JP3966134B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3966134B2
JP3966134B2 JP2002270545A JP2002270545A JP3966134B2 JP 3966134 B2 JP3966134 B2 JP 3966134B2 JP 2002270545 A JP2002270545 A JP 2002270545A JP 2002270545 A JP2002270545 A JP 2002270545A JP 3966134 B2 JP3966134 B2 JP 3966134B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
internal fluid
refrigerant
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270545A
Other languages
Japanese (ja)
Other versions
JP2004108644A (en
Inventor
栄一 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002270545A priority Critical patent/JP3966134B2/en
Priority to US10/662,505 priority patent/US20050274504A1/en
Publication of JP2004108644A publication Critical patent/JP2004108644A/en
Application granted granted Critical
Publication of JP3966134B2 publication Critical patent/JP3966134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部流体の流れる内部流体通路を構成するプレート状部材だけで構成される熱交換器に関するもので、例えば、車両空調用蒸発器に用いて好適である。
【0002】
【従来の技術】
従来技術として、特開2001−41678号公報にフィンのないプレートのみの熱交換器が示されている。2枚のアルミニウムプレートを最中状に接合して構成される断面偏平状のチューブを、多数枚積層すると共に相互の間に空気通路を形成し、チューブの中を流通する内部流体(例えば冷媒)と外部の空気通路を流通する空気との間で熱交換を行なうものである。
【0003】
また、特許第2749586号公報には、同じくフィンのない熱交換器を、樹脂材から形成したものが示されている。2枚の樹脂シートの必要部を接合することにより、内部にヘッダー部と流体通路とを形成している。
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術のうち前者のものにおいては、アルミニウムプレートだけを積層して構成しているため、重くなるという問題がある。軽量化するためにはプレートの薄肉化が必須となり、薄肉化することは熱交換するうえでは有利となるが、1枚のアルミニウムの板材からプレス加工でタンク部分と内部流体通路部分とを一体にして成形するため、薄肉化すると通路部分より受圧面積の大きいタンク部も薄肉となって耐圧強度が確保できなくなる。
【0005】
これに対しては、別部材を用いてタンク部を補強する等の対応が必要となってくる。また逆に、タンク部での耐圧強度に充分なだけの板厚を取ることは、熱交換するコア部においは余分に厚い状態となり、最適な板厚とはならない。上記従来技術のうち後者のものにおいても、軽くできるという効果はあるが、2枚の樹脂シートを接合してタンク部分と内部流体通路部分とを一体に形成するため、上記したようにタンク部と熱交換部とで最適板厚が背反する問題は同様である。
【0006】
本発明は、上記従来技術の問題点に鑑みて成されたものであり、軽くできるうえ、タンク部と熱交換部とで板厚を最適にすることのできる熱交換器を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、下記の技術的手段を採用する。すなわち、請求項1に記載の発明では、内部流体通路部分とタンク部分とを一体に形成した一対の伝熱プレート(12a、12b、12)を、対向させながら複数対を積層して全ての当接面を接合し、伝熱プレート(12a、12b、12)の内部に内部流体の流れる内部流体通路(19、20)と、各内部流体通路(19、20)と連通するタンク部(15〜18)とを形成する熱交換器において、伝熱プレート(12a、12b、12)を樹脂材にて形成するとともに、内部流体通路(19、20)を形成する部分に互いに嵌合する嵌合凸部(14a)と、タンク部(15〜18)を形成する当接面に互いに嵌合する嵌合凹凸部(12c)とを設けたことを特徴とする。
これにより、熱交換器を軽く構成することができる。図3は、従来の伝熱プレートを示し、(a)はタンク部の断面図、(b)はろう付け前の熱交換部分の断面図、(c)はろう付け後の熱交換部分の断面図である。従来はアルミニウムの板材をプレスして成形しているため、図3に示すように各部に曲げRを持った形状となっている。これを蝋付けし、各接合部の隙をろう材のフィレットFで充填することで接合強度を保っている(尚、図中の符号は後述する実施形態と対応するものであり、ここでは説明を省く)。
これに対して本発明は、嵌合なしでは接合部が剥離となって接合強度が弱くなるため、内部流体通路(19、20)を形成する部分に嵌合凸部(14a)を設けることにより、接合部に掛かる力を剪断方向として接合強度を高めている。これは、伝熱プレート(12a、12b、12)に樹脂材を用いて射出成形等で形成することより、各部分に必要形状を作ることが容易になることを利用したものである。
また、伝熱プレート(12a、12b、12)は、タンク部(15〜18)を形成する当接面に互いに嵌合する嵌合凹凸部(12c)を設けている。これも上記と同様、嵌合なしでは接合部が剥離となって接合強度が弱くなるため、タンク部(15〜18)を形成する当接面に嵌合凹凸部(12c)を設けることにより、接合部に係る力を剪断方向として接合強度を高めている。またこれも、伝熱プレート(12a、12b、12)に樹脂材を用いて射出成形等で形成することより、各部分に必要形状を作ることが容易になることを利用したものである。
【0008】
請求項2に記載の発明では、伝熱プレート(12a、12b、12)は、内部流体通路(19、20)部分の板厚に対して、タンク部(15〜18)の板厚を厚く形成したことを特徴とする。これは、伝熱プレート(12a、12b、12)に樹脂材を用いて射出成形等で形成することより、各部分毎に必要強度に応じた板厚とすることが容易となる。これを利用し、熱交換する内部流体通路(19、20)部分は薄く、耐圧強度の要るタンク部(15〜18)は厚く、それぞれ最適な板厚で形成することができる。
【0009】
請求項3に記載の発明では、伝熱プレート(12a、12b、12)は、互いに当接して接合される基板部(13)を有し、基板部(13)に対して外方に突出した内部流体通路(19、20)部分の外面を、略台形形状としたことを特徴とし、請求項4に記載の発明では、伝熱プレート(12a、12b、12)は、内部流体通路(19、20)の内面を、略円形形状としたことを特徴とする。
【0010】
これも、伝熱プレート(12a、12b、12)に樹脂材を用いて射出成形等で形成することより、各部分毎に必要形状とすることが容易となる。これを利用し、内部流体通路(19、20)外面は熱伝達率を大きくする効果の高い略台形形状とし、内部流体通路(19、20)内面は耐圧確保に有利な略円形形状として、それぞれ最適な形状で形成することができる。
【0015】
請求項に記載の発明では、伝熱プレート(12a、12b、12)以外の熱交換器を構成する部材(21、22、25、30、31)も樹脂材にて形成したことを特徴とする。これにより、より熱交換器を軽く構成することができる。また、請求項に記載の発明では、熱交換器を組み立てるうえでの当接面の接合を、接着により接合したことを特徴とする。これにより、従来のろう付けのような加熱が不要となることから簡単な設備で組み立てが可能となり、掛かるエネルギーも減らすことができる。
【0016】
本発明において、伝熱プレートの数に関係する「一対」・「2枚」・「複数対」・「複数枚」といった表現は、後述の図1・2の断面図にプレート状断面形状として表れるプレート嵌合方向での伝熱プレート(プレート状部材)が一対(2枚)であり、図1左右の積層方向に複数対(複数枚)であることを意味している。そして、これらの一対の伝熱プレートは、個々に完全に切り離して成形できることはもちろんのこと、折り曲げ等による連結部により一体に連結して成形することもできる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づいて説明する。図1・2は本発明の一実施形態を示すもので、本発明の熱交換器を車両空調用蒸発器10に適用した例を示している。図1の(a)は熱交換器10全体の構成を示す分解斜視図であり、(b)は伝熱プレート12間の空気通路A1を示す部分断面図である。また図2は、伝熱プレート12を示し、(a)はタンク部15〜18の断面図、(b)は嵌合前の熱交換部分の断面図、(c)は嵌合後の熱交換部分の断面図である。
【0018】
蒸発器10は、空調用空気の流れ方向Aと、伝熱プレート12部での冷媒流れ方向B(図1(a)に示す上下方向)とが略直交する直交流熱交換器として構成されている。この蒸発器10は、空調用空気(外部流体)と冷媒(内部流体)との熱交換を行なうコア部11を、図2に示すように第1伝熱プレート12aと第2伝熱プレート12bとを組み合わせて伝熱プレート12とし、これらを多数枚積層することにより構成している。
【0019】
そして、各伝熱プレート12a・12bは、例えばナイロン系の樹脂材からなるもので、冷媒通路19・20部分は例えば板厚t=0.1〜0.4mm程度の厚さに射出成形したものである。この伝熱プレート12は図1に示すような概略長方形の平面形状を有し、その外形寸法はいずれも同一であり、長辺方向の長さは例えば245mmで、短辺方向の幅は例えば45mmである。
【0020】
伝熱プレート12a・12bの成形形状は、本実施形態では後述する嵌合凹凸部12cの方向のみが異なるが、基本的には同一形状で良い。但し、対向させつつ一方向に積層し、尚且つ冷媒順路を複雑なものとした場合は部分的に異なる場合も出てくる。
【0021】
図2に示すように、各伝熱プレート12a・12bの平坦な基板部13の外面には、外形が略台形形状で内側が略半円形状となった突出部14を、複数本突出させている。また、基板部13の裏面には、他方のプレートの台形形状内側と嵌合する嵌合凸部14aを2本づつ形成されており、この2本の嵌合凸部14aの間も略半円形状に形成されている。
【0022】
そして、2枚の伝熱プレート12a・12bの基板部13同志を互いに嵌合させると(図2(c)参照)、先の台形形状内側の半円形状と嵌合凸部14a間の略半円形状とが対向して略円形形状の内部流体通路(冷媒通路)19・20を形成する。この内部流体通路19・20は、伝熱プレート12の長手方向(換言すると空気流れ方向Aと略直交方向)に連続して平行に延びており、図1の伝熱プレート12a・12bでは、この突出部14および内部流体通路19・20を空気流れ上流側と空気流れ下流側とにそれぞれ6本づつ形成している。
【0023】
すなわち、各伝熱プレート12の幅方向において、中央部より風上側に位置する突出部14の内側には、風上側の冷媒通路20を形成し、各伝熱プレート12の幅方向において、中央部より風下側に位置する突出部14の内側には、風下側の冷媒通路19を形成する(図1(b)と、図2(b)・(c)は風上側の冷媒通路20のみを示す)。
【0024】
一方、伝熱プレート12のうち、空気流れ方向Aと直交する方向(伝熱プレート長手方向)Bの両端部に、それぞれ伝熱プレート幅方向(空気流れ方向A)に分割されたタンク部15〜18が2個づつ形成してある。このタンク部15〜18は各伝熱プレート12において、突出部14と同一方向(図2(a)参照)に突出させて成形されるもので、その成形高さは突出部14と同一高さである。
【0025】
また、このタンク部15〜18は、耐圧性を持たせるため基板部13より厚肉(例えば本実施形態では2mm程度)に成形すると共に、このタンク部15〜18の積層方向両当接面には、嵌合させてシール性能と接合強度を向上させるための嵌合凹凸部12cを設けている。
【0026】
このように、タンク部15〜18を突出部14と同一方向に突出させる共に、積層方向の両端面において、嵌合凹凸12cが嵌合して連続するようにしてある。そして、風上側の冷媒通路20の両端部は風上側のタンク部17・18に連通し、風下側の冷媒通路19の両端部は風下側のタンク部15・16に連通する。
【0027】
また、伝熱プレート12下端のタンク部15・17、および伝熱プレート12上端のタンク部16・18は、伝熱プレート幅方向を2分割しており、図1に示すように、各タンク部15〜18は伝熱プレート幅方向に略長円状となっている。各タンク部15〜18の中央部には連通穴15a〜18aが開口しており、この連通穴15a〜18aにより伝熱プレート積層方向において、隣接する伝熱プレート相互間でタンク部15〜18同志の流路を連通させている。
【0028】
すなわち、図2(a)に示すように、隣接する各タンク部15〜18の端面は互いに当接して嵌合されることにより、連通穴15a〜18a相互の連通がなされる。ところで、各伝熱プレート12の幅方向(空気流れ方向A)において、複数の突出部14は図1(b)に示すように、互いに隣接する各伝熱プレートの突出部14と形成位置がずれており、これにより、各突出部14を隣接する各伝熱プレート12の基板部13により形成される凹面部に位置させることができる。
【0029】
その結果、各突出部14の凸面側の頂部と、隣接する伝熱プレート12の基板部13の凹面部との間に必ず隙間が形成される。この隙間により、伝熱プレート幅方向(空気流れ方向A)の全長にわたって矢印A1の如く波状に蛇行した空気通路が連続して形成される。従って、矢印A方向に送風される空調空気は、上記空気通路を矢印A1の如く波状に蛇行しながら2枚の伝熱プレート12a・12bの間を通り抜けることができる。
【0030】
次に、コア部11に対する冷媒の入出を行う部分について説明する。伝熱プレート積層方向の両端側には、伝熱プレート12と同一の大きさを持った側板部材としてのエンドプレート21・22とサイドプレート25・31が配設されている。エンドプレート21・22は、いずれも伝熱プレート12の突出部14およびタンク部15〜18の突出側に当接して伝熱プレート12と接合される平坦な板形状になっている。
【0031】
そして、図1の左側のエンドプレート21には、その下端部近傍位置に冷媒入口穴21aおよび上端部近傍位置に冷媒出口穴21bが開けられ、この冷媒入口穴21aは伝熱プレート12下端部の風下側タンク部15の連通穴15aと連通し、冷媒出口穴21bは伝熱プレート12上端部の風上側タンク部18の連通穴18aと連通する。
【0032】
また、図1の右側のエンドプレート22には、その上端部近傍位置に冷媒出口穴22aおよび下端部近傍位置に冷媒入口穴22bが開けられ、この冷媒出口穴22aは伝熱プレート12上端部の風下側タンク部16の連通穴16aと連通し、冷媒入口穴22bは伝熱プレート12下端部の風上側タンク部17の連通穴17aと連通する。
【0033】
また、本実施形態では、冷媒入口パイプ23および冷媒出口パイプ24を1つの配管接続部材としての配管ジョイントブロック30にまとめて設け、蒸発器10と外部の冷媒配管との接続を簡単にしている。このため、図1に示すように、左側のエンドプレート21にサイドプレート31を接合して、この両プレート21・31の間に配管ジョイントブロック30の冷媒出入口に通じる冷媒通路を構成している。
【0034】
この冷媒通路構成をより具体的に説明すると、サイドプレート31のうち、配管ジョイントブロック30の部位から下方側にわたって突出部31aが外側へ突出させて成形してあり、この突出部31aの上下両端部は1つに合流しているが、上下方向(プレート長手方向)の途中は複数(図示の例は3列)に分割して、サイドプレート31の断面係数を大きくし、強度アップを図っている。
【0035】
突出部31a内側の凹部により形成される冷媒通路の上端部は配管ジョイントブロック30の冷媒入口パイプ23と連通し、また、この冷媒通路の下端部はエンドプレート21の連通穴21aと連通している。また、冷媒出口パイプ24はエンドプレート21の連通穴21bと連通している。
【0036】
エンドプレート21・22およびサイドプレート25・31は、伝熱プレート12と同様に例えばナイロン系の樹脂材からなるもので、伝熱プレート12に比べて板厚を厚く(例えば、板厚t=1.0mm程度)して強度向上を図っている。更に、配管ジョイントブロック30も同様に、例えばナイロン系の樹脂材にて冷媒入口パイプ23および冷媒出口パイプ24を一体に射出成形したものであり、本例ではサイドプレート31の上部側に配置され、両者の嵌合部を接着することにより接合されている。
【0037】
本実施形態では、上記冷媒入口パイプ23に図示しない冷凍サイクルの膨張弁等の減圧手段で減圧された気液2相冷媒が流入し、冷媒出口パイプ24は図示しない圧縮機吸入側に接続され、蒸発器10で蒸発したガス冷媒を圧縮機吸入側に導くものである。
【0038】
各伝熱プレート12において、風下側の冷媒通路19は、冷媒入口パイプ23からの冷媒が流入するため、蒸発器10全体の冷媒通路の中で、入口側冷媒通路を構成し、風上側の冷媒通路20は、風下側(入口側)の冷媒通路19を通過した冷媒が流入し、冷媒出口パイプ24へと冷媒を流出させるため、出口側冷媒通路を構成することになる。
【0039】
次に、蒸発器10全体としての冷媒通路を説明すると、まず、蒸発器10の上下両端部に位置するタンク部15〜18のうち、風下側のタンク部15、16が冷媒入口側タンク部を構成し、また、風上側のタンク部17、18が冷媒出口側タンク部を構成している。そして、膨張弁で減圧された低圧の気液2相冷媒が冷媒入口パイプ23から風下側の下側の入口側タンク部15に入り、冷媒は各伝熱プレート12の風下側突出部14により形成される冷媒通路19を上昇して上側の入口側タンク部16に出る。
【0040】
入口側タンク部16に集まった冷媒は、エンドプレート22の冷媒出口穴22aからサイドプレート25の内側空間に入り、この内側空間が連通路となって下降し、エンドプレート22の冷媒入口穴22bから風上側の下側の出口側タンク部17に入る。そして冷媒は、各伝熱プレート12の風上側突出部14により形成される冷媒通路20を上昇して上側の出口側タンク部18に出て、蒸発器10内で蒸発したガス冷媒は冷媒出口パイプ24から圧縮機吸入側に吸引される。
【0041】
本実施形態では蒸発器10の冷媒通路が上記のように構成されており、図1に示す各構成部品の相互の当接面を、例えばエポキシ樹脂による接着材を塗布する等で接合しながら順次積層することにより、蒸発器10の組み立てを行なう。
【0042】
次に、本実施形態の蒸発器10の作用を説明すると、蒸発器10は図示しない空調ユニットケース内に図1の上下方向を上下にして収容され、図示しない空調用送風機の作動により矢印A方向に空気が送風される。そして、冷凍サイクルの圧縮機が作動すると、図示しない膨張弁により減圧された低圧側の気液2相冷媒が前述した冷媒通路構成に従って流れる。
【0043】
一方、コア部11の伝熱プレート12の外面側に凸状に突出している突出部14と基板部13の間に形成される隙間により、伝熱プレート幅方向(空気流れ方向A)の全長にわたって図1(b)の矢印A1の如く波状に蛇行した空気通路が連続して形成されている。その結果、矢印A方向に送風される空調空気は、上記空気通路を矢印A1の如く波状に蛇行しながら2枚の伝熱プレート12の間を通り抜けることができ、この空気の流れから冷媒は蒸発潜熱を吸熱して蒸発するので、空調空気は冷却され、冷風となる。
【0044】
この際、空調空気の流れ方向Aに対して、風下側に入口側冷媒通路19を、また、風上側に出口側冷媒通路20を配置することにより、空気流れに対する冷媒出入口が対向流の関係となる。更に、空気側においては、空気流れ方向Aが、伝熱プレート12の突出部14の長手方向(冷媒通路19、20での冷媒流れ方向B)に対して直交する方向になっており、突出部14が空気流れと直交状に突出する凸面(伝熱面)を形成しているので、空気はこの直交状に延びる突出部14の凸面形状により直進を妨げられる。
【0045】
このため、空気流は伝熱プレート12間の隙間を図1(b)の矢印A1に示すように波状に蛇行した流れを形成して、その流れを乱すので、空気流が乱流状態となり、空気側の熱伝達率を飛躍的に向上することができる。ここで、コア部11が伝熱プレート12のみで構成されているため、従来のフィン部材を備えている通常の蒸発器に比べて、空気側の伝熱面積が大幅に減少するが、乱流状態の設定により空気側の熱伝達率が飛躍的に向上するため、空気側伝熱面積の減少を空気側熱伝達率の向上により補うことが可能となり、必要冷却性能を確保できる。
【0046】
次に、本実施形態の特徴を述べる。まず、伝熱プレート12(12a・12b)を樹脂材にて形成している。これにより、熱交換器10を軽く構成することができる。また、伝熱プレート12(12a・12b)は、内部流体通路19・20部分の板厚に対して、タンク部(15〜18)の板厚を厚く形成している。
【0047】
これは、伝熱プレート12(12a・12b)に樹脂材を用いて射出成形等で形成することより、各部分毎に必要強度に応じた板厚とすることが容易となる。これを利用し、熱交換する内部流体通路19・20部分は薄く、耐圧強度の要るタンク部15〜18は厚く、それぞれ最適な板厚で形成することができる。
【0048】
また、伝熱プレート12(12a・12b)は、互いに当接して接合される基板部13を有し、その基板部13に対して外方に突出した内部流体通路19・20部分の外面を、略台形形状とし、内部流体通路19・20の内面を、略円形形状としている。
【0049】
これも、伝熱プレート12(12a・12b)に樹脂材を用いて射出成形等で形成することより、各部分毎に必要形状とすることが容易となることを利用し、内部流体通路19・20外面は熱伝達率を大きくする効果の高い略台形形状とし、内部流体通路19・20内面は耐圧確保に有利な略円形形状として、それぞれ最適な形状で形成することができる。
【0050】
また、伝熱プレート12(12a・12b)は、内部流体通路19・20を形成する部分に互いに嵌合する嵌合凸部14aを設けている。これは、嵌合なしでは接合部が剥離となって接合強度が弱くなるため、内部流体通路19・20を形成する部分に嵌合凸部14aを設けることにより、接合部に係る力を剪断方向として接合強度を高めている。
【0051】
また、この嵌合凸部14aを用いて上記したように内部流体通路19・20の内面を略円形形状としている。これも、伝熱プレート12(12a・12b)に樹脂材を用いて射出成形等で形成することより、各部分に必要形状を作ることが容易になることを利用したものである。
【0052】
また、伝熱プレート12(12a・12b)は、タンク部15〜18を形成する当接面に互いに嵌合する嵌合凹凸部12cを設けている。これも上記と同様、嵌合なしでは接合部が剥離となって接合強度が弱くなるため、タンク部15〜18を形成する当接面に嵌合凹凸部12cを設けることにより、接合部に係る力を剪断方向として接合強度を高めている。またこれも、伝熱プレート12(12a・12b)に樹脂材を用いて射出成形等で形成することより、各部分に必要形状を作ることが容易になることを利用したものである。
【0053】
また、伝熱プレート12(12a・12b)以外の熱交換器を構成する部材(例えば本実施形態ではエンドプレート21・22、サイドプレート25・30、配管ジョイントブロック31)も樹脂材にて形成している。これにより、より熱交換器10を軽く構成することができる。また、熱交換器10を組み立てるうえでの当接面の接合を、接着により接合している。これにより、従来のろう付けのような加熱が不要となることから簡単な設備で組み立てが可能となり、掛かるエネルギーも減らすことができる。
【0054】
(その他の実施形態)
上述した実施形態では、空気(外部流体)流れ方向Aを伝熱プレート12(12a・12b)の冷媒流れ方向(プレート長手方向)Bに対して直交状に設定する場合について説明したが、空気(外部流体)流れ方向Aを伝熱プレート12(12a・12b)の冷媒流れ方向(プレート長手方向)Bに対して所定角度だけ傾斜するようにしても良く、要は空気(外部流体)流れ方向Aと伝熱プレート12(12a・12b)の冷媒流れ方向(プレート長手方向)Bとが交差する関係にあればよい。
【0055】
また、上述した実施形態では、伝熱プレート12の冷媒通路(内部流体通路)19・20を冷凍サイクルの低圧側の低温冷媒が流れ、伝熱プレート12の外部を空調空気が流れ、冷媒の蒸発潜熱を空調空気から吸熱して冷媒を蒸発させる蒸発器10に本発明を適用した場合について説明したが、これに限定されることなく、本発明は種々な用途の流体間の熱交換を行なう熱交換器一般に広く適用可能であることはもちろんである。また、冷媒順路、端板構成、および配管接続部材構成等も、上述した実施形態は一例でありこれに限るものではない。
【図面の簡単な説明】
【図1】(a)は本発明の一実施形態における熱交換器全体の構成を示す分解斜視図であり、(b)は伝熱プレート間の空気通路を示す部分断面図である。
【図2】本発明の一実施形態における伝熱プレートを示し、(a)はタンク部の断面図、(b)は嵌合前の熱交換部分の断面図、(c)は嵌合後の熱交換部分の断面図である。
【図3】従来の伝熱プレートを示し、(a)はタンク部の断面図、(b)はろう付け前の熱交換部分の断面図、(c)はろう付け後の熱交換部分の断面図である。
【符号の説明】
12 伝熱プレート
12a 第1伝熱プレート
12b 第2伝熱プレート
12c 嵌合凹凸部
13 基板部
14a 嵌合凸部
15〜18 タンク部
19、20 冷媒通路(内部流体通路)
21、22 エンドプレート、側板部材(熱交換器を構成する部材)
25、30 サイドプレート、側板部材(熱交換器を構成する部材)
31 配管ジョイントブロック、配管接続部材(熱交換器を構成する部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger composed only of a plate-like member that constitutes an internal fluid passage through which an internal fluid flows, and is suitable for use in, for example, an evaporator for vehicle air conditioning.
[0002]
[Prior art]
As a conventional technique, Japanese Patent Application Laid-Open No. 2001-41678 discloses a heat exchanger only with plates without fins. An internal fluid (for example, a refrigerant) that circulates in the tube by laminating a large number of flat-shaped tubes that are formed by joining two aluminum plates in the middle and forming an air passage between them. Heat exchange with the air flowing through the external air passage.
[0003]
Japanese Patent No. 2749586 also discloses a heat exchanger without fins formed from a resin material. By joining the necessary portions of the two resin sheets, a header portion and a fluid passage are formed inside.
[0004]
[Problems to be solved by the invention]
However, the former one of the above prior arts has a problem that it is heavy because only the aluminum plate is laminated. In order to reduce the weight, it is essential to reduce the thickness of the plate, and reducing the thickness is advantageous in terms of heat exchange. However, the tank part and the internal fluid passage part are integrated by pressing from a single aluminum plate. Therefore, when the thickness is reduced, the tank portion having a larger pressure receiving area than the passage portion is also thinned, so that the pressure strength cannot be secured.
[0005]
In response to this, it is necessary to take measures such as reinforcing the tank portion using another member. On the other hand, taking a plate thickness sufficient for the pressure resistance in the tank portion results in an excessively thick state in the core portion to be heat exchanged, and does not become an optimum plate thickness. The latter of the above prior arts also has the effect that it can be lightened, but since the tank part and the internal fluid passage part are integrally formed by joining two resin sheets, the tank part and The problem that the optimum plate thickness conflicts with the heat exchange part is the same.
[0006]
The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to provide a heat exchanger that can be lightened and that can optimize the plate thickness between a tank part and a heat exchange part. And
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the following technical means are adopted. That is, in the first aspect of the present invention, a plurality of pairs of heat transfer plates (12a, 12b, 12), in which the internal fluid passage portion and the tank portion are integrally formed, are stacked to face each other. The contact surfaces are joined, the internal fluid passages (19, 20) through which the internal fluid flows inside the heat transfer plates (12a, 12b, 12), and the tank portions (15 to 15) communicating with the respective internal fluid passages (19, 20). 18), the heat transfer plates (12a, 12b, 12) are formed of a resin material, and the fitting protrusions are fitted to each other in the portions forming the internal fluid passages (19, 20). It is characterized in that a fitting concavo-convex part (12c) fitted to each other is provided on the contact surface forming the tank part (15-18) .
Thereby, a heat exchanger can be comprised lightly. 3A and 3B show a conventional heat transfer plate, where FIG. 3A is a sectional view of a tank portion, FIG. 3B is a sectional view of a heat exchange portion before brazing, and FIG. 3C is a sectional view of a heat exchange portion after brazing. FIG. Conventionally, since an aluminum plate is pressed and formed, each part has a bend R as shown in FIG. This is brazed and the joint strength is maintained by filling the gaps of the joints with the fillet F of the brazing material (note that the reference numerals in the drawing correspond to the embodiments described later, and are described here. Is omitted).
On the other hand, in the present invention, since the joint portion is peeled off and the joint strength is weakened without fitting, the fitting convex portion (14a) is provided in the portion forming the internal fluid passage (19, 20). The bonding strength is increased by using the force applied to the bonded portion as the shear direction. This utilizes the fact that it is easy to make a necessary shape in each part by forming the heat transfer plate (12a, 12b, 12) using a resin material by injection molding or the like.
Moreover, the heat-transfer plate (12a, 12b, 12) is provided with the fitting uneven | corrugated part (12c) which mutually fits in the contact surface which forms a tank part (15-18). Similarly to the above, since the joint part is peeled off and the joint strength is weakened without fitting, by providing the fitting uneven part (12c) on the contact surface forming the tank part (15-18), The joint strength is increased by using the force related to the joint as the shear direction. This also utilizes the fact that it is easy to make a necessary shape in each part by forming the heat transfer plates (12a, 12b, 12) using a resin material by injection molding or the like.
[0008]
In the invention according to claim 2, the heat transfer plates (12a, 12b, 12) are formed so that the plate thickness of the tank portions (15-18) is thicker than the plate thickness of the internal fluid passages (19, 20). It is characterized by that. By forming the heat transfer plates (12a, 12b, 12) using a resin material by injection molding or the like, it becomes easy to obtain a plate thickness corresponding to the required strength for each part. By utilizing this, the internal fluid passages (19, 20) for heat exchange are thin, and the tank portions (15-18) requiring pressure strength are thick, and can be formed with optimum plate thicknesses.
[0009]
In the invention according to claim 3, the heat transfer plates (12 a, 12 b, 12) have substrate portions (13) that are in contact with each other and are bonded to each other, and protrude outward with respect to the substrate portion (13). In the invention according to claim 4, the heat transfer plate (12a, 12b, 12) is configured such that the outer surface of the internal fluid passage (19, 20) portion has a substantially trapezoidal shape. The inner surface of 20) has a substantially circular shape.
[0010]
Also, by forming the heat transfer plates (12a, 12b, 12) using a resin material by injection molding or the like, it becomes easy to obtain a necessary shape for each part. Using this, the outer surface of the internal fluid passages (19, 20) has a substantially trapezoidal shape with a high effect of increasing the heat transfer coefficient, and the inner surface of the internal fluid passages (19, 20) has a substantially circular shape advantageous for ensuring pressure resistance, It can be formed in an optimal shape.
[0015]
The invention according to claim 5 is characterized in that members (21, 22, 25, 30, 31) constituting the heat exchanger other than the heat transfer plates (12a, 12b, 12) are also formed of a resin material. To do. Thereby, a heat exchanger can be comprised more lightly. Moreover, in invention of Claim 6 , joining of the contact surface in assembling a heat exchanger was joined by adhesion | attachment. Thereby, since heating like the conventional brazing becomes unnecessary, it becomes possible to assemble with simple equipment and to reduce the energy applied.
[0016]
In the present invention, expressions such as “one pair”, “two sheets”, “multiple pairs”, and “multiple sheets” related to the number of heat transfer plates appear as plate-like cross-sectional shapes in the cross-sectional views of FIGS. This means that there are a pair (two) of heat transfer plates (plate-like members) in the plate fitting direction, and a plurality of pairs (plural) in the stacking direction on the left and right in FIG. The pair of heat transfer plates can be individually cut and molded as well as can be integrally formed by a connecting part by bending or the like. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 and 2 show an embodiment of the present invention, and show an example in which the heat exchanger of the present invention is applied to an evaporator 10 for vehicle air conditioning. FIG. 1A is an exploded perspective view showing the overall structure of the heat exchanger 10, and FIG. 1B is a partial cross-sectional view showing an air passage A 1 between the heat transfer plates 12. 2 shows the heat transfer plate 12, (a) is a cross-sectional view of the tank portions 15 to 18, (b) is a cross-sectional view of a heat exchange portion before fitting, and (c) is a heat exchange after fitting. It is sectional drawing of a part.
[0018]
The evaporator 10 is configured as a cross-flow heat exchanger in which the flow direction A of air-conditioning air and the refrigerant flow direction B (vertical direction shown in FIG. 1A) in the heat transfer plate 12 portion are substantially orthogonal. Yes. As shown in FIG. 2, the evaporator 10 includes a first heat transfer plate 12a and a second heat transfer plate 12b that perform heat exchange between air for air conditioning (external fluid) and refrigerant (internal fluid). Are combined to form a heat transfer plate 12, and a large number of these are stacked.
[0019]
Each of the heat transfer plates 12a and 12b is made of, for example, a nylon resin material, and the refrigerant passages 19 and 20 are injection-molded to a thickness of about 0.1 to 0.4 mm, for example. It is. The heat transfer plate 12 has a substantially rectangular planar shape as shown in FIG. 1, and the outer dimensions thereof are the same, the length in the long side direction is, for example, 245 mm, and the width in the short side direction is, for example, 45 mm. It is.
[0020]
Although the shape of the heat transfer plates 12a and 12b is different only in the direction of a fitting uneven portion 12c described later in the present embodiment, the shape may basically be the same. However, if the layers are stacked in one direction while facing each other and the refrigerant path is complicated, there may be some differences.
[0021]
As shown in FIG. 2, a plurality of projecting portions 14 whose outer shape is substantially trapezoidal and whose inner side is substantially semicircular are projected on the outer surface of the flat substrate portion 13 of each of the heat transfer plates 12a and 12b. Yes. In addition, on the back surface of the substrate portion 13, two fitting projections 14a that are fitted to the inside of the trapezoidal shape of the other plate are formed, and the gap between the two fitting projections 14a is also substantially semicircular. It is formed into a shape.
[0022]
When the substrate portions 13 of the two heat transfer plates 12a and 12b are fitted to each other (see FIG. 2 (c)), the semicircular shape inside the previous trapezoidal shape and the substantially half between the fitting convex portion 14a. The substantially circular internal fluid passages (refrigerant passages) 19 and 20 are formed so as to face the circular shape. The internal fluid passages 19 and 20 continuously extend in parallel with the longitudinal direction of the heat transfer plate 12 (in other words, the direction substantially perpendicular to the air flow direction A). In the heat transfer plates 12a and 12b of FIG. Six protrusions 14 and six internal fluid passages 19 and 20 are formed on the upstream side and the downstream side, respectively.
[0023]
That is, in the width direction of each heat transfer plate 12, a refrigerant passage 20 on the windward side is formed inside the protruding portion 14 located on the windward side from the center portion, and the center portion in the width direction of each heat transfer plate 12. A refrigerant channel 19 on the leeward side is formed on the inner side of the projecting portion 14 located further on the leeward side (FIG. 1B, FIGS. 2B and 2C show only the refrigerant channel 20 on the leeward side. ).
[0024]
On the other hand, among the heat transfer plates 12, tank portions 15 to 15 that are divided in the heat transfer plate width direction (air flow direction A) at both ends of a direction B (heat transfer plate longitudinal direction) B orthogonal to the air flow direction A, respectively. Two 18 are formed. The tank portions 15 to 18 are formed by projecting in the same direction as the projecting portion 14 (see FIG. 2A) in each heat transfer plate 12, and the molding height thereof is the same as that of the projecting portion 14. It is.
[0025]
Further, the tank portions 15 to 18 are formed thicker than the substrate portion 13 (for example, about 2 mm in the present embodiment) in order to provide pressure resistance, and the tank portions 15 to 18 are provided on both contact surfaces in the stacking direction. Are provided with a fitting uneven portion 12c for fitting to improve sealing performance and bonding strength.
[0026]
In this way, the tank portions 15 to 18 are projected in the same direction as the projecting portion 14, and the fitting irregularities 12 c are fitted and continuous at both end surfaces in the stacking direction. Both end portions of the windward side refrigerant passage 20 communicate with the windward side tank portions 17 and 18, and both end portions of the leeward side refrigerant passage 19 communicate with the leeward side tank portions 15 and 16.
[0027]
Further, the tank portions 15 and 17 at the lower end of the heat transfer plate 12 and the tank portions 16 and 18 at the upper end of the heat transfer plate 12 are divided into two in the width direction of the heat transfer plate. As shown in FIG. 15-18 are substantially oval shape in the heat-transfer plate width direction. Communication holes 15a to 18a are opened in the center of each tank portion 15 to 18, and tank portions 15 to 18 are connected to each other between adjacent heat transfer plates in the heat transfer plate stacking direction by the communication holes 15a to 18a. The flow path is in communication.
[0028]
That is, as shown to Fig.2 (a), the end surfaces of each adjacent tank part 15-18 contact | abut with each other, and the communication holes 15a-18a mutually communicate. By the way, in the width direction (air flow direction A) of each heat transfer plate 12, as shown in FIG.1 (b), the some protrusion part 14 is shifted | deviated from the protrusion part 14 of each adjacent heat transfer plate. Thus, each protrusion 14 can be positioned on a concave surface formed by the substrate portion 13 of each adjacent heat transfer plate 12.
[0029]
As a result, a gap is surely formed between the top portion of each projecting portion 14 on the convex surface side and the concave surface portion of the substrate portion 13 of the adjacent heat transfer plate 12. Due to this gap, an air passage meandering in a wave shape as indicated by an arrow A 1 is continuously formed over the entire length in the heat transfer plate width direction (air flow direction A). Therefore, conditioned air is blown in the direction of arrow A, can pass between the two heat transfer plates 12a · 12b while meandering the air passage in a wave as shown by the arrow A 1.
[0030]
Next, a part for entering and exiting the refrigerant with respect to the core part 11 will be described. End plates 21 and 22 and side plates 25 and 31 as side plate members having the same size as the heat transfer plate 12 are disposed at both ends in the heat transfer plate stacking direction. Each of the end plates 21 and 22 has a flat plate shape that comes into contact with the protruding portion 14 of the heat transfer plate 12 and the protruding sides of the tank portions 15 to 18 and is joined to the heat transfer plate 12.
[0031]
1 is provided with a refrigerant inlet hole 21a in the vicinity of the lower end portion thereof and a refrigerant outlet hole 21b in the vicinity of the upper end portion thereof. The refrigerant inlet hole 21a is formed at the lower end portion of the heat transfer plate 12. The refrigerant outlet hole 21b communicates with the communication hole 18a of the windward tank section 18 at the upper end of the heat transfer plate 12 and communicates with the communication hole 15a of the leeward tank section 15.
[0032]
Further, the right end plate 22 of FIG. 1 has a refrigerant outlet hole 22a in the vicinity of the upper end portion thereof and a refrigerant inlet hole 22b in the vicinity of the lower end portion thereof. The refrigerant outlet hole 22a is formed at the upper end portion of the heat transfer plate 12. The refrigerant hole 16b communicates with the communication hole 16a of the leeward tank section 16, and the refrigerant inlet hole 22b communicates with the communication hole 17a of the windward tank section 17 at the lower end of the heat transfer plate 12.
[0033]
In the present embodiment, the refrigerant inlet pipe 23 and the refrigerant outlet pipe 24 are collectively provided in a pipe joint block 30 as one pipe connecting member, thereby simplifying the connection between the evaporator 10 and the external refrigerant pipe. For this reason, as shown in FIG. 1, a side plate 31 is joined to the left end plate 21, and a refrigerant passage leading to the refrigerant inlet / outlet of the pipe joint block 30 is formed between the plates 21 and 31.
[0034]
The refrigerant passage configuration will be described in more detail. In the side plate 31, a protruding portion 31a is formed to protrude outward from a portion of the piping joint block 30 to the lower side, and upper and lower end portions of the protruding portion 31a. Are combined into one, but in the middle of the vertical direction (plate longitudinal direction), it is divided into a plurality (three in the example shown in the figure) to increase the sectional modulus of the side plate 31 to increase the strength. .
[0035]
The upper end portion of the refrigerant passage formed by the recess inside the protruding portion 31 a communicates with the refrigerant inlet pipe 23 of the piping joint block 30, and the lower end portion of the refrigerant passage communicates with the communication hole 21 a of the end plate 21. . The refrigerant outlet pipe 24 communicates with the communication hole 21 b of the end plate 21.
[0036]
The end plates 21 and 22 and the side plates 25 and 31 are made of, for example, a nylon resin material like the heat transfer plate 12, and are thicker than the heat transfer plate 12 (for example, a plate thickness t = 1). (About 0.0 mm) to improve the strength. Further, the piping joint block 30 is also formed by integrally injection-molding the refrigerant inlet pipe 23 and the refrigerant outlet pipe 24 with, for example, a nylon resin material, and is arranged on the upper side of the side plate 31 in this example. It joins by adhering both fitting parts.
[0037]
In this embodiment, the gas-liquid two-phase refrigerant decompressed by a decompression means such as an expansion valve of a refrigeration cycle (not shown) flows into the refrigerant inlet pipe 23, and the refrigerant outlet pipe 24 is connected to a compressor suction side (not shown). The gas refrigerant evaporated in the evaporator 10 is guided to the compressor suction side.
[0038]
In each heat transfer plate 12, since the refrigerant from the refrigerant inlet pipe 23 flows into the leeward refrigerant passage 19, the refrigerant passage of the entire evaporator 10 constitutes an inlet-side refrigerant passage, and the leeward refrigerant The passage 20 constitutes an outlet side refrigerant passage because the refrigerant that has passed through the refrigerant passage 19 on the leeward side (inlet side) flows in and flows out to the refrigerant outlet pipe 24.
[0039]
Next, the refrigerant path of the evaporator 10 as a whole will be described. First, among the tank parts 15 to 18 located at the upper and lower ends of the evaporator 10, the leeward tank parts 15 and 16 are the refrigerant inlet side tank parts. Further, the tank parts 17 and 18 on the windward side constitute a refrigerant outlet side tank part. Then, the low-pressure gas-liquid two-phase refrigerant depressurized by the expansion valve enters the leeward lower inlet side tank portion 15 from the refrigerant inlet pipe 23, and the refrigerant is formed by the leeward protrusion 14 of each heat transfer plate 12. The refrigerant passage 19 is raised and exits to the upper inlet side tank section 16.
[0040]
The refrigerant collected in the inlet side tank unit 16 enters the inner space of the side plate 25 from the refrigerant outlet hole 22a of the end plate 22, descends as the communication path, and passes through the refrigerant inlet hole 22b of the end plate 22. It enters the outlet side tank section 17 on the lower side of the windward side. Then, the refrigerant ascends the refrigerant passage 20 formed by the windward protruding portion 14 of each heat transfer plate 12 and exits to the upper outlet side tank portion 18, and the gas refrigerant evaporated in the evaporator 10 is the refrigerant outlet pipe. 24 is sucked into the compressor suction side.
[0041]
In the present embodiment, the refrigerant passage of the evaporator 10 is configured as described above, and the abutting surfaces of the components shown in FIG. 1 are sequentially joined while being bonded, for example, by applying an epoxy resin adhesive or the like. The evaporator 10 is assembled by stacking.
[0042]
Next, the operation of the evaporator 10 according to the present embodiment will be described. The evaporator 10 is accommodated in an air conditioning unit case (not shown) with the vertical direction in FIG. Air is blown through. When the compressor of the refrigeration cycle is activated, the low-pressure side gas-liquid two-phase refrigerant decompressed by an expansion valve (not shown) flows according to the refrigerant passage configuration described above.
[0043]
On the other hand, due to the gap formed between the protruding portion 14 protruding in a convex shape on the outer surface side of the heat transfer plate 12 of the core portion 11 and the substrate portion 13, over the entire length of the heat transfer plate width direction (air flow direction A). As shown by an arrow A 1 in FIG. 1B, a wavy air passage is continuously formed. As a result, the conditioned air blown in the direction of the arrow A can pass between the two heat transfer plates 12 while meandering in the air passage as indicated by the arrow A 1 , and the refrigerant flows from this air flow. Since the evaporation latent heat is absorbed and evaporated, the conditioned air is cooled and becomes cold air.
[0044]
At this time, the inlet-side refrigerant passage 19 is disposed on the leeward side and the outlet-side refrigerant passage 20 is disposed on the leeward side with respect to the flow direction A of the conditioned air, so that the refrigerant inlet / outlet with respect to the air flow is in a counterflow relationship. Become. Further, on the air side, the air flow direction A is perpendicular to the longitudinal direction of the protrusion 14 of the heat transfer plate 12 (the refrigerant flow direction B in the refrigerant passages 19 and 20), and the protrusion Since 14 forms the convex surface (heat-transfer surface) which protrudes orthogonally with an air flow, air is prevented from going straight by the convex surface shape of the protrusion part 14 extended orthogonally.
[0045]
For this reason, the air flow forms a wobbling flow between the heat transfer plates 12 as shown by the arrow A 1 in FIG. 1B and disturbs the flow. Therefore, the air flow becomes a turbulent state. The air side heat transfer coefficient can be dramatically improved. Here, since the core part 11 is comprised only by the heat-transfer plate 12, compared with the normal evaporator provided with the conventional fin member, the heat-transfer area by the side of air reduces significantly, Since the air side heat transfer coefficient is dramatically improved by setting the state, the reduction of the air side heat transfer area can be compensated by the improvement of the air side heat transfer coefficient, and the required cooling performance can be ensured.
[0046]
Next, features of the present embodiment will be described. First, the heat transfer plate 12 (12a, 12b) is formed of a resin material. Thereby, the heat exchanger 10 can be comprised lightly. Further, the heat transfer plates 12 (12a and 12b) are formed so that the tank portions (15 to 18) are thicker than the plate thicknesses of the internal fluid passages 19 and 20.
[0047]
By forming the heat transfer plate 12 (12a and 12b) by using a resin material by injection molding or the like, it becomes easy to obtain a plate thickness corresponding to the required strength for each part. By utilizing this, the internal fluid passages 19 and 20 for heat exchange are thin, and the tank portions 15 to 18 requiring pressure strength are thick, and can be formed with optimum plate thicknesses.
[0048]
Further, the heat transfer plate 12 (12a, 12b) has a base plate part 13 that is in contact with and joined to each other, and the outer surfaces of the internal fluid passages 19, 20 projecting outward with respect to the base plate part 13, The inner surface of the internal fluid passages 19 and 20 has a substantially circular shape.
[0049]
This is also because the heat transfer plate 12 (12a, 12b) is formed by injection molding or the like using a resin material, making it easy to obtain the required shape for each part. The outer surface 20 can be formed in a substantially trapezoidal shape with a high effect of increasing the heat transfer coefficient, and the inner surfaces of the internal fluid passages 19 and 20 can be formed in optimum shapes, each having a substantially circular shape that is advantageous for ensuring the pressure resistance.
[0050]
Further, the heat transfer plate 12 (12a, 12b) is provided with a fitting convex portion 14a that is fitted to each other at a portion that forms the internal fluid passages 19, 20. This is because the joint is peeled off and the joint strength is weakened without fitting. Therefore, by providing the fitting convex portion 14a in the portion where the internal fluid passages 19 and 20 are formed, the force applied to the joint is sheared. As a result, the bonding strength is increased.
[0051]
Further, as described above, the inner surfaces of the internal fluid passages 19 and 20 are formed in a substantially circular shape by using the fitting convex portion 14a. This also utilizes the fact that it is easy to make a necessary shape in each part by forming the heat transfer plate 12 (12a, 12b) using a resin material by injection molding or the like.
[0052]
Further, the heat transfer plate 12 (12a, 12b) is provided with a fitting uneven portion 12c that fits to the contact surfaces that form the tank portions 15-18. Similarly to the above, since the joint portion is peeled off and the joint strength is weakened without fitting, by providing the fitting uneven portion 12c on the contact surface forming the tank portions 15 to 18, the joint portion is related. The strength is increased by using force as the shear direction. This also utilizes the fact that the heat transfer plate 12 (12a, 12b) is formed by injection molding or the like using a resin material, so that it becomes easy to make a necessary shape in each part.
[0053]
In addition, members constituting the heat exchanger other than the heat transfer plates 12 (12a and 12b) (for example, the end plates 21 and 22, the side plates 25 and 30 and the pipe joint block 31 in this embodiment) are also formed of a resin material. ing. Thereby, the heat exchanger 10 can be comprised more lightly. Moreover, joining of the contact surface in assembling the heat exchanger 10 is joined by adhesion. Thereby, since heating like the conventional brazing becomes unnecessary, it becomes possible to assemble with simple equipment and to reduce the energy applied.
[0054]
(Other embodiments)
In the embodiment described above, the case where the air (external fluid) flow direction A is set to be orthogonal to the refrigerant flow direction (plate longitudinal direction) B of the heat transfer plate 12 (12a, 12b) has been described. The external fluid) flow direction A may be inclined by a predetermined angle with respect to the refrigerant flow direction (plate longitudinal direction) B of the heat transfer plate 12 (12a, 12b). In short, the air (external fluid) flow direction A And the refrigerant flow direction (plate longitudinal direction) B of the heat transfer plate 12 (12a, 12b) may be in a crossing relationship.
[0055]
In the above-described embodiment, the low-temperature refrigerant on the low-pressure side of the refrigeration cycle flows through the refrigerant passages (internal fluid passages) 19 and 20 of the heat transfer plate 12, the conditioned air flows outside the heat transfer plate 12, and the refrigerant evaporates. Although the case where the present invention is applied to the evaporator 10 that absorbs latent heat from the conditioned air and evaporates the refrigerant has been described, the present invention is not limited to this, and the present invention is heat that performs heat exchange between fluids for various uses. Of course, it can be widely applied to general exchangers. Further, the above-described embodiment is also not limited to the refrigerant forward path, the end plate configuration, the pipe connection member configuration, and the like.
[Brief description of the drawings]
FIG. 1 (a) is an exploded perspective view showing the overall configuration of a heat exchanger in an embodiment of the present invention, and FIG. 1 (b) is a partial cross-sectional view showing an air passage between heat transfer plates.
2A and 2B show a heat transfer plate according to an embodiment of the present invention, in which FIG. 2A is a cross-sectional view of a tank portion, FIG. 2B is a cross-sectional view of a heat exchange portion before fitting, and FIG. It is sectional drawing of a heat exchange part.
3A and 3B show a conventional heat transfer plate, wherein FIG. 3A is a cross-sectional view of a tank portion, FIG. 3B is a cross-sectional view of a heat exchange portion before brazing, and FIG. 3C is a cross-section of a heat exchange portion after brazing. FIG.
[Explanation of symbols]
12 heat transfer plate 12a 1st heat transfer plate 12b 2nd heat transfer plate 12c fitting uneven part 13 substrate part 14a fitting convex part 15-18 tank parts 19 and 20 refrigerant passage (internal fluid passage)
21, 22 End plate, side plate member (member constituting the heat exchanger)
25, 30 Side plate, side plate member (member constituting the heat exchanger)
31 Piping joint block, piping connecting member (members constituting the heat exchanger)

Claims (6)

内部流体通路部分とタンク部分とを一体に形成した一対の伝熱プレート(12a、12b、12)を、対向させながら複数対を積層して全ての当接面を接合し、
前記伝熱プレート(12a、12b、12)の内部に内部流体の流れる内部流体通路(19、20)と、前記各内部流体通路(19、20)と連通するタンク部(15〜18)とを形成する熱交換器において、
前記伝熱プレート(12a、12b、12)を樹脂材にて形成するとともに、前記内部流体通路(19、20)を形成する部分に互いに嵌合する嵌合凸部(14a)と、前記タンク部(15〜18)を形成する当接面に互いに嵌合する嵌合凹凸部(12c)とを設けたことを特徴とする熱交換器。
A pair of heat transfer plates (12a, 12b, 12) in which the internal fluid passage part and the tank part are integrally formed are stacked in a plurality of pairs while facing each other, and all the contact surfaces are joined.
Internal fluid passages (19, 20) through which an internal fluid flows inside the heat transfer plates (12a, 12b, 12), and tank portions (15-18) communicating with the internal fluid passages (19, 20). In the heat exchanger to form,
The heat transfer plate (12a, 12b, 12) is formed of a resin material, and a fitting convex portion (14a) that is fitted to a portion that forms the internal fluid passage (19, 20), and the tank portion (15-18) The heat exchanger characterized by providing the fitting uneven | corrugated part (12c) mutually fitted in the contact surface which forms (15-18) .
前記伝熱プレート(12a、12b、12)は、前記内部流体通路(19、20)部分の板厚に対して、前記タンク部(15〜18)の板厚を厚く形成したことを特徴とする請求項1に記載の熱交換器。The heat transfer plates (12a, 12b, 12) are characterized in that the tank portions (15-18) are made thicker than the plate thickness of the internal fluid passages (19, 20). The heat exchanger according to claim 1 . 前記伝熱プレート(12a、12b、12)は、互いに当接して接合される基板部(13)を有し、前記基板部(13)に対して外方に突出した前記内部流体通路(19、20)部分の外面を、略台形形状としたことを特徴とする請求項1または請求項2に記載の熱交換器。  The heat transfer plates (12a, 12b, 12) have substrate portions (13) that are joined in contact with each other, and the internal fluid passages (19, 19) projecting outward with respect to the substrate portions (13). 20) The heat exchanger according to claim 1 or 2, wherein the outer surface of the portion has a substantially trapezoidal shape. 前記伝熱プレート(12a、12b、12)は、前記内部流体通路(19、20)の内面を、略円形形状としたことを特徴とする請求項1または請求項2に記載の熱交換器。  The heat exchanger according to claim 1 or 2, wherein the heat transfer plate (12a, 12b, 12) has an inner surface of the internal fluid passage (19, 20) having a substantially circular shape. 前記伝熱プレート(12a、12b、12)以外の熱交換器を構成する部材(21、22、25、30、31)も樹脂材にて形成したことを特徴とする請求項1ないし請求項4のいずれかに記載の熱交換器。The members (21, 22, 25, 30, 31) constituting the heat exchanger other than the heat transfer plates (12a, 12b, 12 ) are also formed of a resin material. The heat exchanger according to any one of 4. 熱交換器を組み立てるうえでの当接面の接合を、接着により接合したことを特徴とする請求項1ないし請求項5のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the abutment surfaces are joined by bonding in assembling the heat exchanger.
JP2002270545A 2002-09-17 2002-09-17 Heat exchanger Expired - Fee Related JP3966134B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002270545A JP3966134B2 (en) 2002-09-17 2002-09-17 Heat exchanger
US10/662,505 US20050274504A1 (en) 2002-09-17 2003-09-15 Heat exchanger having projecting fluid passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270545A JP3966134B2 (en) 2002-09-17 2002-09-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004108644A JP2004108644A (en) 2004-04-08
JP3966134B2 true JP3966134B2 (en) 2007-08-29

Family

ID=32268139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270545A Expired - Fee Related JP3966134B2 (en) 2002-09-17 2002-09-17 Heat exchanger

Country Status (2)

Country Link
US (1) US20050274504A1 (en)
JP (1) JP3966134B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418481A (en) * 2004-09-23 2006-03-29 Centrax Ltd Plate heat exchanger having a corrugated portion joined to a separate header portion
JP5275682B2 (en) * 2008-05-21 2013-08-28 アァルピィ東プラ株式会社 Manufacturing method of resin heat exchanger unit and manufacturing method of heat exchanger
KR101086917B1 (en) * 2009-04-20 2011-11-29 주식회사 경동나비엔 Heat exchanger
CN105074375B (en) * 2013-02-27 2018-05-15 株式会社电装 Cascade type heat exchanger
JP6227901B2 (en) * 2013-02-28 2017-11-08 サンデンホールディングス株式会社 Heat exchanger
JP6281467B2 (en) * 2014-01-14 2018-02-21 株式会社デンソー Intercooler
FR3033876B1 (en) * 2015-03-20 2018-04-27 Valeo Systemes Thermiques THERMAL EXCHANGER AND THERMAL MANAGEMENT INSTALLATION FOR ELECTRIC OR HYBRID VEHICLE BATTERIES
DE102015221528A1 (en) * 2015-11-03 2017-05-04 Mahle International Gmbh Heat exchanger
WO2020009997A1 (en) 2018-07-05 2020-01-09 Modine Manufacturing Company Battery cooling plate and fluid manifold
EP3982076A1 (en) * 2020-10-07 2022-04-13 Valeo Autosystemy SP. Z.O.O. A heat exchanger with a connector block

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1442985A (en) * 1972-09-08 1976-07-21 Delanair Ltd Module heat exchanger
US4955435A (en) * 1987-04-08 1990-09-11 Du Pont Canada, Inc. Heat exchanger fabricated from polymer compositions
US5195240A (en) * 1988-04-15 1993-03-23 Du Pont Canada Inc. Method for the manufacture of thermoplastic panel heat exchangers
KR940010978B1 (en) * 1988-08-12 1994-11-21 갈소니꾸 가부시끼가이샤 Multi-flow type heat exchanger
US5275235A (en) * 1989-07-28 1994-01-04 Cesaroni Anthony Joseph Panel heat exchanger
US5582241A (en) * 1994-02-14 1996-12-10 Yoho; Robert W. Heat exchanging fins with fluid circulation lines therewithin
AUPN697995A0 (en) * 1995-12-04 1996-01-04 Urch, John Francis Metal heat exchanger
FR2788117B1 (en) * 1998-12-30 2001-03-02 Valeo Climatisation HEATING, VENTILATION AND / OR AIR CONDITIONING DEVICE COMPRISING A THERMAL LOOP EQUIPPED WITH AN EVAPORATOR
US6401804B1 (en) * 1999-01-14 2002-06-11 Denso Corporation Heat exchanger only using plural plates
US6568466B2 (en) * 2000-06-23 2003-05-27 Andrew Lowenstein Heat exchange assembly
US6629561B2 (en) * 2001-06-08 2003-10-07 Visteon Global Technologies, Inc. Module for a heat exchanger having improved thermal characteristics

Also Published As

Publication number Publication date
JP2004108644A (en) 2004-04-08
US20050274504A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
JP3814917B2 (en) Stacked evaporator
WO2017169410A1 (en) Heat exchanger
US6832648B2 (en) Resinous heat exchanger and a method of manufacturing the same
JP3966134B2 (en) Heat exchanger
JP3812487B2 (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
JP2002130977A (en) Heat exchanger
JPH08110076A (en) Heat exchanging element
JPH0814702A (en) Laminate type evaporator
JP3959868B2 (en) Heat exchanger
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JP3403544B2 (en) Heat exchanger
JP2002048491A (en) Heat exchanger for cooling
JP2004162993A (en) Heat exchanger
JP3812021B2 (en) Laminate heat exchanger
JP3805665B2 (en) Heat exchanger
JP2004183960A (en) Heat exchanger
JP3840736B2 (en) Laminate heat exchanger
JP4048629B2 (en) Heat exchanger
JP3409350B2 (en) Stacked heat exchanger
JPH1082594A (en) Plate type heat exchanger and absorption cooling-heating apparatus using the same
JPH09178383A (en) Build-up type heat exchanger
JP2000028227A (en) Laminated evaporator
JP3596046B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees