JPH04154950A - Production of fe-zn alloy coated steel sheet - Google Patents

Production of fe-zn alloy coated steel sheet

Info

Publication number
JPH04154950A
JPH04154950A JP27709290A JP27709290A JPH04154950A JP H04154950 A JPH04154950 A JP H04154950A JP 27709290 A JP27709290 A JP 27709290A JP 27709290 A JP27709290 A JP 27709290A JP H04154950 A JPH04154950 A JP H04154950A
Authority
JP
Japan
Prior art keywords
bath
plating
steel sheet
hot
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27709290A
Other languages
Japanese (ja)
Inventor
Yaichiro Mizuyama
水山 弥一郎
Giichi Matsumura
義一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27709290A priority Critical patent/JPH04154950A/en
Publication of JPH04154950A publication Critical patent/JPH04154950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a hot-dip Fe-Zn alloy coated steel sheet excellent in workability and rust-preventing property by using a plating bath prepared by adding specific elements to a hot-dip galvanizing bath containing specific amounts of Fe. CONSTITUTION:A hot-dip galvanizing bath is prepared by adding 0.01-0.50%, in total, of one or >=2 elements among Al, Pb, Sn, Sb, Mg, Si, Cu, Bi, Ti, and P to a hot-dip galvanizing bath containing 0.1-10% Fe. This hot-dip galvanizing bath is held at 600-900 deg.C and a steel sheet is immersed in this bath, by which the hot-dip Fe-Zn alloy coated steel sheet having superior characteristics as rust preventive steel sheet can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Fe−Zn合金め−)台鋼板の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a Fe--Zn alloy steel plate.

(従来の技術) Fe−Zn合金めっき鋼板を製造する方法としては、例
えば、特開昭64−21049号の如<Feを含むZn
浴に浸漬して製造することが開示されている。
(Prior art) As a method for producing a Fe-Zn alloy plated steel sheet, for example, as described in Japanese Patent Application Laid-open No. 64-21049,
Manufacturing by immersion in a bath is disclosed.

また、Fe−Zn合金めっき鋼板を製造するに際して、
添加する元素としては、例えば、特開平2−13845
0号の如<Feを含むZn浴にCo、Ni、Mn、Cr
In addition, when manufacturing Fe-Zn alloy plated steel sheets,
Examples of elements to be added include JP-A-2-13845
As in No. 0, Co, Ni, Mn, Cr is added to the Zn bath containing Fe.
.

Si、Ti、Cd、Mg、Pを添加してめっきすること
が開示されている。
It is disclosed that plating is performed by adding Si, Ti, Cd, Mg, and P.

しかしながら、このような方法においても、未だ満足す
べき結果が得られ難く、めっき方法およびめフき特性、
つまり、耐蝕性、パウダリング性等の加工性、スポット
溶接性等の向上が強く要求されている。
However, even with such methods, it is still difficult to obtain satisfactory results, and the plating method, plating characteristics,
In other words, there is a strong demand for improvement in corrosion resistance, workability such as powdering property, spot weldability, and the like.

(発明の目的) 本発明はこのような要求を有利に満足するためなされた
ものである。
(Object of the Invention) The present invention has been made to advantageously satisfy these requirements.

(課題を解決するための手段) 本発明の特徴とするところは、溶融亜鉛めっき鋼板の製
造において、Fe:0.1〜10%を含むZn浴にAf
fi、Pb、Sn、Sb、Mg、St、Cu、Bt、T
i、Pのtmまたは2種以上の0.01〜0.50%を
添加して、浴温を600〜900℃でめっきし、耐蝕性
、パウダリング性等の加工性、スポット溶接性に優れる
、Fe−Zn合金めっき鋼板の製造方法である。
(Means for Solving the Problems) The present invention is characterized by adding Af to a Zn bath containing 0.1 to 10% Fe in the production of hot-dip galvanized steel sheets.
fi, Pb, Sn, Sb, Mg, St, Cu, Bt, T
By adding 0.01 to 0.50% of i, P tm or two or more types, plating at a bath temperature of 600 to 900°C, it has excellent corrosion resistance, processability such as powdering property, and spot weldability. , a method for producing a Fe-Zn alloy plated steel sheet.

従来のFe−Zn合金めっき鋼板の製造においては、Z
nを主体とするめっき浴でめっきを施した後、加熱して
Fe −Zn合金としていたので、過合金、つまり、F
eの界面に脆いr相が生成して、加工時にめっき層が剥
離したり、表面にZnOを主体とする酸化膜を生成させ
、スポット溶接性を向上させるとき、表面にZnOが生
成しにくくなる等の不具合を生じていた。また、前記の
Feを含むZn浴に浸漬して製造する方法でも、表面性
状のよい耐蝕性にすぐれ加工性、溶接性にすぐれたFe
 −Zn合金めフき鋼板とすることは困難であった。
In the production of conventional Fe-Zn alloy plated steel sheets, Z
After plating with a plating bath mainly composed of n, it was heated to form a Fe-Zn alloy, so overalloying, that is, F
When a brittle r phase is generated at the interface of e and the plating layer is peeled off during processing, and an oxide film mainly composed of ZnO is generated on the surface to improve spot weldability, it becomes difficult to generate ZnO on the surface. This caused problems such as: In addition, the method of manufacturing by immersing in a Zn bath containing Fe can also be used to produce Fe, which has good surface properties, excellent corrosion resistance, and excellent workability and weldability.
- It was difficult to make a Zn alloy brushed steel sheet.

本発明者は種々研究した結果、Fe:0.1〜10%を
含むZn浴にA9.、Pb、Sn、Sb、Mg、Si、
Cu、Bi。
As a result of various studies, the present inventors found that A9. , Pb, Sn, Sb, Mg, Si,
Cu, Bi.

TI、Pの1種または2種以上の0.01〜0.50%
を添加して、浴表面の酸化を防止し、浴の粘度を低くし
、目付量の調整を容易にして、浴温な600〜900℃
にしてめっきすることによりFe−Zn合金めっき鋼板
の溶接性、加工性、パウダリング性が向上するFe−Z
n合金めっき鋼板の製造方法を見出した。
0.01 to 0.50% of one or more of TI and P
is added to prevent oxidation of the bath surface, lower the viscosity of the bath, and make it easier to adjust the basis weight.
Fe-Z improves weldability, workability, and powdering properties of Fe-Zn alloy plated steel sheets by plating with
We have discovered a method for manufacturing n-alloy plated steel sheets.

Zn浴に含有するFeの濃度を0.1〜10%としたの
は、Fe O,1%未満では浴温を高温にすることで、
Znの蒸気の発生が多くなるためであり、FelO%を
超えると脆いr相が生成して、加工時に剥離したり、ス
ポット溶接性に有効なZnOが生成しにくくなるためで
ある。
The reason why the concentration of Fe contained in the Zn bath is set to 0.1 to 10% is that when FeO is less than 1%, the bath temperature is raised to a high temperature.
This is because more Zn vapor is generated, and if FeO% is exceeded, a brittle r-phase is generated, which may cause peeling during processing or make it difficult to generate ZnO, which is effective for spot weldability.

さらに、AM、Pb、Sn、Sb、Mg、St 、Cu
、Bi 、Ti、Pを添加するのは、いずれも、Znと
同等の低融点金属であるかZnと共存することにより、
融点を下げる金属であり、しかも、Znより高沸点の金
属であるために、Zn単独での融点よりも低くなり、低
温でのめっきが可能となるためである。また、Znの沸
点より、Pを除いて高沸点であるためにZnの蒸発を抑
制する効果があるためである。
Furthermore, AM, Pb, Sn, Sb, Mg, St, Cu
, Bi, Ti, and P are all low melting point metals equivalent to Zn, or by coexisting with Zn,
This is because it is a metal that lowers the melting point and has a higher boiling point than Zn, so the melting point is lower than that of Zn alone, making it possible to perform plating at low temperatures. In addition, since the boiling point of all the elements other than P is higher than that of Zn, it has the effect of suppressing the evaporation of Zn.

また、An等の添加により、高温での酸化が抑制でき、
浴表面の酸化によるめっき不能となる現象を抑制で診る
ことによる大気中でのめっきができる利点があり、経済
的にも、設備の建設費用、操業上のコスト的にも有効で
ある。
In addition, by adding An, etc., oxidation at high temperatures can be suppressed,
It has the advantage of being able to perform plating in the atmosphere by suppressing the phenomenon that makes plating impossible due to oxidation of the bath surface, and is effective in terms of economy, facility construction costs, and operating costs.

つぎに、Al,Pb、Sn、Sb、Mg、St、Cu、
Bi、Ti、Pを1種または2種以上の添加量の範囲を
0.01〜0.50%とした理由を述べる。
Next, Al, Pb, Sn, Sb, Mg, St, Cu,
The reason why the amount of one or more of Bi, Ti, and P added is set to 0.01 to 0.50% will be described.

Δfl:o、01〜0.50%として、その下限を0.
01%としたのはAnを添加することによる低融点化と
ともに、浴表面の酸化によるめっき不能となる現象を抑
制でき、それ未満では効果がでないためであり、また、
八又を添加することによって、酸化を防止して、浴表面
に浮遊する、いわゆる、スカムな防止でき、それ未満で
は効果が発揮で艶ないためであり、その上限を0.50
%としたのはそれを超えて添加しても、その効果が飽和
し、しかも、Fe−Anの金属間化合物の固体となり浮
遊し、いわゆる、ドロスとして、鋼板に付着して、表面
の品質を損ない、ZnOを主体とする酸化膜を生成せし
めることにより、亜鉛めっき鋼板の溶接性を改善するに
際して、ZnOを主体とする酸化膜の生成を抑制する等
の不具合いを生じるためである。ところで、号を添加す
ることによってもたらされる効果として、Znの蒸発の
低減、Znの酸化防止によるスカムの防止、Znの酸化
防止およびFe−ANの固形物の生成による粘度上昇の
防止等がある。Znの蒸発の低減はZnの蒸気圧を高く
して防止することは可能であるが、連続ラインでの高圧
状態を設定する工業的負荷は大きく、簡易にANを添加
することによって可能となることの意義は大きい。また
、Znの酸化を防止することによって、スカムを防止で
きるが、AnはZnよりも酸化し易く、酸化したAuz
Osは結晶構造が緻密で酸化の進行を抑制して、ひいて
はZnの酸化によるスカムの防止に寄与していると考え
られる。さらに、A交を添加することによりて、Fe−
Zn浴の融点が低下し、融点が低下することによって、
粘度が低下して目付の調整が容易になる利点がある。こ
のように、Alの添加によって、Fe−Zn合金めつき
が可能とする。
Δfl:o, 01 to 0.50%, and the lower limit is 0.
The reason why it is set at 01% is that the addition of An lowers the melting point and suppresses the phenomenon that plating becomes impossible due to oxidation of the bath surface, and that if it is less than that, there is no effect.
By adding Hachimata, it is possible to prevent oxidation and to prevent so-called scum floating on the bath surface, and if it is less than that, the effect will not be achieved and the shine will not be achieved, so the upper limit is 0.50.
%, even if it is added in excess, the effect will be saturated, and moreover, the Fe-An intermetallic compound will become a solid and float, adhering to the steel plate as so-called dross, impairing the surface quality. This is because when improving the weldability of galvanized steel sheets, problems such as suppressing the formation of an oxide film mainly composed of ZnO occur when improving the weldability of galvanized steel sheets. By the way, the effects brought about by adding No. 3 include reduction of evaporation of Zn, prevention of scum by preventing oxidation of Zn, prevention of viscosity increase due to prevention of oxidation of Zn and generation of solid matter of Fe-AN, etc. It is possible to reduce the evaporation of Zn by increasing the vapor pressure of Zn, but the industrial burden of setting a high pressure state in a continuous line is large, so it is possible to reduce the evaporation of Zn by simply adding AN. is of great significance. In addition, scum can be prevented by preventing oxidation of Zn, but An is more easily oxidized than Zn, and oxidized Auz
It is thought that Os has a dense crystal structure and suppresses the progress of oxidation, thereby contributing to the prevention of scum caused by the oxidation of Zn. Furthermore, by adding A-
The melting point of the Zn bath decreases, and by decreasing the melting point,
It has the advantage of reducing viscosity and making it easier to adjust the basis weight. In this way, the addition of Al enables Fe-Zn alloy plating.

Pb : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなり、また、Fe−Znのみの浴と同様にFeの酸
化物が生成するために溶接性は向上せず、ZnOを主体
とする表面酸化物の生成への寄与が薄れスポット溶接性
が向上しないためであり、さらに、その上限なO,SO
%としたのはそれを超えて添加しても、その効果が飽和
し、添加しすぎることによって、かえって、表面の色調
を損なう等の欠陥を生じるためである。
Pb: 0.01-0.50%, the lower limit is 0
.. The reason why we set it at 01% is that if it is less than that, it will not contribute to lowering the melting point, and like a Fe-Zn bath, Fe oxide will be generated, so the weldability will not improve, and the ZnO will be the main component. This is because the contribution to the formation of surface oxides fades and the spot weldability does not improve, and furthermore, the upper limit of O, SO
% because even if it is added in excess of this amount, the effect will be saturated, and if it is added too much, defects such as deterioration of the surface color tone will occur.

Sn : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなるためであり、また、その上限を0.50%。
Sn: 0.01-0.50%, the lower limit is 0
.. The reason why it is set at 0.1% is that if it is less than that, it will not contribute to lowering the melting point, and the upper limit is set at 0.50%.

としたのはそれを超えて添加しても、その効果が飽和し
てしまうためである。
This is because even if it is added in excess of this, the effect will be saturated.

Sb : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなるためであり、また、その上限を0.50%とし
たのはそれを超えて添加しても、その効果が飽和してし
まうためである。
Sb: 0.01-0.50%, the lower limit is 0
.. The reason why it is set at 0.01% is that if it is less than that, it will not contribute to lowering the melting point, and the upper limit was set at 0.50% because even if it is added beyond that, the effect will be saturated. It's for a reason.

Mg:0.01〜0.50%として、その下限を0.0
1%としたのはそれ未満では融点の低下への寄与がなく
なり、Mgの添加による粘度の低下に大きく寄与する効
果がでなくなるためであり、また、耐蝕性の向上への寄
与する効果がなくなるためであり、さらに、その上限を
0.50%としたのはそれを超えて添加しても、それら
の効果が飽和してしまうためである。
Mg: 0.01-0.50%, the lower limit is 0.0
The reason why it is set at 1% is because if it is less than that, it will no longer contribute to lowering the melting point, and the effect of adding Mg that greatly contributes to lowering viscosity will not be achieved, and the effect of contributing to improving corrosion resistance will also disappear. Furthermore, the reason why the upper limit is set to 0.50% is that even if added in excess of this, those effects will be saturated.

St : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなり、Slの添加による粘度の低下に寄与する効果
がでなくなり、また、耐蝕性の向上への寄与する効果が
なくなるためであり、さらに、その上限を0.50%と
したのはそれを超えて添加しても、その効果が飽和して
しまうためである。
St: 0.01-0.50%, the lower limit is 0
.. The reason why it is set at 01% is because if it is less than that, it will not contribute to lowering the melting point, the effect of contributing to lowering the viscosity by adding Sl will not be achieved, and the effect of contributing to improving corrosion resistance will disappear. Furthermore, the reason why the upper limit is set to 0.50% is that even if it is added in excess of this, the effect will be saturated.

Cu : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなるためであり、また、浴表面の酸化の防止効果が
なくなるためであり、さらに、その上限を0.50%と
したのはそれを超えて添加しても、それらの効果が飽和
しでしまうためである。
Cu: 0.01-0.50%, the lower limit is 0
.. The reason why we set the upper limit to 0.50% is because if it is less than 0.5%, it will not contribute to lowering the melting point and will not have the effect of preventing oxidation of the bath surface. This is because even if it is added in excess of this amount, the effects will be saturated.

Bi : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなるためであり、また、その上限を0.50%とし
たのはそれを超えて添加しても、その効果が飽和してし
まうためである。
Bi: 0.01 to 0.50%, the lower limit is 0
.. The reason why it is set at 0.01% is that if it is less than that, it will not contribute to lowering the melting point, and the upper limit was set at 0.50% because even if it is added beyond that, the effect will be saturated. It's for a reason.

TI : 0.01〜0.50%として、その下限を0
.01%としたのはそれ未満では融点の低下への寄与が
なくなるためであり、また、耐蝕性の向上への寄与する
効果がなくなるためであり、さらに、その上限を0.5
0%としたのはそれを超えて添加しても、それらの効果
が飽和してしまうためである。
TI: 0.01-0.50%, the lower limit is 0
.. The reason for setting the upper limit to 0.1% is that if it is less than 0.5%, there will be no contribution to lowering the melting point, and there will be no effect contributing to improving corrosion resistance.
The reason why it is set at 0% is because even if it is added in excess of this, the effects will be saturated.

P : 0.01〜0.50%として、その下限を0.
01%としたのはそれ未満では融点の低下への寄与がな
くなるためであり、また、耐蝕性の向上への寄与する効
果が薄くなるためであり、さらに、その上限を0.50
%としたのはそれを超えて添加しても、それらの効果が
飽和してしまうためである。なお、Pの添加の下限の0
.01%とじたが、耐蝕性の向上への寄与する効果の面
からの下限は0.001%まで許容できる。
P: 0.01 to 0.50%, and the lower limit is 0.01% to 0.50%.
The reason why the upper limit was set at 0.50% is because if it is less than that, there will be no contribution to lowering the melting point, and the effect of contributing to improving corrosion resistance will be weaker.
% because even if added in excess of this, the effects would be saturated. Note that the lower limit of P addition is 0
.. However, from the viewpoint of the effect contributing to improvement of corrosion resistance, the lower limit is allowable up to 0.001%.

つぎに、浴の温度を600〜900℃として、その下限
を600℃としたのはFe濃度によって変わるが、具体
的には、Fe濃度が1%以下では600℃、2%で65
0℃、3%で700 t、4%730℃、5%で750
℃、6%で780 ’e、8%で780℃、10%では
900℃程度であり、溶融状態を確保するための温度で
あり、また、その上限を900℃としたのはAl等を添
加してZnの蒸気圧を上昇させ、znのヒユームの低減
ができたとしてもZn単味での沸点が907〜911 
tといわれているので、蒸発が激しくなるため、溶融状
態を確保できなくなるためである。もちろん、昇圧して
、例えば、2気圧で980 ’eになるZnの蒸気圧を
上昇させ、Znの蒸発を抑制して高温でめっきすること
は可能である。
Next, the bath temperature was set at 600 to 900°C, and the lower limit was set at 600°C, which varies depending on the Fe concentration, but specifically, when the Fe concentration is 1% or less, it is 600°C, and when it is 2%, it is 65°C.
700 t at 0℃, 3%, 750 t at 4%, 730℃, 5%
℃, 780'e for 6%, 780°C for 8%, and about 900°C for 10%, which is the temperature to ensure a molten state, and the upper limit of 900°C is due to the addition of Al etc. Even if it were possible to increase the vapor pressure of Zn and reduce the fume of Zn, the boiling point of Zn alone would be 907 to 911.
This is because evaporation becomes intense and a molten state cannot be maintained. Of course, it is possible to increase the pressure to, for example, increase the vapor pressure of Zn to 980'e at 2 atmospheres, suppress the evaporation of Zn, and perform plating at a high temperature.

めっき後の冷却速度はとくに限定するものではないが、
地鉄との界面に生成する加工性を劣化させるr相を抑制
するために、30tl:/sec以上の高速であること
が望ましい。
The cooling rate after plating is not particularly limited, but
A high speed of 30 tl:/sec or higher is desirable in order to suppress the r-phase that is generated at the interface with the base metal and degrades workability.

めっきの方法はとくに限定するものではないが、例えば
、鋼板を還元処理後めっき浴中に浸漬するゼンジマータ
イプ、フラックス法、また、鋼材に下地めっきを施した
後、前処理加熱なしでめっきしてもよい。さらに、ロー
ルコータ−1電磁ポンプ法、メニスカスめっき等の片面
めっき等もできる。
The plating method is not particularly limited, but examples include the Sendzimer type in which the steel plate is immersed in a plating bath after reduction treatment, the flux method, and the plating method in which the steel plate is plated with a base and then plated without pretreatment heating. You can. Furthermore, single-sided plating such as the roll coater 1 electromagnetic pump method and meniscus plating can also be performed.

このように、Fa:0.1〜10%を含むZn浴にAM
、Pb、Sn、Sb、Mg、Si、Cu、Bi、Ti 
、Pの1種または2種以上の0.01〜0.50%を添
加して、浴表面の酸化を防止し、浴の粘度を低くし、目
付量の調整を容易にして、浴温を600〜900℃にし
てめっきすることによりFe −Zn合金めつぎ鋼板の
溶接性、加工性、パウダリング性が向上するFe−Zn
合金めっき鋼板とすることができる。
In this way, AM
, Pb, Sn, Sb, Mg, Si, Cu, Bi, Ti
By adding 0.01 to 0.50% of one or two or more of Fe-Zn improves weldability, workability, and powdering properties of Fe-Zn alloy mating steel sheets by plating at 600 to 900°C
It can be an alloy plated steel plate.

第1図はFe:6%のZn浴に八nの添加量を変えてめ
っきしたときの浴表面の酸化の程度を表面酸化物、つま
り、スカムの酸素濃度をZnとの比で表した図である。
Figure 1 shows the degree of oxidation on the surface of the bath when plating was performed with varying amounts of 8n added to a Fe:6% Zn bath, expressed as a ratio of the oxygen concentration of the surface oxide, that is, the scum, to the Zn. It is.

第2図はFe:6%のZn浴にAlの添加量を変えてめ
っきしたときの浴の粘度の関係を表した図である。この
ように、Fe −Zn浴にAnを添加することにより、
さらに、pb等の上記添加元素を添加することにより、
浴表面の酸化がなくなり、粘度の低下による目付の制御
が容易になり、表面性状のよい合金めっきが製造できる
FIG. 2 is a diagram showing the relationship between bath viscosity when plating is carried out by changing the amount of Al added to a Fe:6% Zn bath. In this way, by adding An to the Fe-Zn bath,
Furthermore, by adding the above additive elements such as pb,
Oxidation of the bath surface is eliminated, the basis weight can be easily controlled by lowering the viscosity, and alloy plating with good surface quality can be produced.

しかして、Fe:6%のZn浴にAn等の低融点金属を
添加することによって、Fe−Zn合金めっき鋼板を製
造する方法としてはFe濃度6%、へN011%添加し
てZn浴に、酸化、還元、焼鈍等の前処理を行った鋼板
を浸漬して、直ちに、冷却することによって製造でき、
表面性状、曲げ等の加工性、パウダリング性等のめっき
密着性に優れた防錆鋼板とすることができる。
Therefore, a method for producing Fe-Zn alloy plated steel sheet by adding a low melting point metal such as An to a Zn bath containing 6% Fe is to add 11% N0 to a Zn bath with an Fe concentration of 6%. It can be produced by immersing a steel plate that has undergone pretreatment such as oxidation, reduction, annealing, etc. and immediately cooling it.
It is possible to obtain a rust-proof steel sheet with excellent surface properties, workability such as bending, and plating adhesion such as powdering property.

(実 施 例) つぎに本発明の実施例を比較例とともに第1表に挙げる
(Examples) Next, Examples of the present invention are listed in Table 1 along with comparative examples.

注6:Zn浴中へ鋼板帯を連続的に導入し、めっき後、
ガスワイプにより目付量(g/m”)を調整し、片面と
裏側の他面と違うものについては目付調整のガス圧を変
えて調整した。
Note 6: The steel plate strip is continuously introduced into the Zn bath, and after plating,
The basis weight (g/m'') was adjusted using a gas wipe, and when one side was different from the other side, the gas pressure for adjusting the basis weight was adjusted.

注7=耐蝕性は70℃乾燥3時間−塩水(3%×50℃
)2時間−室温放置2時間−塩水噴霧試験(JIS Z
2371に:準拠)1.5時間→湿潤(80%湿度、5
0℃) 15.4時間、このサイクルで10サイクル処
理後の赤錆発生面積(%)を測定。(10%以下では実
用上差支えなし。)注8:パウダリング評点は0.8m
mの鋼板を挟み密着曲げ、いわゆる、1を曲げを実施し
、めっきの密着性を標準試料と比較した。なお、評点の
数字が小さい方が密着性はよい。
Note 7 = Corrosion resistance is 70℃ drying for 3 hours - salt water (3% x 50℃
)2 hours - left at room temperature for 2 hours - salt spray test (JIS Z
2371: Compliant) 1.5 hours → Humidity (80% humidity, 5
0°C) 15.4 hours, and the area (%) where red rust occurred was measured after 10 cycles of this cycle. (There is no practical problem at 10% or less.) Note 8: Powdering rating is 0.8m
A steel plate of m was sandwiched and bent in close contact, so-called bending of 1 was performed, and the adhesion of the plating was compared with a standard sample. Note that the smaller the rating number, the better the adhesion.

(評点2以下では実用上差支えなし。)注9=スポット
溶接電極寿命(点)は下記の溶接条件で連続打点溶接を
実施した。
(A rating of 2 or less does not pose a practical problem.) Note 9 = Spot welding electrode life (points) Continuous spot welding was performed under the following welding conditions.

溶接条件は下記による。The welding conditions are as follows.

1)加圧カニ 250 kgf 。1) Pressure crab 250 kgf.

2)初期加圧時間:40Hz、 3)通電時間:12)IZ。2) Initial pressurization time: 40Hz, 3) Energization time: 12) IZ.

4)保持時間:5Hz、 5)溶接電流:11kA、 6)チップ先端径:5.0φ(円錐台頭型)、7)電極
寿命終点判定:溶接電流の85%でのナゲツト径が3.
6)を確保できる打点数、 8)電極材質:Cu−Cr(一般に用いられているもの
)。
4) Holding time: 5Hz, 5) Welding current: 11kA, 6) Tip tip diameter: 5.0φ (cone-shaped), 7) Electrode life end point determination: Nugget diameter at 85% of welding current is 3.
6) Number of dots that can ensure 8) Electrode material: Cu-Cr (generally used).

溶接は、めっき鋼板の片面を上、他面を下として、2枚
重ね合わせて連続打点数をとった。
Welding was performed by stacking two plated steel plates with one side up and the other side down, and counting the number of consecutive welding points.

(発明の効果) かくすることにより、防錆鋼板としての特性に優れた鋼
板とすることができ、製造コストの面でも優位な製造方
法であり、厚目付とすることによる従来のFe−Zn合
金めっきのめっき密着性の劣化を危惧することなく、加
工性、防錆性の優れた溶融Fe−Zn合金めっき鋼板と
することができる。
(Effects of the invention) By doing this, a steel plate with excellent properties as a rust-proof steel plate can be obtained, and the manufacturing method is also advantageous in terms of manufacturing cost, and is superior to conventional Fe-Zn alloys by making it thicker. A hot-dip Fe-Zn alloy plated steel sheet with excellent workability and rust prevention can be obtained without worrying about deterioration of plating adhesion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Zn浴への肩の添加量と浴表面の酸化と
、対応するスカムの酸素とZnの比の関係を示す図、第
2図はFe−Zn浴へのAUの添加量と浴の粘度の関係
を示す図である。 化4名
Figure 1 shows the relationship between the amount of shoulder added to the Fe-Zn bath, the oxidation of the bath surface, and the corresponding ratio of oxygen to Zn in the scum, and Figure 2 shows the amount of AU added to the Fe-Zn bath. FIG. 4 people

Claims (1)

【特許請求の範囲】[Claims] 1.Fe:0.1〜10%を含むZn浴にAl,Pb,
Sn,Sb,Mg,Si,Cu,Bi,Ti,Pの1種
または2種以上を0.01〜0.50%を添加し、浴温
600〜900℃でめっきすることを特徴とする、Fe
−Zn合金めっき鋼板の製造方法。
1. Al, Pb,
It is characterized by adding 0.01 to 0.50% of one or more of Sn, Sb, Mg, Si, Cu, Bi, Ti, and P and plating at a bath temperature of 600 to 900°C. Fe
- A method for producing a Zn alloy plated steel sheet.
JP27709290A 1990-10-16 1990-10-16 Production of fe-zn alloy coated steel sheet Pending JPH04154950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27709290A JPH04154950A (en) 1990-10-16 1990-10-16 Production of fe-zn alloy coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27709290A JPH04154950A (en) 1990-10-16 1990-10-16 Production of fe-zn alloy coated steel sheet

Publications (1)

Publication Number Publication Date
JPH04154950A true JPH04154950A (en) 1992-05-27

Family

ID=17578665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27709290A Pending JPH04154950A (en) 1990-10-16 1990-10-16 Production of fe-zn alloy coated steel sheet

Country Status (1)

Country Link
JP (1) JPH04154950A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369216B1 (en) * 1998-12-29 2003-03-29 주식회사 포스코 Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance
WO2007088890A1 (en) 2006-02-02 2007-08-09 Ck Metals Co., Ltd. Hot dip zinc plating bath and zinc-plated iron product
JP2009197328A (en) * 2008-01-22 2009-09-03 Jfe Steel Corp Method for producing hot dip galvanized steel pipe and hot dip galvanized material
JP4497431B1 (en) * 2010-01-26 2010-07-07 株式会社駒形亜鉛鍍金所 Hot dip galvanizing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369216B1 (en) * 1998-12-29 2003-03-29 주식회사 포스코 Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and surface appearance
WO2007088890A1 (en) 2006-02-02 2007-08-09 Ck Metals Co., Ltd. Hot dip zinc plating bath and zinc-plated iron product
US7811674B2 (en) 2006-02-02 2010-10-12 Ck Metals Co., Ltd. Hot-dip galvanizing bath and galvanized iron article
JP2009197328A (en) * 2008-01-22 2009-09-03 Jfe Steel Corp Method for producing hot dip galvanized steel pipe and hot dip galvanized material
JP4497431B1 (en) * 2010-01-26 2010-07-07 株式会社駒形亜鉛鍍金所 Hot dip galvanizing
JP2011153326A (en) * 2010-01-26 2011-08-11 Komagata Galvanizing Co Ltd Hot-dip galvanization

Similar Documents

Publication Publication Date Title
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JP4964650B2 (en) Hot-dip Al-based plated steel sheet with excellent corrosion resistance after processing and method for producing the same
JP4751168B2 (en) Fused Al-based plated steel sheet with excellent workability and method for producing the same
JP5626324B2 (en) Method for producing hot-dip galvanized steel sheet
JPS6115948B2 (en)
JPH04154950A (en) Production of fe-zn alloy coated steel sheet
JP2004244655A (en) HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND PRODUCTION METHOD THEREFOR
JPS5817252B2 (en) High corrosion resistance alloy plated steel products
JP2002004017A (en) HOT-DIP Zn-Al-Mg-Si PLATED STEEL MATERIAL EXCELLENT IN SURFACE CHARACTERISTIC AND ITS PRODUCTION METHOD
JPH0635648B2 (en) Hot-dip, low-reduction type hot dip galvanizing method for zinc or zinc alloys
JP7290757B2 (en) Plated steel wire and its manufacturing method
JPH08269733A (en) Rust preventive steel sheet for fuel tank
JPH03260043A (en) Hot dip galvanized steel sheet excellent in darkish discoloration resistance and its production
JPH042759A (en) Production of galvannealed steel sheet and hot-dip galvanizing bath
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP4418072B2 (en) Manufacturing method of high tension hot-dip aluminized steel sheet
JP5103759B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP2000169948A (en) Hot dip galvannealed steel sheet and its production
JP5115154B2 (en) Method for producing high-strength galvannealed steel sheet
JP2002212700A (en) HOT DIP Sn-Ag PLATED STEEL SHEET
JPS59166664A (en) Heat resistant zinc alloy plated product
JPS6362835A (en) Zinc alloy for hot dip galvanizing and method for using same
JPS6119793A (en) Surface treated steel plate excellent in solderability
JPH04323356A (en) Molten flux composition for hot dip aluminum-zinc alloy plating