JP4469055B2 - Hot-dip Zn-Mg-Al alloy plating method - Google Patents

Hot-dip Zn-Mg-Al alloy plating method Download PDF

Info

Publication number
JP4469055B2
JP4469055B2 JP2000078840A JP2000078840A JP4469055B2 JP 4469055 B2 JP4469055 B2 JP 4469055B2 JP 2000078840 A JP2000078840 A JP 2000078840A JP 2000078840 A JP2000078840 A JP 2000078840A JP 4469055 B2 JP4469055 B2 JP 4469055B2
Authority
JP
Japan
Prior art keywords
plating
steel
alloy
pickling
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000078840A
Other languages
Japanese (ja)
Other versions
JP2001262307A (en
Inventor
直美 中山
英俊 新頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIKAWAKOGYO CO.,LTD.
Nippon Steel Corp
Original Assignee
YOSHIKAWAKOGYO CO.,LTD.
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIKAWAKOGYO CO.,LTD., Nippon Steel Corp filed Critical YOSHIKAWAKOGYO CO.,LTD.
Priority to JP2000078840A priority Critical patent/JP4469055B2/en
Publication of JP2001262307A publication Critical patent/JP2001262307A/en
Application granted granted Critical
Publication of JP4469055B2 publication Critical patent/JP4469055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般の鉄鋼構造物の防食に用いられる、フラックス処理法による溶融Zn−Mg−Al合金メッキ方法に関するものである。
【0002】
【従来の技術】
従来より、鋼材の防食用材料としてZnが使用されてきたが、中でも、溶融したZnの中に鋼材を浸漬する溶融Znメッキは、JISH8641に記載されるごとく広く実用化されている。
【0003】
しかしながら、鋼材の長期防食性能の向上に対する要望は非常に強く、このため、耐食性向上の観点からZnにAlを添加する溶融Zn−Al合金メッキの開発が進められた結果、無酸化炉方式による溶融Zn−Al合金メッキの製造が可能となり、ガルバリウム(Zn−55%Al−1.5%Si合金)やガルファン(Zn−5%Al−ミッシュメタル合金)並びにスーパージンク(Zn−4.5%Al−0.1%Mg合金)等の商品名で知られる溶融Zn−Al合金メッキの実用化が達成された。
【0004】
一方、線材や金網または架線金物等のような小物部品は、一般に、大気中で処理されることが多く、このため、メッキ前の鋼材表面の清浄化と酸化防止が必要となり、フラックス処理法の採用をせざるを得ない。ところが、このAlは非常に活性なため、メッキ浴表面で選択的な酸化を起こすとともに、フラックス成分である塩化亜鉛および塩化アンモニウムと反応して塩化アルミニウムを生成し、不メッキやドロスの付着等を発生させ、安定して平滑なメッキ面を得ることが容易ではなく、現在でも、例えば、特公平7−9059号公報、特開平5−195179号公報、特開平5−148602号公報に示されるように、溶融Zn−Al合金メッキの一段階メッキ法における各種フラックス成分の開発が推進されている。したがって、フラックス処理法を用いたメッキでは、通常の溶融Znメッキを行った後、直ちに、溶融Zn−Al合金メッキを行う二段階メッキ法が一般的である。
【0005】
ところが、最近の研究によって、ZnにMgを添加したZn−Mg−Al合金がメッキ鋼材のキズ発生部の赤錆発生防止に非常に有効とのことから、各種方法による溶融Zn−Mg−Al合金メッキの実用化が進められている。なかでも、フラックス処理法によるものとして、塩化亜鉛および塩化アンモニウムからなるフラックスに浸漬する方法が、特開昭53−18434号公報に開示されているけれども、前述の溶融Zn−Al合金メッキと同様に、二段階メッキ法である。また、これと類似した方法が特開平4−246158号公報に開示されているが、これもZn浴、Pb浴、Zn−Al−Mg合金浴槽内を連続的に通過させる方法を採用しており、基本的には二段階メッキ法と同等と考えられる。
【0006】
一方、特公昭63−48945号公報には、一部、ゼンジマー式パイロットプラントによる無酸化炉方式のものが、一部、フラックス処理方式による一段階メッキ法の実施例が開示されているけれども、このフラックス成分で処理した鋼材は、溶融Zn−Mg−Al合金とは容易に濡れ難く、不メッキやドロス付着等のメッキ不良を生じやすい等の欠点があることが判明した。さらに、フラックス処理方式に関するものとして、特開昭60−125360号公報、特開平2−298243号公報が開示されているが、前者は、Zn−Al−Si−Mg合金メッキのメッキ浴成分とフラックス成分に関するものであり,後者は、メッキ膜厚を薄くするためにNiをメッキ浴に添加する方法である。
【0007】
最近、このNiを下層とするZn−Mg−Al合金系メッキの開発が進められており、Snを3〜50%含有するZn−Mg−Al−Sn合金メッキの下層にNiメッキを施すことを特徴とするメッキ法が特開平4−247860号公報に、メッキ皮膜の黒変防止にCoを添加したZn−Mg−Al−Co合金メッキの密着力向上のために下層にNiメッキを施すことを特徴とするメッキ法が特開平9一143658公報に、また、Zn−Mg−Al合金メッキの下層にNiメッキを施す二段階メッキ法において、無電解Niメッキを施す方法が特開平9−263926号公報に開示されている。その他、高耐食性を目的とした溶融Zn−Mg−Al合金メッキに関するものが、特公昭61−33070号公報、特許第2627788号公報、特許第2648844号公報および特開平8−60324号公報に開示されているが、全て、無酸化炉方式もしくは二段階メッキ法との組み合わせによる方法である。
【0008】
次に、目的は異なるものの、Zn−Mg−Al−Feその他成分からなるアーク溶接性に優れた亜鉛合金メッキ鋼板を得る方法が特開平6−256921号公報に開示されているけれども、その中で、目的の溶融亜鉛合金メッキ鋼板を得るために、メッキ浴中にMg、Al、Feの成分元素を添加する方法、更には、亜鉛メッキ鋼板の場合には、メッキ後にメッキ層と鋼板の地鉄とを加熱拡散法で合金化処理したり、あらかじめFeをメッキ浴中に高濃度で調整しておくことによりZn−Fe系の合金化処理された鋼板とすればよいと記載されているが、Feを含んだ溶融Znメッキの場合、溶融温度の上昇が起こり、このため通常のメッキ温度ではメッキ不可となる。したがって、メッキ温度を上げることになるが、鋼板の変形が発生し、実際にはメッキはできない。このため、実施例に記載されているように、メッキ層組成中Feは、メッキ後加熱処理して熱拡散により調整する方法によらなければ、特開平6−256921号公報に記載の質量%でAl0.1〜1%、Fe20%以下、Mg0.05〜6%、残部亜鉛および不可避的不純物からなるめっき層を有することを特徴とするアーク溶接性に優れた亜鉛めっき鋼板を溶融状態で得ることは困難である。 その他特開昭56−156745号公報は、メッキ浴中への超音波照射によってフラックス処理工程の省略ができることが記載されているが、超音波の照射は、メッキ皮膜中からのMgOの逸散と浴表面への浮上堆積にともなう皮膜中からのMgの減少とMgO並びにその他酸化物のメッキ面への付着により、期待されるような耐食性のある皮膜とはならない。
【0009】
【発明が解決しようとする課題】
ところで、溶融メッキ浴中に活性な金属、例えば、Alを含む場合は、特開平5−65611号公報に開示された酸洗処理およびフラックス処理を行うことによって、一段階メッキ法でも、平滑な溶融Zn−Al合金のメッキ面を得ることは可能となるけれども、Alよりも更に活性な金属であるMgを含有する場合、特開平5−65611号公報に示す方法を用いても、一段階メッキ法による方法では、一般の鋼材への平滑なメッキ面を得ることは困難である。したがって、実際には、無酸化炉方式もしくは無酸化炉方式と二段階メッキ法との組み合わせによる方法またはフラックス処理方式の二段階メッキ法によらなければならず、溶融Zn−Mg合金メッキの平滑なメッキ面を得ることは実質的に困難であった
そこで、本発明は、0.011C鋼〜0.13%C鋼の一般鉄鋼材料を対象とした溶融Zn−Mg−Al合金メッキの製造において、フラックス処理法による溶融Zn−Mg−Al合金の単独浴による一段階メッキ法が可能で、しかも、フラックスとして通常の溶融亜鉛メッキに使用する塩化亜鉛と塩化アンモニウムの使用ができる溶融Zn−Mg−Al合金メッキ法の提供にある。
【0010】
【課題を解決するための手段】
本発明は、質量%でMg:0.30〜0.70%、Al:0.15〜0.70%残部が実質的に亜鉛からなるZn−Mg−Al合金の溶融メッキ浴に、0.011%C鋼〜0.13C%鋼の鋼材を浸漬する一段階メッキ法において、脱脂、水洗、酸洗、水洗、フラックス処理、乾燥の一連の前処理を行う工程の中で、酸洗を、8〜15%濃度の塩酸と3〜5%濃度の硝酸からなる混酸によって行い、且つ、フラックス処理にフラックス成分が塩化アンモニウムと塩化亜鉛の混合物からなるE1組成でその水溶液濃度が250g/L〜500g/Lの範囲として用いて平滑なメッキ面を得ることを特徴とする。
【0011】
また混酸酸洗処理に、最大でも30分の超音波による酸洗処理を併用することができる。
【0012】
【発明の実施の形態】
本発明は、溶融Zn−Mg−Al合金メッキに関する多くの観察結果から、酸洗後の鋼板表面に、スマットやその他成分の酸化物が僅かに付着残存した状態でメッキを行った場合、不メッキやドロスの付着または粒状突起物の生成等の不具合を生じ易いとの知見を得、鋼材表面の清浄度を向上することにより、一段階メッキ法においても、平滑なメッキ表面を得ることが可能であることを見い出し本発明に至ったものである。例えば、不メッキの部分においては、MgおよびAlの濃縮が観察され、Mgについては浴中Mg含有量の7〜8倍に、Alについても20〜100倍の濃度に達することが判明している。これは鋼材表面のスマットやその他成分の酸化物の還元が浴中のMgまたはAlによって進行するものと考えられるが、その量が多くなると、多量のMgおよびAlが消費され、この還元反応にともなう吸熱とそれにともなって起こる鋼材表面の急激な温度低下によって、MgおよびAlの酸化物の速やかなる浮上分離が進行せず、不メッキ等の不具合を発生したものと考えられる。さらに、本発明は、酸洗に超音波を併用することにより、酸洗時間の短縮と鋼材表面の清浄化に非常に有効であることを見い出したものである。
【0013】
本発明における酸洗の酸液は、単独酸では溶解能力が大きく、しかも、劣化後の酸洗能力も新しい酸の追加により容易に回復する塩酸を主剤とし、これに硝酸を前記組成範囲内に混合した混酸からなるものであり、鋼材の過剰溶解を抑制したものである。
【0014】
通常、塩酸は硫酸に比べて溶解能力が大きく、酸洗後のスマットの付着が少ないことから、一般鋼材の酸洗処理に使用されるが、溶融Zn−Mg−Al合金の場合、塩酸単独での酸洗処理では、必ずしも十分ではない。なぜならば、塩酸の濃度アップによる方法のみでは、酸化物の溶解ができず、ドロスの付着や微細突起のある面と成りやすく、塩酸単独での酸洗処理では不十分である。そのため、硝酸を添加することで酸洗後の鋼材表面のスマット付着を低減させ、その濃度アップにより更に効果は大きくなるが、多すぎると過不働態となりピットの生成等不具合を発生する。
【0015】
また、この混酸液へのFe分の溶解は避けられず、溶解Fe分の量が多くなるにしたがって液の溶解能力も低下することから、混酸液へのFe分の溶解量は、好ましくは、20000PPM以下にする必要がある。
【0016】
更に、酸洗時に超音波を併用することは、鋼材表面の清浄化と酸洗の短縮を図るための方法として、非常に効果のあるものではあるが、表3の比較例に示すように、清浄度を上げようとして超音波の照射時間を長くすると、ピットの発生を生じるため、最大30分以内の処理時間に止めることが重要である。 引き続いて、前記酸洗処理を終えた鋼材の水洗・フラックス処理を行うが、溶融Zn−Mg−Al合金の一段階メッキ法におけるフラックス処理に関して記載のあるものは、特公昭63−48945号公報および特開昭60−125360号公報と特開平2−298243号公報がある。この中でも、フラックスの成分として、塩化亜鉛と塩化アンモニウムのみを使用しているのは、特公昭63−48945号公報と特開平2−298243号公報であるが、この条件とほぼ等しい表1の試料No4および5の結果から判るように、鋼材とメッキ浴との濡れが非常に悪く、鋼材の自重のみでは浸漬し難く、不メッキやドロスの付着を発生させることが判明した。したがって、鋼材がメッキ浴に濡れ易くするためには、前記フラックス処理条件の範囲内に調整することが必要である。
【0017】
次に、メッキ浴組成について説明する。まず、メッキ浴中のMgの量を0.30〜0.70質量%としたのは、0.30質量%未満ではZnメッキとほぼ同等の防食性能しか得られないことから、一方、0.70質量%を超えると、大気中のため、メッキ浴表面での酸化が激しくなり、浴表面に薄い酸化物層を生成するとともに、メッキ面への巻き込みとドロスの付着による凹凸のあるメッキ面となるからである。
【0018】
さらに、Alの量を0.15〜0.70質量%としたのは、メッキ浴中のAlの量が0.15質量%未満になると、Mgの酸化の方が早く進むため、メッキ浴の成分調整を頻繁に行うことが必要になるとともに、メッキ皮膜そのものの靭性の低下による亀裂の発生を起こすようになるからである。また、0.70質量%を超える場合、浴表面でのAlの酸化の進行に伴う酸化物の層を生成し、酸化物の巻き込みやドロスの付着により平滑なメッキ面を得ることが困難になるからである。
【0019】
【実施例】
全試料とも、苛性ソーダ30g/Lと炭酸ソーダ50g/Lからなる、80℃のアルカリ脱脂液に30分以上浸漬後、水道水による水洗を2分行ない、それぞれ表1および表1に記載の酸の種類と濃度のものに60分浸漬し酸洗を実施した。引き続いて、水道水による水洗を2分行ない、表1および表2に記載のフラックス処理を1分実施し、その後、130℃の温度で5分間乾燥し、500℃に設定した溶融Zn−Mg−Al合金メッキ浴に5分間浸漬、浴表面の不純物の除去を行った後、メッキ浴から引き上げ大気放冷によるメッキを実施した。
【0020】
表1から表3には、本発明の方法によって得られた実施例と比較例を示したものである。
【0021】
【表1】

Figure 0004469055
【表2】
Figure 0004469055
【表3】
Figure 0004469055
試料No.1〜No.9は酸洗後のスマット生成量が少ない0.011%C鋼においても、フラックスの成分割合と濃度が非常に重要であることを示している。さらに、試料No.10−No.17は、塩酸濃度の増加による酸洗能力の向上と鋼材との濡れ性が良好なフラックス成分と濃度を用いても、鋼種によって、即ち、0.044%C鋼および0.13%C鋼はドロスの付着したメッキ面となることを示している。
【0022】
一方、試料No.18〜No.41は混酸の場合の実施例と比較例であるが、混酸の場合でも、塩酸と硝酸の混酸濃度が低く洗浄能力も弱いと思われる試料No.18〜25においては、鋼材との濡れ性も良好なフラックス処理を施しても、0.044%C鋼および0.13%C鋼はドロスの付着したメッキ面となるが、実施例に示す試料No.26〜41の混酸の濃度になると、0.044%C鋼および0.13%C鋼までほぼ平滑なメッキ面を確保することが可能となった。このように、混酸においても、混酸の濃度およびフラックスの成分並びに濃度を適切に選定しなければ平滑なメッキ面を得ることは困難となる。
【0023】
さらに、試料No.42〜51は酸洗に超音波を併用した場合の実施例と比較例であるが、超音波を併用した試料No.46〜49に示すように、酸洗処理時間を非常に短縮できるが、一方、試料No.50〜51の比較例に示すように、超音波の照射時間が長くなると鋼材表面にピットが発生し、メッキ後も残存するため平滑なメッキ面とならない。
【0024】
なお、メッキ面の総合評価は、目視による評価であるが、以下の基準に従った。即ち、メッキ表面に縞模様は見られるものの、非常に平滑なメッキ面は○、僅かに、微細凸は有るものの、実用的にはそれ程問題のない、ほぼ平滑なメッキ面を△、不メッキやドロスの付着したメッキ面は×とした。
【0025】
以上の結果から明らかなように、鋼材の種類が0.011%C鋼〜0.13%C鋼のものについても、本発明の範囲内において溶融Zn−Mg−Al合金メッキされた実施例であれば、不メッキやドロスの付着のない、平滑なメッキ面となることが確認された。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明の方法によれば、従来、一段階メッキ法では困難であった溶融Zn−Mg−Al合金のメッキが、0.0l1C%鋼から0.13%C鋼の範囲の鋼材に対して、不メッキやドロスの付着を生じることなく、平滑で高耐食性を有する溶融Zn−Mg−Al合金メッキ皮膜を形成することができるようになった。しかも、従来の溶融Znメッキ設備および操業方法を変えることなくそのまま適用できる利点もあり、コストの低減等実用的な処理方法が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten Zn—Mg—Al alloy plating method using a flux treatment method, which is used for corrosion protection of general steel structures.
[0002]
[Prior art]
Conventionally, Zn has been used as an anticorrosive material for steel materials. Among them, molten Zn plating for immersing a steel material in molten Zn has been widely put into practical use as described in JISH8641.
[0003]
However, the demand for improving the long-term anticorrosion performance of steel materials is very strong. Therefore, as a result of the development of molten Zn-Al alloy plating in which Al is added to Zn from the viewpoint of improving corrosion resistance, melting by a non-oxidizing furnace method is promoted. Zn-Al alloy plating can be manufactured, and galvalume (Zn-55% Al-1.5% Si alloy), galfan (Zn-5% Al-Misch metal alloy) and super zinc (Zn-4.5% Al). The practical application of molten Zn-Al alloy plating known by trade names such as -0.1% Mg alloy was achieved.
[0004]
On the other hand, small parts such as wire rods, wire meshes or overhead wire fittings are generally processed in the air, and therefore, it is necessary to clean the steel surface before plating and prevent oxidation. I have to adopt it. However, since this Al is very active, it causes selective oxidation on the plating bath surface and reacts with zinc chloride and ammonium chloride, which are flux components, to produce aluminum chloride, thereby preventing unplating and dross adhesion. It is not easy to generate a stable and smooth plated surface, and even now, for example, as shown in Japanese Patent Publication No. 7-9059, Japanese Patent Laid-Open No. 5-195179, and Japanese Patent Laid-Open No. 5-148602. In addition, the development of various flux components in the one-step plating method of molten Zn—Al alloy plating is being promoted. Therefore, the plating using the flux treatment method is generally a two-step plating method in which the molten Zn—Al alloy plating is performed immediately after performing the normal molten Zn plating.
[0005]
However, recent research shows that Zn-Mg-Al alloy with Mg added to Zn is very effective in preventing red rust generation at the scratched part of the plated steel material. Is being put to practical use. Among them, a method of immersing in a flux composed of zinc chloride and ammonium chloride as disclosed in JP-A-53-18434 as a flux treatment method is the same as the above-described molten Zn-Al alloy plating. The two-step plating method. A similar method is disclosed in Japanese Patent Laid-Open No. 4-246158, which also employs a method of continuously passing through a Zn bath, Pb bath, and Zn—Al—Mg alloy bath. Basically, it is considered equivalent to the two-step plating method.
[0006]
On the other hand, Japanese Patent Publication No. 63-48945 discloses a part of a non-oxidation furnace type by a Zenzimer type pilot plant and a part of an embodiment of a one-step plating method by a flux processing method. It has been found that the steel material treated with the flux component is not easily wetted with the molten Zn—Mg—Al alloy and has defects such as non-plating and plating defects such as dross adhesion. Further, JP-A-60-125360 and JP-A-2-298243 are disclosed as flux processing methods. The former is a plating bath component and flux of Zn-Al-Si-Mg alloy plating. The latter is a method of adding Ni to the plating bath in order to reduce the plating film thickness.
[0007]
Recently, Zn-Mg-Al alloy-based plating with Ni as a lower layer has been developed, and Ni plating is applied to the lower layer of Zn-Mg-Al-Sn alloy plating containing 3 to 50% of Sn. A characteristic plating method is disclosed in Japanese Patent Application Laid-Open No. 4-247860, in which a lower layer is plated with Ni in order to improve the adhesion of Zn-Mg-Al-Co alloy plating to which Co is added to prevent blackening of the plating film. A characteristic plating method is disclosed in JP-A-9-143658, and in a two-step plating method in which Ni plating is applied to a lower layer of a Zn-Mg-Al alloy plating, a method of applying electroless Ni plating is disclosed in JP-A-9-263926. It is disclosed in the publication. Others related to hot dip Zn-Mg-Al alloy plating for high corrosion resistance are disclosed in Japanese Patent Publication No. 61-33070, Japanese Patent No. 2627788, Japanese Patent No. 2648844, and Japanese Patent Laid-Open No. 8-60324. However, all are methods using a combination of a non-oxidizing furnace method or a two-step plating method.
[0008]
Next, although the purpose is different, a method of obtaining a zinc alloy plated steel sheet having excellent arc weldability composed of Zn—Mg—Al—Fe and other components is disclosed in Japanese Patent Laid-Open No. 6-256922. In order to obtain the desired hot dip galvanized steel sheet, a method of adding Mg, Al, Fe component elements to the plating bath, and, in the case of a galvanized steel sheet, the plating layer and the steel plate of the steel sheet after plating It is described that it is only necessary to use a Zn-Fe alloyed steel sheet by pre-adjusting with a heat diffusion method or by adjusting Fe in a plating bath at a high concentration in advance. In the case of hot-dip Zn plating containing Fe, the melting temperature rises, so that plating cannot be performed at a normal plating temperature. Therefore, although the plating temperature is raised, the steel plate is deformed and cannot be actually plated. For this reason, as described in the examples, the Fe in the plating layer composition is in mass% as described in JP-A-6-256921 unless it is adjusted by thermal diffusion after heat treatment after plating. Obtaining a galvanized steel sheet in a molten state having excellent arc weldability characterized by having a plating layer comprising Al 0.1 to 1%, Fe 20% or less, Mg 0.05 to 6%, the balance zinc and unavoidable impurities It is difficult. In addition, Japanese Patent Application Laid-Open No. 56-156745 describes that the flux treatment step can be omitted by irradiating the plating bath with ultrasonic waves. However, the irradiation of ultrasonic waves is caused by the diffusion of MgO from the plating film. Due to the reduction of Mg from the coating accompanying the floating deposition on the bath surface and the adhesion of MgO and other oxides to the plated surface, the coating does not have the corrosion resistance as expected.
[0009]
[Problems to be solved by the invention]
By the way, when an active metal such as Al is contained in the hot dipping bath, smooth melting can be achieved even in a one-step plating method by performing pickling treatment and flux treatment disclosed in JP-A-5-65611. Although it is possible to obtain a plated surface of a Zn—Al alloy, even if the method shown in Japanese Patent Laid-Open No. 5-65611 is used when Mg, which is a metal more active than Al, is contained, a one-step plating method is used. It is difficult to obtain a smooth plated surface on a general steel material by the method according to 1. Therefore, in practice, a non-oxidizing furnace method or a combination of a non-oxidizing furnace method and a two-step plating method or a two-step plating method of a flux processing method must be used, and the smoothness of molten Zn-Mg alloy plating Since it was practically difficult to obtain a plated surface, the present invention was used in the production of hot-dip Zn-Mg-Al alloy plating for general steel materials of 0.011C steel to 0.13% C steel. A molten Zn-Mg-Al alloy that can be used in a single-step plating method with a single bath of a molten Zn-Mg-Al alloy by a flux treatment method, and that can use zinc chloride and ammonium chloride, which are used for ordinary hot-dip galvanizing, as a flux. To provide alloy plating method.
[0010]
[Means for Solving the Problems]
The present invention, Mg mass%: 0.30~0.70%, Al: 0.15~0.70 %, the hot dip coating bath Zn-Mg-Al alloy and the balance being substantially zinc, 0 In the one-step plating method in which steel materials of 011% C steel to 0.13 C% steel are immersed, pickling is performed in a series of pre-treatment processes such as degreasing, water washing, acid washing, water washing, flux treatment, and drying. The mixture is made of a mixed acid composed of 8-15% hydrochloric acid and 3-5% nitric acid, and the flux component in the flux treatment is an E1 composition composed of a mixture of ammonium chloride and zinc chloride. A smooth plated surface is obtained using a range of 500 g / L.
[0011]
In addition , pickling treatment using ultrasonic waves for 30 minutes at the maximum can be used in combination with the pickling treatment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, from many observation results regarding hot-dip Zn-Mg-Al alloy plating, when plating is performed in a state where a slight amount of smut and other component oxides remain on the steel plate surface after pickling, It is possible to obtain a smooth plating surface even in a one-step plating method by obtaining knowledge that defects such as adhesion of dross or generation of granular projections are likely to occur and improving the cleanliness of the steel surface. It has been found that there is a present invention. For example, in the unplated part, Mg and Al concentration is observed, and it has been found that Mg reaches a concentration 7 to 8 times the Mg content in the bath, and Al also reaches a concentration 20 to 100 times. . It is considered that the reduction of smut and other component oxides on the surface of the steel material proceeds by Mg or Al in the bath, but when the amount increases, a large amount of Mg and Al are consumed, and this reduction reaction is accompanied. It is considered that due to the endothermic heat and the sudden temperature drop on the surface of the steel material, rapid levitation separation of Mg and Al oxides did not proceed and problems such as unplating occurred. Furthermore, the present invention has been found to be very effective in shortening the pickling time and cleaning the steel surface by using ultrasonic waves in combination with pickling.
[0013]
The pickling acid solution according to the present invention has a large dissolving ability when it is a single acid, and the pickling ability after deterioration is easily recovered by addition of a new acid as a main ingredient, and nitric acid is contained within the above composition range. It consists of mixed acid mixed and suppresses excessive dissolution of steel.
[0014]
Normally, hydrochloric acid has a higher dissolving capacity than sulfuric acid and less smut adherence after pickling, so it is used for pickling treatment of general steel materials. In the case of molten Zn-Mg-Al alloy, hydrochloric acid alone is used. This pickling treatment is not always sufficient. This is because the oxide cannot be dissolved only by the method of increasing the concentration of hydrochloric acid, and the surface tends to have dross adhesion or fine protrusions, and pickling with hydrochloric acid alone is insufficient. Therefore, by adding nitric acid, smut adhesion on the surface of the steel material after pickling is reduced, and the effect is further increased by increasing its concentration. However, if it is too much, it becomes a passive state and causes problems such as generation of pits.
[0015]
In addition, since dissolution of Fe in the mixed acid solution is unavoidable, and the dissolving ability of the solution decreases as the amount of dissolved Fe increases, the amount of dissolution of Fe in the mixed acid solution is preferably It must be 20,000 PPM or less.
[0016]
Furthermore, using ultrasonic waves during pickling is very effective as a method for purifying the steel surface and shortening pickling, but as shown in the comparative example in Table 3, If the ultrasonic irradiation time is increased to increase the cleanliness, pits are generated, so it is important to stop the processing time within 30 minutes at the maximum. Subsequently, the steel material that has been subjected to the pickling treatment is subjected to water washing and flux treatment. However, what is described regarding flux treatment in a one-step plating method of a molten Zn—Mg—Al alloy is disclosed in Japanese Patent Publication No. 63-48945 and There are JP-A-60-125360 and JP-A-2-298243. Of these, only zinc chloride and ammonium chloride are used as flux components in Japanese Patent Publication No. 63-48945 and Japanese Patent Laid-Open No. 2-298243. As can be seen from the results of Nos. 4 and 5, it was found that the wettability between the steel material and the plating bath was very poor, it was difficult to immerse only by the weight of the steel material, and non-plating and dross adhesion occurred. Therefore, in order for the steel material to be easily wetted in the plating bath, it is necessary to adjust within the range of the flux treatment conditions.
[0017]
Next, the plating bath composition will be described. First, the reason why the amount of Mg in the plating bath is 0.30 to 0.70 mass% is that if it is less than 0.30 mass%, only the corrosion prevention performance almost equivalent to that of Zn plating can be obtained. If it exceeds 70% by mass, oxidation on the plating bath surface becomes intense due to the atmosphere, and a thin oxide layer is formed on the bath surface, and the uneven plating surface due to entrainment on the plating surface and adhesion of dross Because it becomes.
[0018]
Furthermore, the amount of Al is set to 0.15 to 0.70% by mass because when the amount of Al in the plating bath is less than 0.15% by mass, the oxidation of Mg proceeds faster. This is because it is necessary to frequently adjust the components, and cracking occurs due to a decrease in the toughness of the plating film itself. On the other hand, when the content exceeds 0.70% by mass, an oxide layer is generated as the oxidation of Al occurs on the bath surface, and it becomes difficult to obtain a smooth plating surface due to oxide entrainment and dross adhesion. Because.
[0019]
【Example】
All samples were immersed in an alkaline degreasing solution at 80 ° C. consisting of caustic soda 30 g / L and sodium carbonate 50 g / L for 30 minutes or more, and then washed with tap water for 2 minutes. It was immersed for 60 minutes in the type and concentration and pickled. Subsequently, washing with tap water was performed for 2 minutes, the flux treatment described in Tables 1 and 2 was performed for 1 minute, and then dried at a temperature of 130 ° C. for 5 minutes, and molten Zn—Mg— set at 500 ° C. After immersion in an Al alloy plating bath for 5 minutes to remove impurities on the surface of the bath, the plate was pulled up from the plating bath and allowed to cool to the atmosphere.
[0020]
Tables 1 to 3 show examples and comparative examples obtained by the method of the present invention.
[0021]
[Table 1]
Figure 0004469055
[Table 2]
Figure 0004469055
[Table 3]
Figure 0004469055
Samples No. 1 to No. 9 show that the component ratio and concentration of the flux are very important even in 0.011% C steel with a small amount of smut formation after pickling. In addition, Sample No. 10-No. 17 may be used depending on the steel type, i.e., 0.044% C, even if flux components and concentrations that improve pickling ability by increasing the concentration of hydrochloric acid and have good wettability with steel are used. It shows that steel and 0.13% C steel are plated surfaces with dross attached.
[0022]
On the other hand, Samples No. 18 to No. 41 are examples and comparative examples in the case of mixed acids, but even in the case of mixed acids, sample Nos. 18 to 25 that are considered to have a low mixed acid concentration of hydrochloric acid and nitric acid and have a weak cleaning ability. In this case, 0.044% C steel and 0.13% C steel are plated surfaces with dross attached even when the flux treatment with good wettability with the steel material is performed, but sample No. 26 shown in the examples. When a mixed acid concentration of ˜41 was reached, it was possible to secure a substantially smooth plated surface up to 0.044% C steel and 0.13% C steel. As described above, even in the mixed acid, it is difficult to obtain a smooth plated surface unless the mixed acid concentration, the flux component, and the concentration are appropriately selected.
[0023]
Further, sample Nos. 42 to 51 are examples and comparative examples in which ultrasonic waves are used in combination with pickling, but as shown in sample Nos. 46 to 49 in which ultrasonic waves are used in combination, the pickling treatment time is extremely short. On the other hand, as shown in the comparative examples of sample Nos. 50 to 51, when the irradiation time of the ultrasonic wave becomes longer, pits are generated on the surface of the steel material and remain after plating, so that a smooth plated surface is not obtained.
[0024]
In addition, although comprehensive evaluation of a plating surface is evaluation by visual observation, the following references | standards were followed. That is, although a striped pattern is seen on the plating surface, a very smooth plating surface is ◯, and there is a slight convexity, but there is practically no problem. The plated surface with dross attached was marked with x.
[0025]
As is clear from the above results, the steel materials of 0.011% C steel to 0.13% C steel were also used in the examples in which the molten Zn—Mg—Al alloy was plated within the scope of the present invention. If present, it was confirmed that a smooth plating surface without unplating or dross adhesion was obtained.
[0026]
【The invention's effect】
As is apparent from the above explanation, according to the method of the present invention, the plating of the molten Zn—Mg—Al alloy, which has been difficult in the conventional one-step plating method, can be obtained from 0.011C% steel to 0.13% C. It has become possible to form a molten Zn—Mg—Al alloy plating film having a smooth and high corrosion resistance without causing non-plating and dross adhesion to steel materials in the range of steel. Moreover, there is an advantage that it can be applied as it is without changing the conventional hot dip Zn plating equipment and operation method, and a practical processing method such as cost reduction can be provided.

Claims (2)

質量%でMg:0.30〜0.70%、Al:0.15〜0.70%残部が実質的に亜鉛からなるZn−Mg−Al合金の溶融メッキ浴に、0.011%C鋼〜0.13C%鋼の鋼材を浸漬する一段階メッキ法において、脱脂、水洗、酸洗、水洗、フラックス処理、乾燥の一連の前処理を行う工程の中で、酸洗を、8〜15%濃度の塩酸と3〜5%濃度の硝酸からなる混酸によって行い、且つ、フラックス処理にフラックス成分が塩化アンモニウムと塩化亜鉛の混合物からなるE1組成でその水溶液濃度が250g/L〜500g/Lの範囲として用いて平滑なメッキ面を得ることを特徴とする溶融Zn−Mg−Al合金メッキ方法。In a mass plating Mg: 0.30 to 0.70%, Al: 0.15 to 0.70% , and a Zn-Mg-Al alloy hot dipping bath consisting essentially of zinc, 0.011% C In a one-step plating method in which steel of 0.13 C% steel is immersed, pickling is performed in a series of pretreatments of degreasing, water washing, pickling, water washing, flux treatment, and drying. % Of hydrochloric acid and 3 to 5% nitric acid mixed acid, and flux treatment is an E1 composition in which the flux component is a mixture of ammonium chloride and zinc chloride , and the aqueous solution concentration is 250 g / L to 500 g / L. A hot-dip Zn—Mg—Al alloy plating method characterized in that a smooth plating surface is obtained by using as a range . 請求項1に記載の混酸による酸洗に、30分以下の超音波を併用することを特徴とする溶融Zn−Mg−Al合金メッキ方法。The molten Zn-Mg-Al alloy plating method characterized by using ultrasonic waves for 30 minutes or less in combination with pickling with a mixed acid according to claim 1.
JP2000078840A 2000-03-21 2000-03-21 Hot-dip Zn-Mg-Al alloy plating method Expired - Fee Related JP4469055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078840A JP4469055B2 (en) 2000-03-21 2000-03-21 Hot-dip Zn-Mg-Al alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078840A JP4469055B2 (en) 2000-03-21 2000-03-21 Hot-dip Zn-Mg-Al alloy plating method

Publications (2)

Publication Number Publication Date
JP2001262307A JP2001262307A (en) 2001-09-26
JP4469055B2 true JP4469055B2 (en) 2010-05-26

Family

ID=18596191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078840A Expired - Fee Related JP4469055B2 (en) 2000-03-21 2000-03-21 Hot-dip Zn-Mg-Al alloy plating method

Country Status (1)

Country Link
JP (1) JP4469055B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564361B2 (en) * 2005-01-04 2010-10-20 新日本製鐵株式会社 Flux composition for hot dip Zn-Al-Mg alloy plating and method for producing hot dip Zn-Al-Mg alloy plating steel using the same
CN107142439B (en) * 2017-06-29 2019-03-29 十堰市协兴工贸股份有限公司 The processing method of process can be reduced after a kind of workpiece is zinc-plated

Also Published As

Publication number Publication date
JP2001262307A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
CN100540718C (en) Surface treated steel plate and manufacture method thereof
AU2007258462A2 (en) High-aluminum alloy for general galvanizing
JP3684135B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JPS60125360A (en) Zinc alloy hot-dipped steel material and its production and flux composition
JPWO2018181391A1 (en) Fused Al-based plated steel sheet and method for producing molten Al-based plated steel sheet
JP3080014B2 (en) Hot-dip plating method
KR102527548B1 (en) plated steel
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JPH06128758A (en) Method for galvanizing silicon-containing steel sheet
JPS6055591B2 (en) Manufacturing method of hot-dip zinc alloy plated steel sheet with excellent peeling resistance over time
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP3442524B2 (en) Stainless steel sheet for Zn plating and manufacturing method
JP2704045B2 (en) Surface-treated steel sheet with few plating defects and method for producing the same
JP3966670B2 (en) Method for producing hot-dip galvanized steel sheet
JPH0397840A (en) Alloying hot dip galvanized steel sheet
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JPH0711409A (en) Production of galvanized steel sheet
JPH05239606A (en) Galvanizing method for high tensile strength steel sheet
JP7290757B2 (en) Plated steel wire and its manufacturing method
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JPS63297577A (en) Surface structure of steel material strengthened in physical property and its production
JPH0860329A (en) Production of galvannealed steel sheet
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JP2982653B2 (en) High corrosion resistance Al-Zn alloy hot-dip coated steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R150 Certificate of patent or registration of utility model

Ref document number: 4469055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees