そして、そ、の直線の傾斜αがKW−であり、y細
切片BがKであり、αとβからW〜及びKがめられる。
Therefore, the measured NWtO time change is stored, and as shown in FIG.
The value of seven is N
/W (k-r axis and dWZ, -2y axis), as is clear from the above formula (a) and the above formula +1), a straight line as shown in Figure 4 is obtained. It will be done. Then, the slope α of the straight line is KW-, the y thin section B is K, and from α and β, W~ and K can be determined.

能力、上記式(b) ’r変換すると前述の式t21と
なり、前述のようにKがまれば、式(2)から、かつ、
入力されているt + S + P(、、η1gに基い
て、rを算出できる。
Capacity, the above formula (b) 'r transform gives the above formula t21, and if K is multiplied as described above, from formula (2), and
r can be calculated based on the input t + S + P(,, η1g.

そして、前述のようにW〜及びrが算出できれば、前述
の式(3)から、かつ入力されているεl S 1γL
、 gに基いて、接触角θを算出できるのであり、以上
の情報処理及び演算処理がマイクロコンピュータにより
処理され、かつ請求めた接触角θが表示用装置で数値表
示されるのである。
Then, if W~ and r can be calculated as described above, then from the above equation (3) and the input εl S 1γL
, g, the contact angle θ can be calculated, the above information processing and arithmetic processing are processed by a microcomputer, and the calculated contact angle θ is numerically displayed on a display device.

その結果、接触角θを、W〜及びKをめるに際しての解
析誤差が無い状態で、かつ、演算誤差が無い状態で、極
めて正確にめられ、かつ、極めて迅速にめられるように
なり、塗料、薬品、化粧品、食品などの広い分野で大き
な実用価値のある測定装置を提供できるようになった。
As a result, the contact angle θ can be determined extremely accurately and extremely quickly without any analytical errors or calculation errors when determining W~ and K. We are now able to provide measuring devices that have great practical value in a wide range of fields such as paints, chemicals, cosmetics, and foods.

次に、実施例を示す。Next, examples will be shown.

第1図に示すように、ろ紙製底等の通液自在な底部を有
するパイプ+11を、電子天秤等の計測器+21に吊下
げ、リニアヘンドモータ等の昇降用アクチュエータ(3
)に取付けた台(4)に容器(5)ヲ載せ、もって、パ
イプ+1)内に充填した試料粉粒体(81に容器(5)
内の液体fLl ’k 、容器(5)ヲアクチュエータ
(3)で上昇させて、7寸イブill底部から浸透させ
、試料粉粒体+81への液体(Ll浸透に伴うパイプi
l+の重量変化を計測器(2+で測定するように構成し
である。
As shown in Fig. 1, a pipe +11 having a bottom made of filter paper or the like through which liquid can freely flow is suspended from a measuring device +21 such as an electronic balance, and a lifting actuator (3
Place the container (5) on the stand (4) attached to ), and place the sample powder (container (5) in
The liquid fLl 'k in the container (5) is raised by the actuator (3) and permeated from the bottom of the 7-inch eve ill, and the liquid (pipe i accompanying the permeation of Ll
It is configured to measure the weight change of l+ with a measuring instrument (2+).

計測器(2)からの測定値、及び、キーボード等の入力
手段(6)からの設定値に基いて、X−Yプロッター等
の測定結果全表示する装置(7)を動作させると共に、
アクチュエータ(3)の始動・停止を行う操作部(8)
に対して、入力手段(61からの情報に基いて操作指令
を与え、かつ、測定開始指令ヲその操作部(8)から受
けるマイクロコンピュータ(9)を設けである。 尚、
速度調節器(101は、アクチュエータ(3)による受
皿(5)の上昇速度を人為的に設定するものである。
Based on the measured values from the measuring instrument (2) and the set values from the input means (6) such as a keyboard, operate a device (7) for displaying all measurement results such as an X-Y plotter, and
Operation unit (8) for starting and stopping the actuator (3)
A microcomputer (9) is provided for giving operation commands based on information from the input means (61) and for receiving measurement start commands from its operation section (8).
A speed regulator (101) is used to artificially set the rate of rise of the saucer (5) by the actuator (3).

上記測定装置の動作ステップを第2図のフロ(1) 入
力手段(6)から下記の各種設定値を入力する。
The operation steps of the measuring device are shown in flow (1) of FIG. 2. The following various setting values are input from the input means (6).

I)5:パイプ(1)に充填された試料粉粒体(S)の
真密度 Ws:上記試料粉粒体(S)の重量 H二上記試料粉粒体(S)の充填高さ T:測定時間 PL:容器(5)内の液体(L、)の密度η:上記液体
(L)の粘度 γL=上記液体(L)の表面張力 g:重力加速度 (2)設定値P8.W8.Hに基いて、試料粉粒体層の
断面積、S、及び、空隙率εを、下記式(イ)。
I) 5: True density Ws of the sample powder (S) filled in the pipe (1): Weight H of the sample powder (S) 2 Filling height T of the sample powder (S): Measurement time PL: Density of the liquid (L, ) in the container (5) η: Viscosity of the liquid (L) γL=Surface tension of the liquid (L) g: Gravitational acceleration (2) Set value P8. W8. Based on H, the cross-sectional area, S, and porosity ε of the sample powder layer are calculated using the following formula (a).

(ロ)により算出する。Calculated according to (b).

(3)入力手段(6)からの測定開始指令によりアクチ
ュエータ(3)Kより容器(5)を上昇させ、液体(L
)がパイプil+に接触すると同時に、アクチュエータ
(3)を停止すると共に測定用タイマーをスタートさせ
る。
(3) In response to a measurement start command from the input means (6), the actuator (3)K raises the container (5) and liquid (L)
) comes into contact with the pipe il+, simultaneously stopping the actuator (3) and starting the measurement timer.

(4)計測器(2)による測定重量W(が入力され、W
tの増加が始まると同時に、測定用タイマーより測定時
刻tが入力される。
(4) The weight W (measured by the measuring device (2) is input, and W
At the same time that t starts to increase, measurement time t is input from the measurement timer.

151 Wt七tの相関をメモリーに記憶する。151 Store the correlation of Wt7t in memory.

(6)測定時間Tが経過すると、記憶したW(とtの相
関に基いて、第8図に示すような浸透速度曲線を表示装
置(7)に作図する。
(6) When the measurement time T has elapsed, a permeation rate curve as shown in FIG. 8 is plotted on the display device (7) based on the stored correlation between W( and t).

(7)浸透速度曲線に基いて、第4図に示すよりなdW
t//dtと1/w【の関係図を表示装置(7)に作図
する。
(7) Based on the penetration rate curve, the dW shown in Figure 4 is
A relationship diagram between t//dt and 1/w is drawn on the display device (7).

f8) dW/atとVwtの傾斜αとy輪切片Bに基
いて、試料粉粒体(S)に対する液体(L)浸透が平衡
に達した時間における浸透液体重量W〜、及び、定&K
を下記式(ハ)、(ニ)により算出する。
f8) Based on the slope α of dW/at and Vwt and the y-ring intercept B, the penetrating liquid weight W ~ and the constant &K at the time when liquid (L) permeation into the sample powder (S) reaches equilibrium.
is calculated using the following formulas (c) and (d).

(9)設定値・九、1.g及び算出値ε、S、Kに基い
て、試料粉粒体層の平均毛細管半径rを、下記式(ホ)
により算出する。
(9) Setting value・9, 1. Based on g and the calculated values ε, S, and K, the average capillary radius r of the sample powder layer can be calculated using the following formula (e).
Calculated by

(10)設定値γ。9g及び算出値ε、S、W〜、rに
基いて、試料粉粒体(S)と液体(L)の間の接触角θ
、及び、付着張力γ−80を、下記式(へ)により算出
する。
(10) Set value γ. 9g and the calculated values ε, S, W~, r, the contact angle θ between the sample powder (S) and the liquid (L)
, and the adhesion tension γ-80 are calculated by the following formula (f).

(11)設定値Is 、Ws 、 H、T 、 FL 
、 r) 、 7L 、 g及び算出値W〜、ε、r、
γLCmθ 、θを表示装置(7)で記録表示する。
(11) Setting values Is, Ws, H, T, FL
, r), 7L, g and calculated values W~, ε, r,
γLCmθ and θ are recorded and displayed on a display device (7).

(12) アクチュエータ(3)により容器(5)を下
限設定位置まで下降させて、測定を完了する。
(12) The actuator (3) lowers the container (5) to the lower limit setting position to complete the measurement.

次に、別の実施例を示す。Next, another example will be shown.

試料粉粒体充填層の空隙率ε及び断面積Sを入力手段(
6)に人為設定するように構成してもよい。
Input means (
6) may be manually set.

捷た、液体(L)の表面張力γ、を、円環法による測定
装置で実測させ、その実測値を入力手段(6)に自動設
定するように構成したり、あるいは、パイ・プ(11に
代えて白金りングを計測器(2)に吊下げて、円環法に
より予め液体(L)の表面張力γ1を実測すると共に、
その実測値を、マイクロコンピュータ(9)に記憶させ
て、接触角θの測定時に入力させるように構成してもよ
い。 尚、円環法について、計測器(2)を利用する場
合を例にして、第7図により以下に説明する。 白金リ
ング(11)をほぼ水平姿勢で索具(12)により吊下
げられるように構成したアタッチメントを、計測器(2
)のフック(2a)に吊下げ、容器(5)の上昇により
白金リング(11)を液体(L)に接触させ、次に、容
器(5)を下降させて、最大荷重Pを計測器(2)で測
定させ、マイクロコンピュータ(9)において、下記式
により表面張力γ、を演算させる。
The surface tension γ of the broken liquid (L) may be actually measured using a measuring device using the circular ring method, and the measured value may be automatically set in the input means (6). Instead, a platinum ring is suspended from the measuring device (2), and the surface tension γ1 of the liquid (L) is actually measured in advance by the ring method.
The actual measured value may be stored in the microcomputer (9) and inputted when measuring the contact angle θ. The ring method will be explained below with reference to FIG. 7, taking as an example the case where the measuring device (2) is used. An attachment configured to suspend the platinum ring (11) from the rigging (12) in an almost horizontal position is attached to the measuring instrument (2).
), the platinum ring (11) is brought into contact with the liquid (L) by raising the container (5), and then the container (5) is lowered to measure the maximum load P with the measuring instrument ( 2), and the microcomputer (9) calculates the surface tension γ using the following formula.

P γL″″ 石5 但し、Fは補正係数、πけ円周率、Rは白金リング(1
1)の半径である。
P γL″″ Stone 5 However, F is the correction coefficient, π is the circumference, R is the platinum ring (1
1) is the radius.

表示装置(7)により少くとも接触角θが表示されれば
よく、シたがって、マイクロコンピュータ(9)は少く
とも第5図に示す機能を備えていればよい。
The display device (7) only needs to display at least the contact angle θ, and therefore the microcomputer (9) only needs to have at least the functions shown in FIG.

容器(5)昇降を人為的に行うように構成して、計測器
(2)による測定重量Wtの変化状態からマイクロコシ
ピユータ(9)による測定開始及び接触角θ算出開始の
タイミングを決定するように構成してもよい。
The container (5) is configured to be raised and lowered artificially, and the timing for the start of measurement by the microcoscipulator (9) and the start of calculation of the contact angle θ is determined based on the state of change in the weight Wt measured by the measuring device (2). It may be configured as follows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す概略図である。 第2
図は、本発明の実施例における動作状態を示すフローチ
ャートである。 第8図はJ−を線図であり、第4図は
dWt/dt−1/wt線図である。 第5図はマイク
ロコンピュータのクレーム対応図である。 第6図は接
触角θの説明図である。 第7図は円環法の説明図であ
る。 +1+・・・・・・パイプ、(2)・・・・・・計測器
、(6)・・・・・・容器、(S)・・・・・・試料粉
粒体、(L)・・・・・・液体。 代理人 弁理士 北 村 修
FIG. 1 is a schematic diagram showing an embodiment of the present invention. Second
The figure is a flowchart showing the operating state in the embodiment of the present invention. FIG. 8 is a J- diagram, and FIG. 4 is a dWt/dt-1/wt diagram. FIG. 5 is a diagram showing how microcomputers respond to complaints. FIG. 6 is an explanatory diagram of the contact angle θ. FIG. 7 is an explanatory diagram of the circular ring method. +1+...pipe, (2)...measuring instrument, (6)...container, (S)...sample powder, (L)... ·····liquid. Agent Patent Attorney Osamu Kitamura

Claims (1)

【特許請求の範囲】 通液自在な底部を有する試料粉粒体充填用パイプ(1)
、そのパイプLll内の試料粉粒体(81に前記底部か
ら浸透させる液体+Llを収納する容器(5)、試料粉
粒体fslへの液体(Ll浸透に伴う前記パイプ111
の重量変化全測定する計測器+21を備えた装置であっ
て、前記計測器121による測定N量Wtの時間的変化
を記憶する手段、その記憶された重量変化からX/Wt
をy軸にかつdWy、tをy軸とする座標における次式 %式% の頷、14KW−及びylliI11切片Kを算出する
手段、七の算出されたに1並びに、入力手段(61で設
定又はその入力手段の設定値から演算された以下の値 ε:曲記パイプ111内の試料粉粒体(81充填層にお
ける空隙率 S:上記試料粉粒体(Sl充填層の断面積PL二前記容
器(5)内の液体(Llの密度η:上記液体(Llの粘
度 g:重力加速度 に基いて、前記パイプ(l]1内の試料粉粒体(81充
填層における平均毛細管半径rを次式 により算出する手段、その算出されたr1前記設定又は
演算されたε、S及びg1曲前記出されたKW−及びK
から算出したW−1並びに、入力手段(6)で設定又は
計測装置で実測された前記容器(6)内液体t1,1の
表向張力γLに基いて、前記パイプ111内の試料粉粒
体(81と前記容器(5)内の液体(Llにより算出す
る手段を設け、その算出されたθを表示する装置(7)
を設けである粉粒体と液体の間の接触角測定装置。
[Claims] Pipe (1) for filling sample powder or granular material having a bottom portion through which liquid can freely flow
, a container (5) that stores the sample powder and granule material in the pipe Lll (liquid +Ll that permeates from the bottom into the sample powder material fsl), and a container (5) that stores the sample powder and granule material fsl (liquid that permeates into the sample powder and granule material fsl from the bottom of the pipe 111)
The device is equipped with a measuring device +21 for measuring all changes in weight, including means for storing temporal changes in the amount of N measured by the measuring device 121, and a means for storing temporal changes in the amount of N measured by the measuring device 121, and calculating X/Wt from the stored weight change.
In the coordinates where dWy is the y-axis and t is the y-axis, the nod of the following formula % formula %, 14KW- and ylliI11 means for calculating the intercept K, the calculated 1 of 7 and the input means (set in 61 or The following value ε calculated from the set value of the input means: Porosity S in the sample powder (81 packed bed) in the curved pipe 111: Cross-sectional area PL of the sample powder (Sl) (5) Based on the density η of the liquid (Ll) in the liquid (Ll): the viscosity g of the liquid (Ll): the gravitational acceleration, the average capillary radius r in the sample powder (81 packed bed) in the pipe (l) 1 can be calculated using the following formula: Means for calculating, the calculated r1 said set or calculated ε, S and g1 said music KW- and K
Based on W-1 calculated from (81 and a device (7) that is provided with means for calculating the liquid (Ll) in the container (5) and displays the calculated θ
A contact angle measurement device between powder and liquid is provided.
JP1897484A 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid Granted JPS60162936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1897484A JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1897484A JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Publications (2)

Publication Number Publication Date
JPS60162936A true JPS60162936A (en) 1985-08-24
JPH0310059B2 JPH0310059B2 (en) 1991-02-12

Family

ID=11986605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1897484A Granted JPS60162936A (en) 1984-02-02 1984-02-02 Device for measuring contact angle between powder and granular material and liquid

Country Status (1)

Country Link
JP (1) JPS60162936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188935A (en) * 1989-09-05 1991-08-16 Hosokawa Micron Corp Powder treatment device
WO2000005564A1 (en) * 1998-07-23 2000-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Imbibition measuring apparatus for determining powder wettability
JP2007165210A (en) * 2005-12-16 2007-06-28 Topcon Corp Charged particle beam device
CN103245591A (en) * 2012-02-13 2013-08-14 广东中显科技有限公司 Method and equipment for measuring surface cleanliness of glass substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664152B2 (en) 2007-08-31 2014-03-04 Jnc Corporation Porous cellulose gel, method for producing the same and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188935A (en) * 1989-09-05 1991-08-16 Hosokawa Micron Corp Powder treatment device
WO2000005564A1 (en) * 1998-07-23 2000-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Imbibition measuring apparatus for determining powder wettability
JP2007165210A (en) * 2005-12-16 2007-06-28 Topcon Corp Charged particle beam device
CN103245591A (en) * 2012-02-13 2013-08-14 广东中显科技有限公司 Method and equipment for measuring surface cleanliness of glass substrate

Also Published As

Publication number Publication date
JPH0310059B2 (en) 1991-02-12

Similar Documents

Publication Publication Date Title
Adams et al. A portable rainfall‐simulator infiltrometer and physical measurements of soil in place
US4244218A (en) Fluid measuring device
Buzyna et al. Spin-up of a stratified fluid: theory and experiment
JPS60162936A (en) Device for measuring contact angle between powder and granular material and liquid
Weatherly A numerical study of time-dependent turbulent Ekman layers over horizontal and sloping bottoms
TW200530560A (en) A level-measuring circuit of a laser tilt meter
Raffle Pressure variation within concentrated settling suspensions
CN110199178B (en) Method for compensating for the Venturi effect on a pressure sensor in a flowing water
CN2575658Y (en) Industry analysing instrument with thermal insulation apparatus
JPH10318899A (en) Apparatus for measuring volume weight of sample such as grain, etc.
JP2889640B2 (en) Method and apparatus for measuring adhesion of powder and granular material
JP2721416B2 (en) Liquid permeation rate measuring device for powder
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer
Dolz et al. An inexpensive and accurate tensiometer using an Electronic Balance
JP2672679B2 (en) Surface tension measuring device
JPH081478Y2 (en) Specific gravity measuring device
JPH11230885A (en) Specific gravimeter
Roget et al. Calculation of the flow into a lake from underground springs using sedimentation rates
JPS5819518B2 (en) Floating body attitude/water fluctuation prediction device
SU1583847A1 (en) Method of determining vertical speed of internal waves
JPH0530757U (en) Liquid concentration meter using load cell
SU1576658A1 (en) Method of determining coefficient of speed resistance of deep water support member under laboratory conditions
US4277970A (en) Apparatus and method for specific gravity measurement
JPS588309B2 (en) Sludge zone measurement method
Kolpak et al. A system for measuring orbital velocities in waves