JPH0654198B2 - Stacked heat exchanger - Google Patents

Stacked heat exchanger

Info

Publication number
JPH0654198B2
JPH0654198B2 JP22824085A JP22824085A JPH0654198B2 JP H0654198 B2 JPH0654198 B2 JP H0654198B2 JP 22824085 A JP22824085 A JP 22824085A JP 22824085 A JP22824085 A JP 22824085A JP H0654198 B2 JPH0654198 B2 JP H0654198B2
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
core plate
rib
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22824085A
Other languages
Japanese (ja)
Other versions
JPS6287792A (en
Inventor
敏夫 大原
山内  芳幸
喜夫 宮田
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP22824085A priority Critical patent/JPH0654198B2/en
Publication of JPS6287792A publication Critical patent/JPS6287792A/en
Publication of JPH0654198B2 publication Critical patent/JPH0654198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層型熱交換器、例えば自動車用空調装置にお
いて、冷凍サイクルでの冷媒蒸発器として使用されるの
に適した積層型熱交換器に関する。
TECHNICAL FIELD The present invention relates to a laminated heat exchanger, for example, a laminated heat exchanger suitable for use as a refrigerant evaporator in a refrigeration cycle in an automobile air conditioner. Regarding

〔従来の技術〕[Conventional technology]

従来の積層型熱交換器である冷媒蒸発器のコアプレート
100の形状は第5図に示す如くで、一端には入口側ヘ
ッダ部103と出口側ヘッダ部104が並列に設けられ
両ヘッダ部103,104は紙面裏側に向かって突出し
ている。また両ヘッダ部103,104には貫通穴10
5,106が設けられており、前記両ヘッダ部103,
104の中間位置からセンタリブ107がコアプレート
100の長手方向の途中まで設けられており、U字状の
冷媒通路102を形成しUターン部108を形成してい
る。101はプレス加工によって設けられたリブで、一
方向に規則正しく傾斜しており冷媒を冷媒通路102内
ち適度に分散させるものである。コアプレート100を
対向接合させて熱交換ユニットを形成するが、この熱交
換ユチット内では第6図に示すように、実線で示す下側
のコアプレート100のリブ101と点線で示す上側の
コアプレート100のリブ101とがX字状に組み合わ
さり、X字の交点で109でろう付け結合され、複雑な
冷媒通路を形成し、図中矢印で示すようなジグザグの冷
媒流れが行われている。なお、熱交換ユニットの形成
は、ユアプレート100の外周縁部110とセンターリ
ブ107とリブ101同志のX字状結合の交点109に
てろう付け結合にて対向接合されるものである。
The shape of the core plate 100 of the refrigerant evaporator which is a conventional laminated heat exchanger is as shown in FIG. 5, and an inlet side header portion 103 and an outlet side header portion 104 are provided in parallel at one end thereof. , 104 project toward the back side of the paper. In addition, the through hole 10
5, 106 are provided, and both the header portions 103,
A center rib 107 is provided from an intermediate position of 104 to a midpoint in the longitudinal direction of the core plate 100, forming a U-shaped refrigerant passage 102 and forming a U-turn portion 108. Reference numeral 101 denotes a rib provided by press working, which is regularly inclined in one direction to appropriately disperse the refrigerant in the refrigerant passage 102. The core plates 100 are joined to face each other to form a heat exchange unit. In this heat exchange unit, as shown in FIG. 6, the rib 101 of the lower core plate 100 shown by the solid line and the upper core plate shown by the dotted line are shown. Ribs 101 of 100 are combined in an X shape, and are brazed at 109 at the intersection of the X shapes to form a complicated refrigerant passage, and a zigzag refrigerant flow as indicated by arrows in the drawing is performed. The heat exchange unit is formed such that the outer peripheral edge portion 110 of the your plate 100, the center rib 107, and the rib 101 are joined to each other by brazing at the intersection 109 of the X-shaped joints.

そして熱交換ユニットを多数並列に積層結合し、熱交換
ユニット間には、放熱用コルゲートフィンが設けられ、
各ヘッダ部より構成される入口側ヘッダ及び出口側ヘッ
ダは、それぞれ凝縮器側及び圧縮器側に接続され積層型
蒸発器が形成される。
And a large number of heat exchange units are laminated and connected in parallel, and heat-dissipating corrugated fins are provided between the heat exchange units.
The inlet-side header and the outlet-side header formed of the respective header parts are respectively connected to the condenser side and the compressor side to form a laminated evaporator.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、上述した従来のものでは、コアプレート10
0を対向接合し熱交換ユニットとした状態での、U字状
の冷媒通路102内はリブ101がX状に接合してお
り、冷媒の流れは、大体ジグザグに流れる。冷媒流れが
向きを替えるUターン部108では、さらに複雑にジグ
ザグに流れるため冷媒の圧力損失が非常に大きくなる。
さらに、このUターン溝には、センターリブ107が設
けられていないため耐圧強度が低く必ずこの部分から破
壊するという問題点があった。そこで、本発明はU字状
の冷媒通路でのUターン部の耐圧強度の向上及び圧力損
失の低減を目的とする。
However, in the conventional device described above, the core plate 10
The ribs 101 are joined in an X-shape in the U-shaped refrigerant passage 102 in the state where 0 is opposed to each other to form a heat exchange unit, and the refrigerant flows approximately in a zigzag manner. In the U-turn portion 108 where the flow of the refrigerant changes direction, the pressure loss of the refrigerant becomes very large because the refrigerant flows in a more zigzag manner.
Further, since the U-turn groove is not provided with the center rib 107, there is a problem that the pressure resistance is low and the portion is always broken from this portion. Therefore, an object of the present invention is to improve the pressure resistance of the U-turn portion in the U-shaped refrigerant passage and reduce the pressure loss.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では上記目的を達成するために、一端部に
並列に設けられた入口側ヘッダ部と出口側ヘッダ部の間
に、長手方向途中まで打ち出して設けられたセンタリブ
によってU字状の冷媒通路を形成するコアプレートを対
向接合して熱交換ユニットを形成し、前記熱交換ユニッ
トを多数積層し、隣接する前記熱交換ユニットの間に空
気流路を形成し、前記空気流路に熱交換用のフィンを設
けた積層型熱交換器において、前記コアプレートは、前
記U字状の冷媒通路のUターン部において、前記コアプ
レートの長手方向での中心線に対し、左右対称な略V字
形状に打ち出されたUターンリブを備えたという技術的
手段を採用する。
Therefore, in the present invention, in order to achieve the above-mentioned object, a U-shaped refrigerant passage is formed by a center rib formed halfway in the longitudinal direction between an inlet-side header portion and an outlet-side header portion provided in parallel at one end. Forming a heat exchange unit by facing each other to form a heat exchange unit, stacking a large number of the heat exchange units, forming an air flow path between the adjacent heat exchange units, and performing heat exchange on the air flow path. In the laminated heat exchanger provided with the fins, the core plate is substantially V-shaped symmetrically with respect to the longitudinal centerline of the core plate in the U-turn portion of the U-shaped refrigerant passage. It adopts the technical means that it has a U-turn rib stamped on.

〔作用〕[Action]

上記技術的手段による作用を説明すると、熱交換ユニッ
トでのU字状冷媒通路のUターン部に略V字形状のリブ
を設けることにより、Uターン部での冷媒の流れはジグ
ザグな流れではなく、Uターン部での略V字形状のリブ
によって整流され冷媒の流れは非常にスムーズに流れる
ため、Uターン部での冷媒の圧力損失を低減することが
できる。さらに、Uターン部での略V字形状のリブは、
熱交換ユニット形成時には、リブ全面でろう付結合され
るため、従来のリブがX状に結合し、交点のみでろう付
結合されるものと比べて、接合面積が非常に大きくとる
ことができる。
To explain the operation of the above technical means, by providing a substantially V-shaped rib in the U-turn portion of the U-shaped refrigerant passage in the heat exchange unit, the flow of the refrigerant in the U-turn portion is not a zigzag flow. Since the flow of the refrigerant is rectified by the substantially V-shaped ribs in the U-turn portion and flows very smoothly, the pressure loss of the refrigerant in the U-turn portion can be reduced. Furthermore, the rib in the V-shape at the U-turn is
When the heat exchange unit is formed, the ribs are brazed over the entire surface, so that the joining area can be made much larger than that of the conventional ribs joined in an X shape and brazed only at the intersections.

〔実施例〕〔Example〕

以下本発明を図に示す実施例について説明する。第1〜
第3図に本発明による自動車用空調装置の積層型の冷媒
蒸発器1が示されている。この蒸発器1は、2枚のコア
プレート2から成る熱交換ユニット3を多数積層して成
り、蒸発器1の図面中上端部手前側には入口側ヘッダ4
が、さらに図面中上端部奥側には入口側ヘッダ4と並列
に出口側ヘッダ5が設けられている。入口側ヘッダ4及
び出口側ヘッダ5は後に述べるコアプレート2のヘッダ
部13,14を積層して形成したものである。さらに隣
接する熱交換ユニット3の間には偏平の空気通路23が
形成され、各空気通路23には、コルゲートフィン24
を配設している。
The present invention will be described below with reference to embodiments shown in the drawings. First to
FIG. 3 shows a laminated refrigerant evaporator 1 of an air conditioner for an automobile according to the present invention. The evaporator 1 is formed by stacking a large number of heat exchange units 3 each including two core plates 2, and an inlet header 4 is provided on the front side of the upper end of the evaporator 1 in the drawing.
However, an outlet header 5 is provided in parallel with the inlet header 4 on the inner side of the upper end in the drawing. The inlet-side header 4 and the outlet-side header 5 are formed by stacking header portions 13 and 14 of the core plate 2 described later. Further, a flat air passage 23 is formed between the adjacent heat exchange units 3, and each air passage 23 has a corrugated fin 24.
Are installed.

各熱交換ユニット3は、第2図に示すようにコアプレー
ト2を一対、対向接合したものである。コアプレート2
は、両面にろう材をクラッドしたアルミ板材(厚さ0.5
〜0.6mm)をプレス加工したものであり、外周縁部12
を残し全体的に皿状に成型され、一端には冷媒出入口用
のヘッダ部13,14を紙面垂直下向きに膨出してあ
る。またヘッダ部13,14を構成する部分に、冷媒が
流通する貫通孔15,16がそれぞれプレスで打ち抜か
れている。打出しリブ17は紙面垂直上向きに、一定の
傾斜角を持って長めリブ17aと短めのリブ17bを規
則正しく打出してある。
As shown in FIG. 2, each heat exchange unit 3 is composed of a pair of core plates 2 facing each other. Core plate 2
Is an aluminum plate material (thickness 0.5
~ 0.6 mm) is pressed, and the outer peripheral edge 12
Is left and the whole is molded in a dish shape, and at one end, header portions 13 and 14 for the inlet and outlet of the refrigerant are bulged downward in the direction perpendicular to the paper surface. Further, through holes 15 and 16 through which the refrigerant flows are punched out by presses in the parts forming the header parts 13 and 14, respectively. The embossing ribs 17 are composed of long ribs 17a and short ribs 17b which are regularly embossed vertically upward in the plane of the drawing with a certain inclination angle.

なお、このリブ17は、ヘッダ部13,14の中間部か
らコアプレートの長手方向に途中まで紙面上向きに打出
されたセンターリブ18の左右に設けられており、セン
ターリブ18が途切れた部分からは、Uターン部19が
形成される。Uターン部19ではやはり紙面上向きにリ
ブが打出してあるが、ここではコアプレート2の長手方
向での中心線X−Xに対して左右対称に略V字形状のU
ターンリブ20が組み合わせてある。Uターンリブ20
はコアプレート2の隅部ではV字形状の一部の斜線部分
と平行な、直線状のリブ20aを設けている。さらにコ
アプレート2の隅部では、三角形状のリブ20bを設け
ている。これは、コアプレート2をろう付結合する時
に、ろう付結合面積を少しでも大きく取り結合力を得る
ためのものである。
The ribs 17 are provided on the left and right of the center rib 18 which is punched upward from the middle of the header portions 13 and 14 in the longitudinal direction of the core plate to the middle of the sheet. , U-turn portion 19 is formed. The U-turn portion 19 also has a rib protruding upward in the plane of the drawing, but here, a U having a substantially V shape is symmetrical to the center line XX in the longitudinal direction of the core plate 2.
The turn ribs 20 are combined. U-turn rib 20
In the corner portion of the core plate 2, a linear rib 20a parallel to a part of the V-shaped diagonal line is provided. Further, triangular ribs 20b are provided at the corners of the core plate 2. This is to obtain a large brazing area as much as possible when brazing the core plate 2 and to obtain a joining force.

また21は、冷媒通路でコアプレート2の入口側ヘッダ
部14から出口側ヘッダ部15までをU字状に結ぶもの
である。ここで、外周縁部12、リブ17a,17b、
センターリブ18、リブ20,20a,20bは同じ高
さで打ち出されているため、コアプレート2を重ね合わ
せて熱交換ユニット3を形成するときには、第2図に示
すように外周縁部12とセンターリブ18とUターンリ
ブ20とリブ21は、相手方のコアプレート2のそれ自
身と結合する。そして、リブ17a,17bはX字状に
交差するのでその交点22で結合する。
Reference numeral 21 is a refrigerant passage for connecting the inlet side header portion 14 of the core plate 2 to the outlet side header portion 15 in a U-shape. Here, the outer peripheral edge portion 12, the ribs 17a and 17b,
Since the center rib 18 and the ribs 20, 20a, 20b are punched out at the same height, when forming the heat exchange unit 3 by stacking the core plates 2 on each other, as shown in FIG. The ribs 18, the U-turn ribs 20 and the ribs 21 are coupled with the core plate 2 of the other party. Since the ribs 17a and 17b intersect in an X shape, they are joined at the intersection 22.

このときリブ17a,17bは冷媒通路21を流れる冷
媒が適度に冷媒通路21全体に拡散されるように、斜め
方向にジグザグな流路が形成されるよう構成されてい
る。このようなリブ17形状は効率的な冷媒流量を得る
ことができる。
At this time, the ribs 17a and 17b are configured to form a zigzag flow path in an oblique direction so that the refrigerant flowing through the refrigerant passage 21 is appropriately diffused throughout the refrigerant passage 21. Such a rib 17 shape can obtain an efficient refrigerant flow rate.

また冷媒流れの向きが反転するUターン部19では、リ
ブ20を略V字形状に打ち出し、さらに斜めに直線のリ
ブ20a、隅には三角形状のリブ20bを設けることに
より、ジグザグな冷媒流れから、リブ20に沿って冷媒
がスムーズに流れるため冷媒の圧力損失を低くおさえる
ことができ、逆に冷媒流量が増加し蒸発器全体として熱
交換性能が上がる。ところで蒸発器1は、先ず、多数の
熱交換ユニット3を並列配置し、この際、隣接する熱交
換ユニット3との間に形成された空気通路23内にそれ
ぞれコルゲート・フィン24を配設するようにして組合
せるものである。
Further, in the U-turn portion 19 in which the direction of the refrigerant flow is reversed, the rib 20 is stamped out in a substantially V shape, and further the linear ribs 20a and the triangular ribs 20b are provided at the corners to prevent the zigzag refrigerant flow. Since the refrigerant smoothly flows along the ribs 20, the pressure loss of the refrigerant can be suppressed, and conversely, the refrigerant flow rate increases and the heat exchange performance of the evaporator as a whole increases. By the way, in the evaporator 1, first, a large number of heat exchange units 3 are arranged in parallel, and at this time, the corrugated fins 24 are arranged in the air passages 23 formed between the heat exchange units 3 adjacent to each other. And combine them.

勿論、組み合わせに先立って各構成要素は表面をろう材
で被覆されている。引き続いて、その組合せ体を炉内に
て加熱し、ろう材を溶融し、各構成要素を一体的にろう
付する。
Of course, each component is coated on the surface with a brazing material prior to the combination. Subsequently, the combination is heated in a furnace to melt the brazing material and braze the components together.

次に他の実施例を第4図に示す。プレス成形されたコア
プレート25は、Uターン部19のリブ形状の除いて、
他の構成部分はコアプレート2と実質的に同一であるの
で、コアプレート2の構成部分と同一の部分には同一の
符号を付して説明を省略する。
Next, another embodiment is shown in FIG. The press-formed core plate 25 has the same shape as the U-turn portion 19 except for the rib shape.
Since the other components are substantially the same as the core plate 2, the same components as those of the core plate 2 are designated by the same reference numerals and the description thereof will be omitted.

コアプレート25はUターン部19のリブ26形状はコ
アプレート2の長手方向での中心線に対して左右対称な
不連続な略V字形状が打ち出されている。そのためひと
つづつのリブ形状は直線形状から成るが、Uターン部1
9の隅部には第2図と同様に三角形状のリブ20aが設
けられており、全体としてはスムーズに冷媒流れの方向
を変えることができ、この場合も第1実施例と同様に冷
媒流路の圧力損失を低くおさえることができる。
In the core plate 25, the ribs 26 of the U-turn portion 19 are embossed in a discontinuous substantially V-shape that is symmetrical with respect to the center line of the core plate 2 in the longitudinal direction. Therefore, each rib shape consists of a linear shape, but the U-turn part 1
The triangular ribs 20a are provided at the corners of 9 as in FIG. 2, and the direction of the refrigerant flow can be smoothly changed as a whole. In this case also, the refrigerant flow is the same as in the first embodiment. The pressure loss in the passage can be kept low.

以上の実施例においては、Uターン部19でのリブ形状
は略V字形状であってが、略V字形状には連続、不連続
はU字形状をも含めた広い範囲を示す。また実施例にお
いては、Uターン部19以外のリブ17は長いリブ17
aと短いリブ17bとの規則正しい組合せであった。こ
れに限定されるものではなくリブ17の形状は種々考え
られる。次にUターン部19の隅部の三角形状のリブ2
0bは耐圧強度的に問題ない場合には三角形状でなく直
線形状としても良い。
In the above embodiments, the rib shape in the U-turn portion 19 is substantially V-shaped, but the substantially V-shaped shows a wide range including continuous and discontinuous U-shaped. In the embodiment, the ribs 17 other than the U-turn portion 19 are long ribs 17.
It was a regular combination of a and the short rib 17b. The shape of the rib 17 is not limited to this, and various shapes can be considered. Next, the triangular rib 2 at the corner of the U-turn portion 19
0b may have a linear shape instead of a triangular shape if there is no problem in pressure resistance.

〔発明の効果〕〔The invention's effect〕

以上本発明によれば、熱交換ユニットを構成する一対の
コアプレートの冷媒流れ方向が変わるUターン部におい
て、コアプレートの長手方向での中心線に対して略V字
形状のリブを左右対称に設けたことにより、冷媒流れが
リブに沿って流れるためとってもスムーズに冷媒をUタ
ーンさせることができるため、Uターン部では圧力損失
を低く押さえられる。このため、冷媒通路に効率的な冷
媒流量を流すことができ、熱交換器全体として、熱交換
性能もアップする。
As described above, according to the present invention, in the U-turn portion where the refrigerant flow direction of the pair of core plates constituting the heat exchange unit changes, the substantially V-shaped ribs are symmetrical with respect to the center line in the longitudinal direction of the core plates. By providing the refrigerant, the refrigerant can smoothly make a U-turn because the refrigerant flows along the ribs, so that the pressure loss can be suppressed low at the U-turn portion. Therefore, an efficient flow rate of the refrigerant can be passed through the refrigerant passage, and the heat exchange performance of the heat exchanger as a whole is improved.

さらに、Uターン部でのリブ形状は中心線に対して左右
対称のリブ形状であり、この部分でのろう付接合はリブ
の全長にわたって線状接合されるため接合面積を大きく
でき、耐圧強度を非常に高めることができるために、熱
交換ユニットの耐圧強度を高め、ひいては積層型熱交換
器として耐圧強度を高める事ができる。よって、熱交換
性能が良く、耐久性のある積層型熱交換器を提供するこ
とができる。
Further, the rib shape at the U-turn portion is a rib shape that is symmetrical with respect to the center line, and since brazing joining at this portion is performed linearly over the entire length of the rib, the joining area can be increased and the pressure resistance can be increased. Since the pressure can be greatly increased, the pressure resistance of the heat exchange unit can be increased, and thus the pressure resistance of the laminated heat exchanger can be increased. Therefore, it is possible to provide a laminated heat exchanger having good heat exchange performance and durability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用した自動車用冷媒蒸発器のコアプ
レートで第1実施例を示す正面図、第2図は第1図に示
すコアプレートを対向接合し冷媒流れを正面図した部分
縦断拡大図、第3図は第1図のコアプレートを用いた自
動車用冷媒蒸発器の断面図、第4図はコアプレートの第
2実施例を示す部分拡大正面図、第5図は従来の自動車
用冷媒蒸発器のコアプレートを示す部分正面図、第6図
は第5図のコアプレートを対向接合し、冷媒流れを示し
た部分断面拡大図である。 2……コアプレート,3……熱交換ユニット,13,1
4……ヘッダ部,18……センタリブ,19……Uター
ン部,20……Uターンリブ,21……冷媒通路,23
……空気通路,24……コルゲールフィン(フィン)。
FIG. 1 is a front view showing a first embodiment of a core plate of a refrigerant evaporator for an automobile to which the present invention is applied, and FIG. 2 is a partial longitudinal section showing a front view of a refrigerant flow by joining the core plates shown in FIG. 1 to each other. FIG. 3 is an enlarged view, FIG. 3 is a sectional view of a refrigerant evaporator for an automobile using the core plate of FIG. 1, FIG. 4 is a partially enlarged front view showing a second embodiment of the core plate, and FIG. 5 is a conventional automobile. FIG. 6 is a partial front view showing a core plate of a refrigerant evaporator for a vehicle, and FIG. 6 is an enlarged partial sectional view showing a refrigerant flow when the core plates of FIG. 2 ... Core plate, 3 ... Heat exchange unit, 13, 1
4 ... Header part, 18 ... Center rib, 19 ... U turn part, 20 ... U turn rib, 21 ... Refrigerant passage, 23
...... Air passage, 24 ...... Corrugated fins (fins).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一端部に並列に設けられた入口側ヘッダ部
と出口側ヘッダ部の間に、長手方向途中まで打ち出して
設けられたセンタリブによってU字状の冷媒通路を形成
するコアプレートを対向接合して熱交換ユニットを形成
し、前記熱交換ユニットを多数積層し、隣接する前記熱
交換ユニットの間に空気流路を形成し、前記空気流路に
熱交換用のフィンを設けた積層型熱交換器において、前
記コアプレートは、前記U字状の冷媒通路のUターン部
において、前記コアプレートの長手方向での中心線に対
し、左右対称な略V字形状に打ち出されたUターンリブ
を備えたことを特徴とする積層型熱交換器。
1. A core plate that forms a U-shaped refrigerant passage by a center rib that is formed halfway in the longitudinal direction between an inlet-side header portion and an outlet-side header portion that are provided in parallel at one end and faces each other. A laminated type in which a heat exchange unit is formed by joining, a plurality of the heat exchange units are laminated, an air flow path is formed between adjacent heat exchange units, and a fin for heat exchange is provided in the air flow path. In the heat exchanger, the core plate has a U-turn rib punched out in a substantially V-shape that is symmetrical with respect to the center line in the longitudinal direction of the core plate at the U-turn portion of the U-shaped refrigerant passage. A laminated heat exchanger characterized by being provided.
JP22824085A 1985-10-14 1985-10-14 Stacked heat exchanger Expired - Fee Related JPH0654198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22824085A JPH0654198B2 (en) 1985-10-14 1985-10-14 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22824085A JPH0654198B2 (en) 1985-10-14 1985-10-14 Stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPS6287792A JPS6287792A (en) 1987-04-22
JPH0654198B2 true JPH0654198B2 (en) 1994-07-20

Family

ID=16873353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22824085A Expired - Fee Related JPH0654198B2 (en) 1985-10-14 1985-10-14 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JPH0654198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060262A (en) * 2016-11-28 2018-06-07 조형석 Plate heat exchanger

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645151Y2 (en) * 1987-12-23 1994-11-16 カルソニック株式会社 Multilayer evaporator
JPH01169963U (en) * 1988-01-22 1989-11-30
JPH0749249Y2 (en) * 1988-11-10 1995-11-13 三菱重工業株式会社 Heat exchanger
JPH02100077U (en) * 1989-01-24 1990-08-09
JP2562440Y2 (en) * 1991-09-11 1998-02-10 株式会社ゼクセル Heat exchanger
KR100353020B1 (en) * 1993-12-28 2003-01-10 쇼와 덴코 가부시키가이샤 Multilayer Heat Exchanger
US6991025B2 (en) * 2004-03-17 2006-01-31 Dana Canada Corporation Cross-over rib pair for heat exchanger
US8961697B2 (en) 2006-12-27 2015-02-24 Hitachi Metals, Ltd. Die-member-cleaning method and apparatus
JP2014088995A (en) * 2012-10-30 2014-05-15 Calsonic Kansei Corp Tube for heat exchanger
JP6865354B2 (en) * 2018-04-09 2021-04-28 パナソニックIpマネジメント株式会社 Plate fin laminated heat exchanger and refrigeration system using it
DE102020212900A1 (en) * 2020-02-04 2021-08-05 Hanon Systems Dimple cooler with additional dimples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060262A (en) * 2016-11-28 2018-06-07 조형석 Plate heat exchanger

Also Published As

Publication number Publication date
JPS6287792A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
US7040386B2 (en) Heat exchanger
US20050269066A1 (en) Heat exchanger
US6446713B1 (en) Heat exchanger manifold
KR940004308A (en) Multilayer Heat Exchanger and Manufacturing Method Thereof
US20040069472A1 (en) Heat exchanger
JPH0539323Y2 (en)
JPH0654198B2 (en) Stacked heat exchanger
JP2002130977A (en) Heat exchanger
JP2932846B2 (en) Stacked heat exchanger and method of manufacturing the same
US20040050531A1 (en) Heat exchanger
JP3966134B2 (en) Heat exchanger
JP3403544B2 (en) Heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JPH0875385A (en) Heat exchanging element
CN112146484B (en) Plate heat exchanger
JP2533197B2 (en) Multilayer evaporator for air conditioner
JPH08291992A (en) Laminate type heat exchanger
JP2884201B2 (en) Heat exchanger
JP3000188B2 (en) Stacked heat exchanger
JPH0435735Y2 (en)
JPH1194398A (en) Laminate type evaporator
JPH0443739Y2 (en)
JP3853863B2 (en) Heat exchanger
JPH08178569A (en) Manufacture of refrigerant flow tube for heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees