JPH0152688B2 - - Google Patents

Info

Publication number
JPH0152688B2
JPH0152688B2 JP8970181A JP8970181A JPH0152688B2 JP H0152688 B2 JPH0152688 B2 JP H0152688B2 JP 8970181 A JP8970181 A JP 8970181A JP 8970181 A JP8970181 A JP 8970181A JP H0152688 B2 JPH0152688 B2 JP H0152688B2
Authority
JP
Japan
Prior art keywords
liquid
measured
viscosity
time
measuring rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8970181A
Other languages
Japanese (ja)
Other versions
JPS57204434A (en
Inventor
Fumya Furuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8970181A priority Critical patent/JPS57204434A/en
Publication of JPS57204434A publication Critical patent/JPS57204434A/en
Publication of JPH0152688B2 publication Critical patent/JPH0152688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/12Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring rising or falling speed of the body; by measuring penetration of wedged gauges

Description

【発明の詳細な説明】 本発明は迅速かつ高精度な粘度測定を可能にし
た粘度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a viscometer that enables rapid and highly accurate viscosity measurement.

液体の粘度を測定する場合、被測定液中に棒ま
たはへら状のものを浸した後これを空中に持ち上
げ、そのときの手に感じる抵抗感や液が滴下また
は流下する状態から粘度を求める方法が古くから
行なわれている。しかしながら、この方法では測
定に熟練を要すること、熟練者でも大部分の場合
は特定種類の液体の粘度しか正確には測定できな
いこと等の理由から特殊な場合にのみ限つて行な
われている。そして、一般には客観的な測定値を
得ることができる粘度計が使用され、従来では次
のような原理のものが提案されている。
When measuring the viscosity of a liquid, a stick or spatula-shaped object is immersed in the liquid to be measured, then lifted into the air, and the viscosity is determined from the resistance felt in the hand and the way the liquid drips or flows. has been practiced since ancient times. However, this method is only used in special cases because it requires skill for measurement and even experienced people can only accurately measure the viscosity of a specific type of liquid in most cases. A viscometer that can obtain objective measured values is generally used, and conventional viscometers have been proposed based on the following principle.

(1) 毛管式…一定寸法の毛管を通して被測定流体
を流したときの毛管両端の圧力差および流量と
液の密度から粘度が求まる。
(1) Capillary method: When the fluid to be measured is passed through a capillary of a certain size, the viscosity is determined from the pressure difference between the two ends of the capillary, the flow rate, and the density of the liquid.

(2) 落球式…被測定液体中に球を落下させ、それ
が一定測度に達したときの速度および液の密度
から粘度が求まる。
(2) Falling ball method: A ball is dropped into the liquid to be measured, and the viscosity is determined from the velocity and density of the liquid when the ball reaches a certain level.

(3) 回転式…被測定液中で棒や円板を回転させた
ときの回転速度、回転に要するトルクから粘度
が求まる。
(3) Rotating type: Viscosity can be determined from the rotational speed and torque required for rotation when rotating a rod or disk in the liquid to be measured.

以上述べた中では自動測定し易いことや試料が
比較的少なくてすむことから、工業的には(3)の回
転式が多く使われている。例えば、第1図は回転
式粘度計であり、1は粘度計本体、2は被測定液
体用容器である。粘度計本体1は回転目盛板3を
固定した軸4をモータ等の回転機構5により回転
できるようにするとともに、軸4の先端には指針
6を固着した軸7をコイルばね8にて連結してい
る。この軸7は先端に円板9を固着しており、前
記被測定液体用溶器2内に入れた被測定液体10
内に浸漬される。また、この容器2は二重円筒管
として構成しており、各円筒間の空間内にチユー
ブ11,11を介して外部から一定温度の水を通
流させることにより内部に満した被測定液体10
の温度を一定に保つようにしている。
Among the above, the rotary type (3) is often used industrially because it is easy to perform automatic measurements and requires relatively few samples. For example, FIG. 1 shows a rotational viscometer, where 1 is the viscometer body and 2 is a container for the liquid to be measured. The viscometer main body 1 has a shaft 4 to which a rotary scale plate 3 is fixed, which can be rotated by a rotating mechanism 5 such as a motor, and a shaft 7 to which a pointer 6 is fixed is connected to the tip of the shaft 4 by a coil spring 8. ing. This shaft 7 has a disk 9 fixed to its tip, and the liquid to be measured 10 placed in the liquid to be measured 2 is
immersed inside. Further, this container 2 is configured as a double cylindrical tube, and the liquid to be measured 10 is filled inside by flowing water at a constant temperature from the outside through tubes 11, 11 into the space between each cylinder.
to keep the temperature constant.

この粘度計によれば、円板9を被測定液体10
の中に浸漬して軸4を一定回転速度で回転させる
と、円板7は被測定液体10から粘性抵抗力を受
けこの粘性抵抗力とコイルばね8の制御力とが均
合つた位置に軸7は軸4に対して相対角変位をも
ちながら回転する。そして、この相対角変位の角
度は指針6によつて目盛3上に表示され、この値
から粘度を求めることができるのである。
According to this viscometer, the disk 9 is connected to the liquid 10 to be measured.
When the shaft 4 is rotated at a constant speed, the disc 7 receives a viscous resistance from the liquid 10 to be measured, and the shaft moves to a position where this viscous resistance and the control force of the coil spring 8 are balanced. 7 rotates with a relative angular displacement with respect to the axis 4. The angle of this relative angular displacement is then displayed on the scale 3 by the pointer 6, and the viscosity can be determined from this value.

しかしながら、この粘度計によれば、被測定液
体を専用の容器2内に満たす必要があり、このた
めの作業が面倒であるとともに、測定終了後に円
板や容器に付着した被測定液体を回収することが
難かしく被測定液体を無駄にするという不具合が
ある。特に被測定液体として高価な金ペーストを
用いた場合には回収できないことによる損失は大
きなものとなる。また、この粘度計では被測定液
体を容器に移して温度制御を行なうため、液体が
一定温度に達するまでの時間が長くかかり、作業
効率が悪いという問題もある。
However, according to this viscometer, it is necessary to fill a special container 2 with the liquid to be measured, which is a troublesome work, and it is difficult to collect the liquid to be measured that has adhered to the disk or container after the measurement is completed. There is a problem that it is difficult to measure and the liquid to be measured is wasted. In particular, when expensive gold paste is used as the liquid to be measured, the loss due to non-recovery becomes large. Furthermore, since this viscometer controls the temperature of the liquid to be measured by transferring it to a container, it takes a long time for the liquid to reach a certain temperature, resulting in poor working efficiency.

本発明は以上に鑑みなされたもので、その目的
とするところは、被測定液体を専用容器に移す必
要がなくしかも温度の制御をする必要がなく、こ
れにより迅速かつ簡単でしかも高精度に粘度測定
を行なうことができ、更に被測定液体の無駄をな
くすことのできる粘度計を提供することにある。
The present invention has been developed in view of the above, and its purpose is to eliminate the need to transfer the liquid to be measured into a special container and to control the temperature, thereby quickly, easily, and highly accurately measuring the viscosity. It is an object of the present invention to provide a viscometer that can perform measurements and eliminate waste of liquid to be measured.

このような目的を達成するために本発明は被測
定液体中に一定長さだけ浸漬できかつ引き上げ可
能な測定棒を有し、かつこの測定棒を引き上げる
際の力や時間を検出する手段と、これらの検出値
に基づいて全力積を演算する回路と、この回路の
出力により粘度を表示する表示部とを設けたこと
を特徴とするものである。
In order to achieve such an object, the present invention has a measuring rod that can be immersed in a liquid to be measured for a certain length and can be pulled up, and means for detecting the force and time when pulling up this measuring rod; The present invention is characterized by being provided with a circuit that calculates the total volume based on these detected values, and a display section that displays the viscosity based on the output of this circuit.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

先ず前述した手作業による粘度測定を考えると
すると、被測定液体中に棒状体を一定の長さdだ
け浸し、これを時間tに対して任意の関数である
速度v(t)で引き上げたとき、棒状体は粘性に
よる下向きの力F(t)を液体から受ける(但し、
重力による力は無視できるとする)。引き上げき
るまでの時間t1のうちに棒状体にかかる力積Aは
速度v(t)によらず粘度ηのみに比例すること
が(1)式からわかる。kは定数。
First, if we consider the manual viscosity measurement described above, when a rod is immersed in the liquid to be measured for a certain length d and pulled up at a speed v(t) that is an arbitrary function of time t. , the rod-like body receives a downward force F(t) due to viscosity from the liquid (however,
Assume that the force due to gravity can be ignored). It can be seen from equation (1) that the impulse A applied to the rod-shaped body during the time t 1 until it is completely pulled up is proportional only to the viscosity η, regardless of the speed v(t). k is a constant.

A=∫t1 0F(t)dt=∫t1 0kηv(t){d―∫t 0v(
t)dt}dt =kηd∫t1 0v(t)dt―kη∫t1 0v(t){∫t 0
(t)dt}dt =kηd2−1/2kηd2=1/2kηd2 …(1) 一方、粘度は温度の関数であり、被測定液体が
前述のペーストの様な場合には、絶対温度TKに
おける粘度ηTは20℃における粘度をη20,Bを定
数とすれば(2)式で表わされる。
A=∫ t1 0 F(t)dt=∫ t1 0 kηv(t) {d−∫ t 0 v(
t) dt} dt = kηd∫ t1 0 v(t) dt−kη∫ t1 0 v(t) {∫ t 0 v
(t)dt}dt = kηd 2 −1/2kηd 2 = 1/2kηd 2 …(1) On the other hand, viscosity is a function of temperature, and if the liquid to be measured is like the paste mentioned above, the absolute temperature TK The viscosity η T at 20° C. is expressed by equation (2), where η 20 is the viscosity at 20° C., and B is a constant.

ηT=η20eB/T …(2) (1)および(2)式から、棒状体を被測定液体中にd
なる長さだけ浸して温度を測定し、その後棒状体
を引き上げてその際(引き上げ始めから棒状体の
先端が液面から離れるまでの全力積を知ればη20
を求めることができることが判る。
η T = η 20 e B/T …(2) From equations (1) and (2), it can be seen that the rod-shaped body is d
Measure the temperature by dipping the rod for a certain length, then pull it up (if you know the total area from the start of pulling until the tip of the rod leaves the liquid surface, η 20
It turns out that it is possible to find

第2図は以上の原理に基づいて構成した本発明
の一実施例を示す。図において、12は例えば金
属材を棒状に形成した測定棒であり、その先端か
ら所定の寸法位置の外周には指標13を形成し、
被測定液体中へ浸漬する際の目印としている。こ
の測定棒12は先端を閉塞して内部にサーミスタ
等の温度センサ14を内装し、被測定液体の温度
を検出するようにしている。一方、前記測定棒1
2はその上端基部を円筒状ハンドル部15内に挿
入し、ハンドル部内面に放射状に配設した複数本
の梁16により支持している。これらの梁16の
少なくとも一つには歪ゲージ17を貼付等によつ
て取付けており、ハンドル部15と測定棒12と
の間に相対力が作用したときには梁16の歪に伴
なつて歪ゲージ17に出力が発生し、この力を検
出することができる。
FIG. 2 shows an embodiment of the present invention constructed based on the above principle. In the figure, reference numeral 12 denotes a measuring rod made of, for example, a metal material in the shape of a rod, and an index 13 is formed on the outer periphery at a predetermined dimensional position from its tip.
It is used as a mark when immersing into the liquid to be measured. The measuring rod 12 has its tip closed and has a temperature sensor 14 such as a thermistor installed therein to detect the temperature of the liquid to be measured. On the other hand, the measuring rod 1
2 has its upper end base inserted into the cylindrical handle portion 15, and is supported by a plurality of beams 16 arranged radially on the inner surface of the handle portion. A strain gauge 17 is attached to at least one of these beams 16 by pasting or the like, and when a relative force is applied between the handle portion 15 and the measuring rod 12, the strain gauge 17 is attached as the beam 16 is strained. An output is generated at 17 and this force can be detected.

一方、前記ハンドル部15内には増幅演算器1
8を内装しており、この演算器18内には前記歪
ゲージ17の出力に基づいて測定棒12の引き上
げ開始時における引き上げ力の急激な増加時点
と、引き上げ終了時に現れる小パルス力の発生時
点とを夫々検出し、これら時点の差を求めること
によつて測定棒12の引き上げに要する時間を検
出する時間検出手段19を設けている。また、前
記演算器18内には前記歪ゲージ17にて検出し
た力を時間に関して積分し、引き上げ完了時点ま
での全力積を演算する演算回路20を設けてお
り、このことができるように一般的な積分回路で
構成した演算回路20には前記温度センサ14の
検出値を入力させるようにしている。更に、前記
ハンドル部15内にはアナログあるいはデジタル
式の表示器21を内装し、前記演算回路20の出
力を受けて粘度を表示するようになつている。図
中22は電源スイツチである。
On the other hand, an amplification calculator 1 is provided in the handle portion 15.
Based on the output of the strain gauge 17, the calculator 18 determines the point at which the pulling force suddenly increases when the measuring rod 12 starts to be pulled up, and the point at which the small pulse force that appears at the end of pulling is generated. A time detecting means 19 is provided which detects the time required to lift the measuring rod 12 by detecting the difference between these points. Further, the arithmetic unit 18 is provided with an arithmetic circuit 20 that integrates the force detected by the strain gauge 17 with respect to time and calculates the total product up to the point of completion of lifting. The detected value of the temperature sensor 14 is inputted to an arithmetic circuit 20 which is constituted by an integral circuit. Further, an analog or digital display 21 is installed inside the handle portion 15, and receives the output of the arithmetic circuit 20 to display the viscosity. In the figure, 22 is a power switch.

次に以上の構成の粘度計を用いた粘度測定方法
を説明する。先ず、作業者がハンドル部15を持
つて被測定液体中に測定棒12を指標13の位置
まで浸漬する。この場合、浸漬時間は例えば30秒
以上が好ましく、また被測定液体は本来の容器に
入れたままでよく特殊な容器に移し換えることは
必要ない。そして、電源スイツチ22を入れた
後、ハンドル部15を持つて測定棒12を任意の
速度で引き上げれば、引き上げの完了と略同時に
被測定液体の粘度が表示器21に表示され、測定
は直ちに終了する。
Next, a method of measuring viscosity using the viscometer having the above configuration will be explained. First, an operator holds the handle portion 15 and immerses the measuring rod 12 into the liquid to be measured up to the position of the indicator 13. In this case, the immersion time is preferably 30 seconds or more, and the liquid to be measured can remain in its original container, and there is no need to transfer it to a special container. Then, after turning on the power switch 22, if you hold the handle part 15 and pull up the measuring stick 12 at a desired speed, the viscosity of the liquid to be measured will be displayed on the display 21 almost at the same time as the lifting is completed, and the measurement can be started immediately. finish.

ここで、粘度計の内部の作用は、測定棒12の
引き上げに伴なつてハンドル部15と測定棒12
との間に被測定液体の粘度に依存する力を検出す
る。この力は、第3図に示すように液体の粘度や
引き上げ速度によつて異なり、また引き上げ中に
も刻々変化する。同図aは低粘度液体中から測定
棒を高速で引き上げた場合、bは高粘度液体中か
ら測定棒を低速で引き上げた場合、cは同じ高粘
度液体中から測定棒を高速で引き上げた場合を
夫々示している。これらは全て時刻t=0で引き
上げ始め、夫々時刻ta,tb,tcで引き上げを終つ
ている。そして、各場合のいずれも終了時に小パ
ルス力Pa,Pb,Pcが液面による表面張力によつ
て発生しており、この小パルス力Pa,Pb,Pcを
検出することにより引き上げの完了時刻を検出
し、この時刻までに測定棒12に加わる全力積
(力×時間の積分値、即ち第3図の三角形の面積)
を演算回路20にて求める。この全力積値を(1)式
に代入することにより粘度を算出でき、これを表
示器21に表示することができる。またこのと
き、温度センサ14にてその時の液体の温度を検
出し、その絶対温度と前述の測定粘度とを(2)式に
代入することにより、20℃における粘度を求める
ことができる。
Here, the internal action of the viscometer is such that as the measuring rod 12 is pulled up, the handle portion 15 and the measuring rod 12
The force that depends on the viscosity of the liquid to be measured is detected between the As shown in FIG. 3, this force varies depending on the viscosity of the liquid and the pulling speed, and also changes momentarily during pulling. In the same figure, a shows a case in which the measuring rod is pulled up from a low-viscosity liquid at high speed, b shows a case in which the measuring stick is pulled up at a low speed from a high-viscosity liquid, and c shows a case in which the measuring stick is pulled up at a high speed from the same high-viscosity liquid. are shown respectively. All of these begin to be pulled up at time t=0 and end at times ta, tb, and tc, respectively. At the end of each case, small pulse forces Pa, Pb, and Pc are generated due to the surface tension of the liquid surface, and by detecting these small pulse forces Pa, Pb, and Pc, the completion time of lifting can be determined. The total area applied to the measuring rod 12 by this time (integral value of force x time, i.e. area of the triangle in Figure 3)
is determined by the arithmetic circuit 20. By substituting this total volume value into equation (1), the viscosity can be calculated, and this can be displayed on the display 21. At this time, the temperature of the liquid at that time is detected by the temperature sensor 14, and the viscosity at 20° C. can be determined by substituting the absolute temperature and the above-mentioned measured viscosity into equation (2).

なお、前述のようにいずれの測定においても小
パルス力が発生した後は測定棒にかかる力は殆ん
ど零になるので、あらゆる測定においても引き上
げを完了するのに充分な時刻tdを予め設定してお
き、これを引き上げ完了時刻とみなしてそれまで
の全力積を求めるようにしてもよい。この場合、
引き上げ完了の検出手段は演算器18内における
一種の定数回路として構成されることになる。
As mentioned above, in any measurement, after a small pulse force is generated, the force applied to the measuring rod becomes almost zero, so in any measurement, a time td that is sufficient to complete the lifting must be set in advance. This may be regarded as the lifting completion time and the total volume up to that point may be calculated. in this case,
The means for detecting the completion of lifting is configured as a type of constant circuit within the arithmetic unit 18.

ここで、測定棒12にかかる力を検出する手段
は、前述の梁16と歪ゲージ17の組合せにかか
わらず、例えばテンシヨンゲージや圧力センサを
利用した構成としてもよい。また、ハンドル部の
形状やハンドル部と測定棒の連結構造も種々の変
形例が考えられることは言うまでもない。
Here, the means for detecting the force applied to the measuring rod 12 may be configured using, for example, a tension gauge or a pressure sensor, regardless of the combination of the beam 16 and strain gauge 17 described above. Furthermore, it goes without saying that various modifications can be made to the shape of the handle portion and the connection structure between the handle portion and the measuring rod.

以上のように本発明の粘度計によれば被測定液
体中に一定長さだけ浸漬してこれを引き上げ得る
測定棒を有し、この測定棒の引き上げに際しての
全力積を演算して粘度を測定するようにしている
ので、被測定液体を専用の容器に移す必要がなく
本来の容器に入つている状態で測定することがで
き、作業者の容易化を図るとともに液体を無駄に
することもない。また、液体の温度を制御する必
要がないとともに引き上げ速度は任意でよいため
に測定作業の単純化とともに測定時間の短縮を達
成することができ、しかも全力積から粘性を求め
るために高粘度の測定を行なうことができる等の
効果を奏する。
As described above, the viscometer of the present invention has a measuring rod that can be immersed in a liquid to be measured for a certain length and then pulled up, and the viscosity is measured by calculating the total volume when the measuring rod is pulled up. As a result, there is no need to transfer the liquid to be measured into a special container, and the measurement can be performed while it is in the original container, making it easier for the operator and eliminating the need to waste liquid. . In addition, since there is no need to control the temperature of the liquid and the pulling rate can be set arbitrarily, the measurement work can be simplified and the measurement time can be shortened.Furthermore, since the viscosity is determined from the total volume, it is possible to measure high viscosity. This has the advantage of being able to perform the following tasks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転式粘度計の分解斜視図、第
2図は本発明の粘度計の破断斜視図、第3図は全
力積を説明するための引き上げ力の時間特性図で
ある。 12…測定棒、13…指標、14…温度セン
サ、15…ハンドル部、16…梁、17…歪セン
サ、18…演算器、19…時間検出手段、20…
演算回路、21…表示器。
FIG. 1 is an exploded perspective view of a conventional rotational viscometer, FIG. 2 is a broken perspective view of the viscometer of the present invention, and FIG. 3 is a time characteristic diagram of lifting force for explaining the total volume. DESCRIPTION OF SYMBOLS 12... Measuring rod, 13... Index, 14... Temperature sensor, 15... Handle part, 16... Beam, 17... Strain sensor, 18... Arithmetic unit, 19... Time detection means, 20...
Arithmetic circuit, 21...display device.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定液体中に一定長さだけ浸漬できかつ引
き上げ可能な測定棒と、この測定棒を支持するハ
ンドル部と、前記液体中に浸漬した測定棒を引き
上げる際の力を測定棒とハンドル部との間の相対
力により検出する手段と、この引き上げの開始か
ら終了までの時間を前記引き上げ力の変化に基づ
いて検出する手段と、前記引き上げ力を前記引き
上げ時間で積分して前記測定棒の引き上げに必要
とされる全力積を演算する回路と、この演算回路
での演算から得られた粘度を表示する表示部とを
備えることを特徴とする粘度計。
1. A measuring rod that can be immersed in a liquid to be measured for a certain length and pulled up, a handle part that supports this measuring rod, and a force that can be used to pull up the measuring rod immersed in the liquid between the measuring rod and the handle part. means for detecting the time from the start to the end of the pulling based on a change in the pulling force; and means for detecting the time from the start to the end of the pulling based on a change in the pulling force, and a means for detecting the time from the start to the end of the lifting based on a change in the lifting force, and a means for detecting the time from the start to the end of the lifting based on a change in the lifting force, and a means for detecting the lifting of the measuring rod by integrating the lifting force over the lifting time. A viscometer comprising: a circuit for calculating the total volume required for the calculation; and a display section for displaying the viscosity obtained from the calculation by the calculation circuit.
JP8970181A 1981-06-12 1981-06-12 Viscometer Granted JPS57204434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8970181A JPS57204434A (en) 1981-06-12 1981-06-12 Viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8970181A JPS57204434A (en) 1981-06-12 1981-06-12 Viscometer

Publications (2)

Publication Number Publication Date
JPS57204434A JPS57204434A (en) 1982-12-15
JPH0152688B2 true JPH0152688B2 (en) 1989-11-09

Family

ID=13978071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8970181A Granted JPS57204434A (en) 1981-06-12 1981-06-12 Viscometer

Country Status (1)

Country Link
JP (1) JPS57204434A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3504860A1 (en) * 1985-02-13 1986-08-14 Dierks & Söhne GmbH & Co KG, 4500 Osnabrück METHOD AND DEVICE FOR PREPARING THE DOUGH
US5437181A (en) * 1994-02-22 1995-08-01 University Of Saskatchewan Concrete slump testing

Also Published As

Publication number Publication date
JPS57204434A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
US5327778A (en) Apparatus and method for viscosity measurements using a controlled needle viscometer
US4941346A (en) Vibration-type rheometer apparatus
CN2938074Y (en) Liquid surface tension coefficient measuring instrument
CN106680148A (en) Viscosity testing device and testing method thereof
WO2001075417A1 (en) Method and apparatus for viscosity measurement
JPH0152688B2 (en)
CA2490264C (en) Liquid extrusion porosimeter and method
JP7346070B2 (en) How to determine the viscosity of a substance using a rotational viscometer
US6776028B1 (en) Induction sensor viscometer
CN112924330B (en) Oil viscosity detector
US5331843A (en) Capillary viscometer apparatus for an uncomplicated determination of flow characteristics of fluent materials
KR100353425B1 (en) A mass scanning capillary viscometer with a load cell
RU2370751C1 (en) Viscosimetre for fluids
CN207066922U (en) A kind of viscosity test device
US3782174A (en) Adjustable viscosimeter
SU868474A1 (en) Device for determining dynamic viscosity of liquid and gel-like products
US2572693A (en) Rotational viscometer
JPS61153544A (en) Rotational viscometer
JPH1114471A (en) Minute torque measuring instrument
SU709982A1 (en) Device for measuring viscosity, density and electroconductivity of melts
JPH0310059B2 (en)
KR20010074394A (en) Method of measuring the surface tension using withdrawal force curve in the wetting balance curve
US1398878A (en) Method and apparatus for determining viscosity
RU2076309C1 (en) Method of determination of bulk strength of liquids
JPH0126017B2 (en)