JPH04155163A - Stacked evaporator - Google Patents

Stacked evaporator

Info

Publication number
JPH04155163A
JPH04155163A JP27905890A JP27905890A JPH04155163A JP H04155163 A JPH04155163 A JP H04155163A JP 27905890 A JP27905890 A JP 27905890A JP 27905890 A JP27905890 A JP 27905890A JP H04155163 A JPH04155163 A JP H04155163A
Authority
JP
Japan
Prior art keywords
refrigerant
tube
heat
evaporator
pathways
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27905890A
Other languages
Japanese (ja)
Inventor
Takatomo Sawahata
澤幡 敬智
Masakazu Watanabe
正和 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP27905890A priority Critical patent/JPH04155163A/en
Publication of JPH04155163A publication Critical patent/JPH04155163A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Abstract

PURPOSE:To improve the heat-exchange efficiency of the title evapolator, and to increase the cooling capacity thereof, by a method wherein at one part in which the dryness of a refrigerant is small, refrigerant pathways are formed so that a heat transfer area becomes larger, and the other part in which the dryness thereof is large, the refrigerant pathways are formed so that the refrigerant is well mixed. CONSTITUTION:Each tube element 1b for which insert fins 5 are held between tube plates 1a to be refrigerant pathways, or each tube element 1d for which two tube plates 1c wrought in the shape of irregularities are put together, and each corrugated fin 2 are alternately stacked, and thus the title evaporator is formed. The tube elements 1b are arranged on the side of an inlet pipe 3 for a refrigerant, and the tube elements 1d are arranged on the side of an outlet pipe 4 therefor. Since the tube elements 1b in which the insert fins 5 having a large heat transfer area are held for the refrigerant pathways, are located within the range of X, the efficiency of heat-exchange is made larger. On the other hand, although the dryness of the refrigerant on the downstream side is as large as nearly equal to one by evaporation, the deflected flow of the refrigerant is restrained since guides for mixing the refrigerant liquid and the refrigerant gaseous are formed. In ranging the whole of the part of Y, therefore, the heat-exchange between the refrigerant and air is equally performed, and thus the efficiency of the heat--exchanges is improved and the capacity of cooling is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空調装置に用いる積層型蒸発器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a stacked evaporator used in an air conditioner.

〔従来の技術〕[Conventional technology]

積層型蒸発器は第6図に示すようにチューブプレート1
.コルゲートフィン2.入口バイブ3゜出口バイブ4と
から構成されており、液体冷媒が入口バイブ3から流入
した、複数個のチューブプレート1の内部を流れながら
空気と熱交換して蒸発し、気体冷媒となって呂カバイブ
4から流出する構造になっている。
The stacked evaporator has a tube plate 1 as shown in Figure 6.
.. Corrugated fin 2. It is composed of an inlet vibrator 3 and an outlet vibrator 4, and the liquid refrigerant flows through the plurality of tube plates 1 into which it flows from the inlet vibrator 3, exchanges heat with air, evaporates, and becomes a gas refrigerant. The structure is such that it flows out from Kabaib 4.

従来の積層型蒸発器と特開昭63−267868号等に
みられるように、同一形状のチューブプレート1を複数
個使用して冷媒通路を形成している。一方。
As seen in the conventional stacked evaporator and Japanese Patent Laid-Open No. 63-267868, a plurality of tube plates 1 having the same shape are used to form a refrigerant passage. on the other hand.

冷媒は蒸発器内部で液体から気体へ相変化するためその
かわき度も0から1へと変化する。かわき度が小さい場
合には、冷媒が接触する伝熱面積を大きくして蒸発を促
進させ、かわき度が大きくフると、まだ液体状態の冷媒
を気体冷媒とよく混1させて液体冷媒の蒸発を促進させ
るとともに、≧れの抵抗の小さい液体冷媒だけの流路に
流れが(流するのを防ぐことが、最も蒸発器の熱交換効
工がよくなる。しかしながら従来の積層型蒸発器番おい
ては、チューブプレート1が全て同一形状1あるため、
その冷媒通路部の形状は、冷媒のか)き度に無関係に最
大公約数的形状となっており、蒸発器の熱交換効率が向
上せず、冷房能力が増力しないという欠点があった。
Since the refrigerant undergoes a phase change from liquid to gas inside the evaporator, its degree of freshness also changes from 0 to 1. When the degree of freshness is low, the heat transfer area in contact with the refrigerant is increased to promote evaporation, and when the degree of softness is greatly reduced, the refrigerant that is still in a liquid state is thoroughly mixed with the gaseous refrigerant to promote evaporation of the liquid refrigerant. The heat exchange efficiency of the evaporator is best achieved by promoting the flow of liquid refrigerant and preventing it from flowing into the flow path where only liquid refrigerant has a small resistance.However, in the conventional stacked evaporator Since all tube plates 1 have the same shape 1,
The shape of the refrigerant passage section is the greatest common divisor shape regardless of the degree of refrigerant flow, which has the disadvantage that the heat exchange efficiency of the evaporator cannot be improved and the cooling capacity cannot be increased.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、冷媒のかわき度の変化に適した冷媒通
路の形状になっておらず、冷房能力の一上が期待できな
いという問題があった。
The above-mentioned conventional technology has a problem in that the shape of the refrigerant passage is not suitable for changes in the degree of susceptibility of the refrigerant, and an improvement in cooling capacity cannot be expected.

本発明は、冷房能力が増加する積層型蒸発器を提供する
ことにある。
An object of the present invention is to provide a stacked evaporator with increased cooling capacity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、冷媒のかわき度C小さい部
分の冷媒通路の伝熱面積を大きくし、玲ン  媒のかわ
き度の大きい部分の冷媒がよく混合する1  ような冷
媒通路の形状としたものである。
In order to achieve the above objective, the heat transfer area of the refrigerant passage in the part where the refrigerant's filtration degree C is small is increased, and the refrigerant passage is shaped so that the refrigerant in the part where its filtration degree is high mixes well. It is something.

硫   〔作用〕 鵬   冷媒のかわき度が0に近い小さい部分の冷媒通
ト  路の伝熱面積を大きくする。これによって冷媒と
より温度の高い空気流との熱交換量が増え、液体冷媒の
蒸発が促進される。また、冷媒のかわき度〕   が1
に近い大きい部分の冷媒通路は、液体冷媒が気体冷媒と
よく混合するような構造とし、液体冷I  媒が蒸発し
易くするとともに、気体冷媒より密度が小さく流れの抵
抗の小さい液体冷媒ばかりの偏った流れを防止する。ひ
の結果、蒸発器内部で冷媒が効率よく蒸発し、空気との
熱交換も効率よく1  行なわれるため、蒸発器の熱交
換効率が向上し、冷房能力が増加する。
Sulfur [Operation] Peng Increases the heat transfer area of the refrigerant passage in small parts where the refrigerant's sensitivity is close to 0. This increases the amount of heat exchange between the refrigerant and the hotter air stream, promoting evaporation of the liquid refrigerant. In addition, the refrigerant's sensitivity is 1
The large part of the refrigerant passage near the gas refrigerant has a structure that allows the liquid refrigerant to mix well with the gas refrigerant, making it easier for the liquid refrigerant to evaporate, and preventing the liquid refrigerant from being biased toward the liquid refrigerant, which has a lower density and lower flow resistance than the gas refrigerant. prevent the flow from occurring. As a result, the refrigerant evaporates efficiently inside the evaporator, and heat exchange with the air is also performed efficiently1, thereby improving the heat exchange efficiency of the evaporator and increasing the cooling capacity.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第4図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第3図において、インサートフィン5をチューブプレー
ト1aの冷媒流路になるようにはさみこんだチューブユ
ニット1bと、第4図において。
In FIG. 3, a tube unit 1b is shown in which insert fins 5 are inserted into the tube plate 1a to form a refrigerant flow path, and in FIG.

冷媒の流路に相当する部分に凹凸状の加工を施したチュ
ーブプレート1cを合わせたチューブユニット1dとを
、第1図に示すように、コルゲートフィン2と交互に積
層して、蒸発器を形成するにの蒸発器の内部の冷媒流れ
を模式図にして第2図に示す。冷媒の入口バイブ3に近
い方にチューブユニット1bを、出口バイブ4に近い方
にチューブユニット1dを配して組み立てる。すなわち
第2図に示す様に蒸発器は冷媒の上流側Xと下流側Yと
の2つに分けられており、Xの部分にチューブユニット
lbを、Yの部分にチューブユニットlclを配置する
As shown in FIG. 1, a tube unit 1d consisting of a tube plate 1c whose portion corresponding to the refrigerant flow path is textured is stacked alternately with corrugated fins 2 to form an evaporator. Figure 2 shows a schematic diagram of the refrigerant flow inside the evaporator. The tube unit 1b is disposed closer to the inlet vibrator 3 of the refrigerant, and the tube unit 1d is disposed closer to the outlet vibrator 4 for assembly. That is, as shown in FIG. 2, the evaporator is divided into two parts, an upstream side X and a downstream side Y of the refrigerant, and the tube unit lb is placed in the X part and the tube unit lcl is placed in the Y part.

冷媒の上流側ばかわき度が0に近く小さいため、空気と
できるだけ多くの熱交換量を確保するのが効率がよい、
また、冷媒は液体のため、インサートフィンのような部
材を冷媒通路内に設けて1通路断面積を4Xさくしても
、通路抵抗の増加は小さい、したがって第3図に示すよ
うな伝熱面積の大きいインサートフィン5を冷媒通路に
設けたチューブユニット1bを、第1図に示すXの範囲
に設けると熱交換効率が大きくなる。
Since the upstream fragility of the refrigerant is small, close to 0, it is efficient to secure as much heat exchange with the air as possible.
Furthermore, since the refrigerant is a liquid, even if a member such as an insert fin is installed in the refrigerant passage to reduce the cross-sectional area of one passage by 4X, the increase in passage resistance is small. If the tube unit 1b in which the large insert fins 5 are provided in the refrigerant passage is provided in the range of X shown in FIG. 1, the heat exchange efficiency will be increased.

一方、冷媒の下流側は蒸発によりかわき度が1に近く大
きいが、液体冷媒より気体冷媒の方が比容積が大きいた
め流れの抵抗が大きく、冷媒の流れは抵抗が小さい液体
冷媒が多く満たされている通路に偏って流れ易い。そこ
で、液体冷媒と気体冷媒とを、冷媒通路によく混合する
ような案内を、  設けると、冷媒の偏流が抑えられ、
Yの部分全体が均一に空気と熱交換することになり、熱
交換効率が向上し、冷房能力が増加する。
On the other hand, on the downstream side of the refrigerant, the degree of freshness is close to 1 due to evaporation, but gas refrigerant has a larger specific volume than liquid refrigerant, so the flow resistance is greater, and the refrigerant flow is filled with more liquid refrigerant, which has lower resistance. It tends to flow unevenly towards the aisles where the water is flowing. Therefore, if a guide is provided to mix the liquid refrigerant and gas refrigerant well in the refrigerant passage, drifting of the refrigerant can be suppressed.
The entire Y portion uniformly exchanges heat with the air, improving heat exchange efficiency and increasing cooling capacity.

第5図に本発明の第二の実施例を示す、途中を分割した
インサートフィン5aをチューブプレート1aにはさみ
こんでチューブユニットleを形成する。このチューブ
ユニット1eを、第1図に示す冷媒のかわき度の大きい
Yの部分に設ける。
FIG. 5 shows a second embodiment of the present invention. An insert fin 5a divided in the middle is inserted into a tube plate 1a to form a tube unit le. This tube unit 1e is provided at a portion Y shown in FIG. 1 where the refrigerant is highly sensitive.

インサートフィン5aの分割部で液体冷媒と気体冷媒と
がよく混合するため、熱交換効率が向上し、冷房能力が
増加する。
Since the liquid refrigerant and the gas refrigerant are well mixed at the divided portions of the insert fins 5a, the heat exchange efficiency is improved and the cooling capacity is increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば冷媒のかわき度が
小さい部分で伝熱面積が大きく、冷媒のかわき度が大き
い部分で液体冷媒と気体冷媒とがよく混合するので、熱
交換効率が向上し、冷房能力が増加する効果がある。
As explained above, according to the present invention, the heat transfer area is large in areas where the refrigerant's susceptibility is small, and the liquid refrigerant and gas refrigerant mix well in areas where the refrigerant's susceptibility is large, improving heat exchange efficiency. This has the effect of increasing cooling capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の一実施例を示し、第1図は
蒸発器の正面図、第2図は冷媒の流れを示す模式図、第
3図及び第4図は蒸発器の構成を示す斜視図、第5図は
本発明の第二の実施例を示す斜視図、第6図は従来例を
示す斜視図である。 1、la、lc・・・チューブプレート、5,5aイン
サートフイン、lb、ld、le・・チューブユニット
Figures 1 to 4 show an embodiment of the present invention, with Figure 1 being a front view of the evaporator, Figure 2 being a schematic diagram showing the flow of refrigerant, and Figures 3 and 4 showing the evaporator. FIG. 5 is a perspective view showing a second embodiment of the present invention, and FIG. 6 is a perspective view showing a conventional example. 1, la, lc... tube plate, 5, 5a insert fin, lb, ld, le... tube unit.

Claims (1)

【特許請求の範囲】 1. 2枚のチユーブプレートを合わせて冷媒通路を形
成してチユーブユニツトとし、該チユーブユニツトとコ
ルゲートフインとを交互に積層して組み立て、ろう付炉
中にて各々一体にろう付してなる積層型蒸発器において
、冷媒入口部に近い側の冷媒のかわき度が小さい部分の
複数の冷媒通路にインサートフインを設けたことを特徴
とする積層型蒸発器。2. 請求項1記載の積層型蒸発
器において、冷媒出口部に近い側の冷媒のかわき度が大
きい部分の複数の冷媒通路に、液体冷媒と液体冷媒とが
よく混合するための凹凸部を設けたことを特徴とする積
層型蒸発器。 3. 請求項1記載の積層型蒸発器において、冷媒出口
部に近い側の冷媒のかわき度が大きい部分の複数の冷媒
通路に、液体冷媒と液体冷媒とがよく混合するためのイ
ンサートフインの分割部を設けたことを特徴とする積層
型蒸発器。
[Claims] 1. A laminated type evaporator is produced by combining two tube plates to form a refrigerant passage to form a tube unit, and then assembling the tube unit and corrugated fins by stacking them alternately and brazing them together in a brazing furnace. 1. A stacked evaporator characterized in that insert fins are provided in a plurality of refrigerant passages in a portion of the refrigerant inlet nearer to the refrigerant inlet where the degree of refrigerant is small. 2. In the stacked evaporator according to claim 1, the plurality of refrigerant passages in the portion where the refrigerant is more sensitive near the refrigerant outlet portion are provided with uneven portions for good mixing of the liquid refrigerant and the liquid refrigerant. A stacked evaporator featuring: 3. In the stacked evaporator according to claim 1, the plurality of refrigerant passages in the portion where the refrigerant is more sensitive near the refrigerant outlet portion are provided with divided portions of the insert fins for good mixing of the liquid refrigerant and the liquid refrigerant. A stacked evaporator characterized by the following:
JP27905890A 1990-10-19 1990-10-19 Stacked evaporator Pending JPH04155163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27905890A JPH04155163A (en) 1990-10-19 1990-10-19 Stacked evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27905890A JPH04155163A (en) 1990-10-19 1990-10-19 Stacked evaporator

Publications (1)

Publication Number Publication Date
JPH04155163A true JPH04155163A (en) 1992-05-28

Family

ID=17605819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27905890A Pending JPH04155163A (en) 1990-10-19 1990-10-19 Stacked evaporator

Country Status (1)

Country Link
JP (1) JPH04155163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927723A (en) * 2012-10-15 2013-02-13 江苏瀚艺商用空调有限公司 Device for equalizing refrigerant at evaporator port

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927723A (en) * 2012-10-15 2013-02-13 江苏瀚艺商用空调有限公司 Device for equalizing refrigerant at evaporator port

Similar Documents

Publication Publication Date Title
US4470455A (en) Plate type heat exchanger tube pass
US6318455B1 (en) Heat exchanger
JP3960233B2 (en) Heat exchanger
JPH11248392A (en) Plate type heat exchanger
JPH08285407A (en) Laminated type heat exchanger
JP2003090693A (en) Exhaust gas heat exchanger
JPH11337276A (en) Laminated heat exchanger
GB2023796A (en) Hollow-plate heat exchange element
JPH0654198B2 (en) Stacked heat exchanger
JPS633153A (en) Refrigerant evaporator
JPH11248376A (en) Plate-type heat exchanger
JPH04155163A (en) Stacked evaporator
JPH06194001A (en) Refrigerant evaporator
JP3330176B2 (en) Parallel flow heat exchanger for heat pump
JPH05215482A (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JP7247717B2 (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JPS61114094A (en) Heat exchanger
JPH0460387A (en) Laminated heat exchanger
JPH02171591A (en) Laminated type heat exchanger
JP2533197B2 (en) Multilayer evaporator for air conditioner
JPH04174296A (en) Condenser
JP2694738B2 (en) Stacked heat exchanger
JP2004225980A (en) Evaporator