JPH0749249Y2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0749249Y2
JPH0749249Y2 JP1988145924U JP14592488U JPH0749249Y2 JP H0749249 Y2 JPH0749249 Y2 JP H0749249Y2 JP 1988145924 U JP1988145924 U JP 1988145924U JP 14592488 U JP14592488 U JP 14592488U JP H0749249 Y2 JPH0749249 Y2 JP H0749249Y2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
flow
descending
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988145924U
Other languages
Japanese (ja)
Other versions
JPH0269289U (en
Inventor
秀直 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1988145924U priority Critical patent/JPH0749249Y2/en
Publication of JPH0269289U publication Critical patent/JPH0269289U/ja
Application granted granted Critical
Publication of JPH0749249Y2 publication Critical patent/JPH0749249Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は自動車用空調器等に用いる熱交換器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a heat exchanger used for an air conditioner for an automobile.

〔従来の技術〕[Conventional technology]

第2図に従来の熱交換器の外観斜視図を示す。 FIG. 2 shows an external perspective view of a conventional heat exchanger.

1は熱交換器を構成するために積層される冷媒管の1個
を示す。10は平行に配列されている複数の冷媒管の間
に、接触させて装着してあるコルゲートフインである。
Reference numeral 1 denotes one of the refrigerant pipes stacked to form the heat exchanger. Reference numeral 10 is a corrugated fin that is mounted in contact with a plurality of refrigerant tubes arranged in parallel.

第3図に前記熱交換器の一部分の分解斜視図を示す。11
A,11Bは偏平チユーブ構成部材であり、両者を合体する
ことによって1個の偏平チユープ11が形成される。偏平
チユーブ構成部材11A,11Bには、中央に仕切り部13が設
けてあるので、合体時に冷媒下降流路14Aと冷媒上昇流
路14Bに仕切られる。12A,12Bは前記のように仕切って形
成された流路14A,14Bのそれぞれに嵌装されるインナー
フインで、前記冷媒の下降・上昇流路14A,14Bのそれぞ
れを、さらに内部で複数の小流路に分けている。偏平チ
ユーブ構成部材11A,11B、インナーフイン12A,12Bを組立
てることによつて1個の偏平な冷媒管1が形成される。
10は隣接する冷媒管の間に配設されるコルゲートフイン
である。
FIG. 3 shows an exploded perspective view of a part of the heat exchanger. 11
A and 11B are flat tube constituent members, and one flat tube 11 is formed by combining them. Since the flat tube constituent members 11A and 11B are provided with the partition portion 13 at the center, they are divided into the refrigerant descending flow passage 14A and the refrigerant ascending flow passage 14B when they are united. 12A and 12B are inner fins fitted into the respective flow paths 14A and 14B formed by partitioning as described above, and each of the descending and ascending flow paths 14A and 14B of the refrigerant is further provided with a plurality of small internal parts. Divided into flow paths. By assembling the flat tube constituent members 11A, 11B and the inner fins 12A, 12B, one flat refrigerant pipe 1 is formed.
Reference numeral 10 is a corrugated fin arranged between adjacent refrigerant pipes.

第4図は冷媒管1の断面図である。11は偏平チユーブ、
12A,12Bは仕切り部13によって仕切られた冷媒下降流路1
4Aと冷媒上昇流路14Bのそれぞれに嵌装してあるインナ
ーフイン、2は偏平チユーブ11の下部に設けられた流路
の折返し部である。4は前記折返し部2に設けられたガ
イドで、冷媒の流れを案内する。ヘッダーは偏平チユー
ブ11の上部に設けられていて、前記仕切り部13によって
仕切られ、一方が冷媒入口ヘッダ5、他方が冷媒出口ヘ
ッダ6となっている。8Aは流入側の空気の流れ、8Bは流
出側の空気の流れ、9Aは冷媒下降流路内の冷媒の流れ、
9Bは折返し部の冷媒の流れ、9Cは冷媒上昇流路内の冷媒
の流れである。
FIG. 4 is a sectional view of the refrigerant pipe 1. 11 is a flat tube,
12A and 12B are refrigerant descending flow paths 1 partitioned by a partition section 13.
Inner fins 2 fitted in 4A and the refrigerant ascending flow path 14B are folded portions of the flow path provided in the lower portion of the flat tube 11. Reference numeral 4 is a guide provided in the folded-back portion 2 for guiding the flow of the refrigerant. The header is provided on the upper portion of the flat tube 11 and is partitioned by the partition portion 13, one of which serves as a refrigerant inlet header 5 and the other of which serves as a refrigerant outlet header 6. 8A is the flow of air on the inflow side, 8B is the flow of air on the outflow side, 9A is the flow of the refrigerant in the refrigerant descending flow path,
9B is the flow of the refrigerant in the folded portion, and 9C is the flow of the refrigerant in the refrigerant ascending flow path.

上述の装置において、冷媒は、気液二相状態で冷媒管1
の上部にある冷媒入口ヘッダ5より流入し、途中蒸発し
ながら冷媒下降流路14Aの中を矢印9Aに沿って降下し、
下部の折返し部2の中で矢印9Bに沿って流れながらミキ
シングされた後、冷媒上昇流路14Bの中を矢印9Cに沿っ
て上昇し、上方の冷媒出口ヘッダ6へ流れ、そこで再び
ミキシングされて、熱交換器より流出してゆく。
In the above-mentioned apparatus, the refrigerant is the refrigerant tube 1 in the gas-liquid two-phase state.
Flowing in from the refrigerant inlet header 5 in the upper part of the, while evaporating midway, descending in the refrigerant descending flow path 14A along the arrow 9A,
After being mixed while flowing along the arrow 9B in the lower turnaround portion 2, it rises along the arrow 9C in the refrigerant ascending passage 14B and flows to the upper refrigerant outlet header 6 where it is mixed again. , Flows out from the heat exchanger.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

冷媒の流速が遅い時、第4図に示した様に折り返し部で
は、冷媒下降流路14A内の各小流路を流れてきた気液二
相の冷媒が気体と液体7とに分離してしまう。この為、
折り返し部2以降の、液冷媒7が気体流速に引張られて
上昇する冷媒上昇流路14Bでは、熱負荷の最も大きい空
気流入側の外縁に近い小流路に入る気体が少なくなり、
液冷媒7も流れなくなってしまう。これにより冷媒上昇
流路内の各小流路の熱負荷の分布が片寄ったものとなっ
てしまうとともに、伝熱管の伝熱効率も悪くなってい
た。
When the flow velocity of the refrigerant is slow, as shown in FIG. 4, at the turnaround portion, the gas-liquid two-phase refrigerant that has flowed through each of the small channels in the refrigerant descending channel 14A is separated into the gas and the liquid 7. I will end up. Therefore,
In the refrigerant ascending flow passage 14B after the turn-back portion 2 in which the liquid refrigerant 7 is pulled up by the gas flow velocity and rises, less gas enters the small flow passage near the outer edge of the air inflow side where the heat load is largest,
The liquid refrigerant 7 also stops flowing. As a result, the distribution of the heat load in each small flow path in the refrigerant ascending flow path becomes uneven, and the heat transfer efficiency of the heat transfer tube also deteriorates.

本考案においては、冷媒上昇流路14B内の各小流路の冷
媒の流量を均等化し、熱負荷の片寄りをなくし、熱交換
器の伝熱効率の向上をはかろうとするものである。
In the present invention, the flow rate of the refrigerant in each of the small flow paths in the refrigerant ascending flow path 14B is equalized, the deviation of the heat load is eliminated, and the heat transfer efficiency of the heat exchanger is improved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は前記課題を解決したものであって、中央の仕切
り部で分けられた冷媒下降流路と冷媒上昇流路とを有
し、前記のそれぞれの流路はその中に複数の小流路を有
し、下部に前記冷媒下降流路から冷媒上昇流路へ冷媒の
流れを折返す折返し部が設けてある偏平な冷媒管を積層
して構成される熱交換器において、前記冷媒下降流路に
おいて空気流出側の外縁に近い小流路を降下した冷媒を
前記冷媒上昇流路において空気流入側の外縁に近い小流
路へ、また前記冷媒下降流路において空気流出側の外縁
から離れた小流路を降下した冷媒を前記冷媒上昇流路に
おいて空気流入側の外縁から離れた小流路へ流すよう、
前記折返し部に、同折返し部を独立の複数の流路に仕切
る連続ガイドを設けたことを特徴とする熱交換器に関す
るものである。
The present invention has solved the above-mentioned problems and has a refrigerant descending flow path and a refrigerant ascending flow path that are separated by a central partition, and each of the flow paths has a plurality of small flow paths therein. A heat exchanger configured by stacking flat refrigerant pipes each having a folded portion that folds back the flow of the refrigerant from the refrigerant descending passage to the refrigerant ascending passage in the lower portion, At a small flow path near the outer edge of the air outflow side to a small flow path near the outer edge of the air inflow side in the refrigerant upflow path, and a small distance away from the outer edge of the air outflow side in the refrigerant downflow path. In order to allow the refrigerant that has descended the flow path to flow into the small flow path away from the outer edge of the air inflow side in the refrigerant rising flow path,
The present invention relates to a heat exchanger characterized in that the turn-back portion is provided with a continuous guide for partitioning the turn-back portion into a plurality of independent flow paths.

〔作用〕[Action]

本考案において設けた連続ガイドは、冷媒を気体と液体
とが混在した状態で強制的に流し、かつ熱負荷の小さい
小流路を降下した冷媒は熱負荷の大きい小流路を上昇さ
せ、熱負荷の大きい小流路を降下した冷媒は熱負荷の小
さい小流路を上昇させるので、冷媒上昇流路内の各小流
路に冷媒を均等に流すとともに、熱負荷の片寄りを防
ぐ。
The continuous guide provided in the present invention forces the refrigerant to flow in a mixed state of gas and liquid, and the refrigerant that descends the small flow path with a small heat load raises the small flow path with a large heat load, The refrigerant that has descended from the small flow path with a large load raises the small flow path with a small heat load, so that the refrigerant flows evenly through each small flow path in the refrigerant ascending flow path, and deviation of the heat load is prevented.

〔実施例〕〔Example〕

第1図に本考案の一実施例における冷媒管1′の断面図
を示す。図において、4′は流路の折返し部2の中に設
けられた連続ガイドで、折返し部の流路が、A−A′,B
−B′,C−C′の3個の独立の流路となるように仕切っ
ている。本図に示した部分は第4図に示した従来の冷媒
管1の替りに用いられるものであって、上記以外の部分
の構造・作用は、第4図の対応部分のものと同じである
から説明を省略する。
FIG. 1 shows a sectional view of a refrigerant pipe 1'in one embodiment of the present invention. In the figure, 4'is a continuous guide provided in the folded portion 2 of the flow passage, and the flow passage of the folded portion is AA ', B
-B ', C-C' are divided into three independent flow paths. The part shown in this figure is used in place of the conventional refrigerant pipe 1 shown in FIG. 4, and the structure and operation of the parts other than the above are the same as those of the corresponding parts in FIG. The description is omitted.

以上の装置において、連続ガイド4′で流路が仕切られ
ているので、従来のような折返し部におけるミキシング
が無く、したがって、気体と液体が大きく分離すること
はないので、連続ガイド4′で仕切られた流路内で気体
と液体に分離している冷媒は混在状態のまま、冷媒上昇
流路へ案内され、液冷媒は気体流速に引張られて上昇す
ることができるので、冷媒上昇流路内の各小流路へ均等
に冷媒を送ることができる。
In the above device, since the flow path is partitioned by the continuous guide 4 ', there is no mixing at the folded portion as in the conventional case, and therefore, the gas and the liquid are not largely separated from each other. The refrigerant separated into gas and liquid in the flow path is guided to the refrigerant ascending flow path while remaining in a mixed state, and the liquid refrigerant can be pulled up by the gas flow velocity to ascend. The refrigerant can be evenly sent to each of the small flow paths.

また、折返し部2に達する前に、冷媒下降流路におい
て、空気流出側の外縁に近い、熱負荷の小さい小流路を
降下して折返し部の入口Aに達した冷媒は、後半は冷媒
上昇流路において、空気流入側の外縁に近い、熱負荷の
大きい小流路へ接続するように折返し部の出口A′へ導
かれる。逆に、折返し部2に達する前に、冷媒下降流路
において、空気出口側の外縁から離れた、熱負荷の大き
い小流路を流れて折返し部の入口Cに達した冷媒は、後
半には、冷媒上昇流路において、空気流入側の外縁から
離れた、熱負荷の小さい小流路へ接続するように折返し
部の出口C′へ導かれる。その結果、冷媒上昇流路にお
いては、熱負荷の片寄りが小さくなる。
In addition, before reaching the turnaround portion 2, the refrigerant that has descended a small flow path having a small heat load near the outer edge on the air outflow side in the refrigerant descending flow path and reached the inlet A of the turnaround portion rises in the latter half. In the flow path, it is guided to the outlet A'of the folded portion so as to be connected to the small flow path near the outer edge on the air inflow side and having a large heat load. On the contrary, before reaching the turnaround portion 2, the refrigerant that has flowed through the small flow path having a large heat load and that has reached the inlet C of the turnaround portion in the refrigerant descending flow path is separated from the outer edge on the air outlet side in the latter half. In the refrigerant ascending passage, the refrigerant is guided to the outlet C'of the folded portion so as to be connected to a small passage having a small heat load, which is separated from the outer edge on the air inflow side. As a result, the deviation of the heat load is reduced in the refrigerant ascending flow path.

以上詳述したように、本実施例においては、冷媒流路の
折返し部に連続ガイドを設けたことによって、冷媒液の
流量を均等化し、熱負荷の片寄りを小さくしているの
で、冷媒管の伝熱効率が向上する。
As described above in detail, in the present embodiment, the continuous guide is provided at the folded portion of the refrigerant flow path to equalize the flow rate of the refrigerant liquid and reduce the deviation of the heat load. Heat transfer efficiency is improved.

〔考案の効果〕[Effect of device]

本考案においては、流路の折返し部に連続ガイドを設け
て、冷媒下降流路の空気流出側の外縁に近い小流路を冷
媒上昇流路の空気流入側の外縁に近い小流路へ、冷媒下
降流路の空気流出側の外縁から離れた小流路を冷媒上昇
流路の空気流入側の外縁から離れた小流路へ結ぶ独立の
流路を形成したことによって、冷媒上昇流路における各
小流路の冷媒の流量を均等化し、また熱負荷の片寄りを
なくしたので、熱交換器の伝熱効率を向上させることが
できる。
In the present invention, a continuous guide is provided at the folded portion of the flow path so that the small flow path near the outer edge of the refrigerant descending flow path on the air outflow side is moved to the small flow path near the outer edge of the refrigerant upflow path on the air inflow side. By forming an independent flow path that connects a small flow path away from the outer edge of the refrigerant descending flow path on the air outflow side to a small flow path away from the outer edge of the refrigerant upflow path on the air inflow side, Since the flow rate of the refrigerant in each small flow path is equalized and the deviation of the heat load is eliminated, the heat transfer efficiency of the heat exchanger can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例における冷媒管断面図、第2
図は従来の熱交換器の外観斜視図、第3図は上記従来の
熱交換器の一部分の分解斜視図、第4図は上記従来の熱
交換器の冷媒管の断面図である。 1,1′……冷媒管、2……折返し部、4……ガイド、
4′……連続ガイド、5……冷媒入口ヘッダー、6……
冷媒出口ヘッダー、7……液冷媒、8A,8B……空気の流
れ、9A,9B,9C……冷媒の流れ、10……コルゲートフイ
ン、11……偏平チユーブ、11A,11B……偏平チユーブ構
成部材、12A,12B……インナーフイン、13……仕切り
部、14A……冷媒下降流路、14B……冷媒上昇流路
FIG. 1 is a sectional view of a refrigerant pipe according to an embodiment of the present invention, and FIG.
FIG. 3 is an external perspective view of a conventional heat exchanger, FIG. 3 is an exploded perspective view of a part of the conventional heat exchanger, and FIG. 4 is a sectional view of a refrigerant pipe of the conventional heat exchanger. 1,1 '... Refrigerant pipe, 2 ... Folding part, 4 ... Guide,
4 '... Continuous guide, 5 ... Refrigerant inlet header, 6 ...
Refrigerant outlet header, 7 ... Liquid refrigerant, 8A, 8B ... Air flow, 9A, 9B, 9C ... Refrigerant flow, 10 ... Corrugated fin, 11 ... Flat tube, 11A, 11B ... Flat tube configuration Member, 12A, 12B ... Inner fin, 13 ... Partition, 14A ... Refrigerant descending passage, 14B ... Refrigerant ascending passage

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】中央の仕切り部で分けられた冷媒下降流路
と冷媒上昇流路とを有し、前記のそれぞれの流路はその
中に複数の小流路を有し、下部に前記冷媒下降流路から
冷媒上昇流路へ冷媒の流れを折返す折返し部が設けてあ
る偏平な冷媒管を積層して構成される熱交換器におい
て、前記冷媒下降流路において空気流出側の外縁に近い
小流路を降下した冷媒を前記冷媒上昇流路において空気
流入側の外縁に近い小流路へ、また前記冷媒下降流路に
おいて空気流出側の外縁から離れた小流路を降下した冷
媒を前記冷媒上昇流路において空気流入側の外縁から離
れた小流路へ流すよう、前記折返し部に、同折返し部を
独立の複数の流路に仕切る連続ガイドを設けたことを特
徴とする熱交換器。
1. A refrigerant descending flow path and a refrigerant ascending flow path divided by a central partition, each of the flow paths having a plurality of small flow paths therein, and the refrigerant at the bottom thereof. In a heat exchanger configured by stacking flat refrigerant pipes each having a folded portion that folds the flow of the refrigerant from the descending flow path to the refrigerant ascending flow path, in the refrigerant descending flow path, close to the outer edge on the air outflow side. The refrigerant descending the small flow path to the small flow path near the outer edge of the air inflow side in the refrigerant upflow path, and the refrigerant descending the small flow path apart from the outer edge of the air outflow side in the refrigerant downflow path A heat exchanger characterized in that a continuous guide for partitioning the folded-back portion into a plurality of independent flow passages is provided in the folded-back portion so that the refrigerant can flow into a small flow passage separated from the outer edge of the air inflow side in the refrigerant rising flow passage. .
JP1988145924U 1988-11-10 1988-11-10 Heat exchanger Expired - Lifetime JPH0749249Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988145924U JPH0749249Y2 (en) 1988-11-10 1988-11-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988145924U JPH0749249Y2 (en) 1988-11-10 1988-11-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH0269289U JPH0269289U (en) 1990-05-25
JPH0749249Y2 true JPH0749249Y2 (en) 1995-11-13

Family

ID=31414943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988145924U Expired - Lifetime JPH0749249Y2 (en) 1988-11-10 1988-11-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0749249Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045105A1 (en) * 2013-09-27 2015-04-02 三菱電機株式会社 Heat exchanger and air conditioner using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654198B2 (en) * 1985-10-14 1994-07-20 日本電装株式会社 Stacked heat exchanger

Also Published As

Publication number Publication date
JPH0269289U (en) 1990-05-25

Similar Documents

Publication Publication Date Title
US4681155A (en) Lightweight, compact heat exchanger
US4712612A (en) Horizontal stack type evaporator
JP2605035Y2 (en) Stacked heat exchanger
US4679621A (en) Spiral heat exchanger
CN103988043A (en) Low profile, split flow charge air cooler with uniform flow exit manifold
JPH0674677A (en) Manufacture of lamination type heat exchanger
US6742577B2 (en) Laminate type evaporator
JPH0749249Y2 (en) Heat exchanger
JPS62153685A (en) Heat exchanger
JP3909401B2 (en) Stacked heat exchanger
JPH0241504Y2 (en)
JP3214272B2 (en) Condenser
JP2002147990A (en) Heat exchanger
JPH06123581A (en) Tacked type heat exchanger
JPS6127496A (en) Laminated type heat exchanger
JP2002071282A (en) Laminated type evaporator
JPH1047809A (en) Heat exchanger
WO2019219076A1 (en) Heat exchanger
JPH03117887A (en) Heat exchanger
JPH10220982A (en) Heat exchanger
JPH1114281A (en) Heat exchanger
JP3095540B2 (en) Stacked heat exchanger
JPS6247022Y2 (en)
JP3500212B2 (en) Stacked heat exchanger
JP2000111293A (en) Multilayer-type heat exchanger