JP2011153326A - Hot-dip galvanization - Google Patents

Hot-dip galvanization Download PDF

Info

Publication number
JP2011153326A
JP2011153326A JP2010013849A JP2010013849A JP2011153326A JP 2011153326 A JP2011153326 A JP 2011153326A JP 2010013849 A JP2010013849 A JP 2010013849A JP 2010013849 A JP2010013849 A JP 2010013849A JP 2011153326 A JP2011153326 A JP 2011153326A
Authority
JP
Japan
Prior art keywords
mass
hot dip
dip galvanizing
less
galvanizing bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010013849A
Other languages
Japanese (ja)
Other versions
JP4497431B1 (en
Inventor
Yasunari Kiyokawa
安成 清川
Nobuyuki Mitsuyama
信行 光山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMAGATA GALVANIZING CO Ltd
Original Assignee
KOMAGATA GALVANIZING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMAGATA GALVANIZING CO Ltd filed Critical KOMAGATA GALVANIZING CO Ltd
Priority to JP2010013849A priority Critical patent/JP4497431B1/en
Application granted granted Critical
Publication of JP4497431B1 publication Critical patent/JP4497431B1/en
Publication of JP2011153326A publication Critical patent/JP2011153326A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-dip galvanizing bath which has fluidity almost similar to that of a hot-dip galvanizing bath obtained from a distilled zinc base-metal though its Pb content is controlled to 0.1% or less, in hot-dip galvanization for a precision component. <P>SOLUTION: The hot-dip galvanizing bath includes, by mass%, 0.1% or less Pb, 0.2-0.4% Bi, 0.2-0.3% Sn, 0.6% or less Bi plus Sn, and the balance Zn with unavoidable impurities. In some cases, 0.02 mass% or less Al is added. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、溶融亜鉛めっきに関し、特に、Pb含有量を抑えつつ流動性のよい溶融亜鉛めっき浴及びこれを用いた溶融亜鉛めっきによるめっき鋼材の製法に関する。   The present invention relates to hot dip galvanizing, and more particularly, to a hot dip galvanizing bath having good fluidity while suppressing the Pb content and a method for producing a plated steel material by hot dip galvanizing using the hot dip galvanizing bath.

従来、溶融亜鉛めっきには、蒸留亜鉛地金を溶かした溶融亜鉛めっき浴が用いられることが一般的であり、この地金は通常Pb成分を1〜2質量%程度含有している。一方、EUにおいて環境保護のために出されたRoHS指令において、Pbの含有量が1000ppm(0.1質量%)を超える電気・電子機器に関する規制が発表されて以来、溶融亜鉛めっきの分野においても、Pbの含有量を低減させる要求が高まっている。
しかし、溶融亜鉛めっきにおけるPbは、流動性を高め、たれ不具合を抑え、めっきを綺麗に仕上げる効果があるため、単純にPbの含有量を減らした場合、実用に耐えないものとなる。
このような課題に対して、Pbの同属元素であるBiを代替物として使用することが行われている。
下記特許文献1には、めっき外観及び耐食性に優れ、めっきのつき廻り性のよい溶融亜鉛めっきとして、Pbを0.1質量%以下とし、Biを0.5質量%〜7%質量%含有させた溶融亜鉛めっき浴を用いることが示され、また、Snを0.001〜0.1質量%及び/又はCuを0.01〜0.1質量%付加することが示されている。
下記特許文献2には不めっき発生を抑制するために、Pbを0.1質量%以下とし、Biを0.4〜1.5質量%含有する溶融亜鉛めっき浴を用いることが示されている。
下記特許文献3には、不めっき発生を抑制するために、Pbを0.1質量%以下とし、Sbを0.5質量%以上、Biを0.3質量%以上、かつ、SbとBiの合計で1.5質量%以下含有する溶融亜鉛めっき浴を用いることが示されている。
下記特許文献4には、不めっき発生を抑制するために、Alを0.5〜10重量%、Sn、Bi、Tl又はClを0.4〜5重量%含む溶融亜鉛めっき浴を用いることが示されている。
下記特許文献5には、流動性を確保するととともに、外観性、耐食性に優れた溶融亜鉛めっきとしてNiを0.01〜0.05重量%、Alを0.001〜0.01重量%、Biを0.01〜0.08重量%含有する溶融亜鉛めっき浴を用いることが示されている。
Conventionally, a hot dip galvanizing bath in which a distilled zinc bullion is dissolved is generally used for hot dip galvanization, and this bullion usually contains about 1 to 2% by mass of a Pb component. On the other hand, in the RoHS Directive issued for environmental protection in the EU, since regulations regarding electrical and electronic equipment with Pb content exceeding 1000 ppm (0.1% by mass) were announced, The demand to reduce the content of is increasing.
However, Pb in hot dip galvanizing has the effects of increasing fluidity, suppressing sagging defects, and finishing the plating neatly. Therefore, when the content of Pb is simply reduced, it is not practical.
For such a problem, Bi, which is an element belonging to Pb, is used as an alternative.
In Patent Document 1 below, Pb is 0.1 mass% or less and Bi is contained in an amount of 0.5 mass% to 7% by mass as a hot dip galvanizing having excellent plating appearance and corrosion resistance and good throwing power. In addition, it is shown that 0.001 to 0.1% by mass of Sn and / or 0.01 to 0.1% by mass of Cu is added.
The following Patent Document 2 shows that a hot dip galvanizing bath containing Pb of 0.1% by mass or less and Bi of 0.4 to 1.5% by mass is used to suppress the occurrence of non-plating. .
In Patent Document 3 below, in order to suppress the occurrence of non-plating, Pb is 0.1% by mass or less, Sb is 0.5% by mass or more, Bi is 0.3% by mass or more, and Sb and Bi. It is shown that a hot dip galvanizing bath containing 1.5% by mass or less in total is used.
In the following Patent Document 4, a hot dip galvanizing bath containing 0.5 to 10% by weight of Al and 0.4 to 5% by weight of Sn, Bi, Tl or Cl is used in order to suppress the occurrence of non-plating. It is shown.
In Patent Document 5 below, Ni is 0.01 to 0.05% by weight, Al is 0.001 to 0.01% by weight, Bi as hot dip galvanizing that ensures fluidity and is excellent in appearance and corrosion resistance. Has been shown to use a hot dip galvanizing bath containing 0.01-0.08 wt.

特許第4163232号公報Japanese Patent No. 4163232 特開2009−221604号公報JP 2009-221604 A 特開2009−221605号公報JP 2009-221605 A 特開平3−173754号公報JP-A-3-173754 特許第3781055号公報Japanese Patent No. 3781055

ところで、ネジなどの精密部品に対して、溶融亜鉛めっきをする場合、溶融亜鉛めっき浴にかなりの流動性がなければ、たれ切りをしてもネジ溝などに余分な亜鉛が残存し、不良品が生じる確率が高くなり、めっき製品の歩留まりが悪くなってしまうという問題がある。
このような問題を解決すべく、本願発明者らが種々試験をしたところ、精密部品に対する溶融亜鉛めっきでは、純粋な亜鉛にBiのみの混合した溶融亜鉛めっき浴では、蒸留亜鉛地金から得られた溶融亜鉛めっき浴と比較して十分な流動性を確保できなかった。さらに、本願発明者らは、Biを中心に、種々の金属を混合した溶融亜鉛めっき浴を試したところ、BiとSnを一定の割合で混合したときに、従来の蒸留亜鉛地金を溶かした溶融亜鉛めっき浴とほぼ同様の流動性を確保できることを見出した。
本発明は、この知見に基づき、精密部品に対する溶融亜鉛めっきにおいて、Pbの含有量を0.1%以下にしながら、蒸留亜鉛地金から得られる溶融亜鉛めっき浴とほぼ同様の流動性を得られるようにすることを課題とする。
By the way, when hot dip galvanizing is applied to precision parts such as screws, if the hot dip galvanizing bath does not have a significant fluidity, excess zinc remains in the screw grooves, etc., even if the hot dip galvanizing is performed. There is a problem that the probability of occurrence of the plating becomes high and the yield of the plated product is deteriorated.
In order to solve such problems, the present inventors have conducted various tests. In hot dip galvanizing for precision parts, a hot dip galvanizing bath in which only Bi is mixed with pure zinc is obtained from distilled zinc metal. As compared with the hot dip galvanizing bath, sufficient fluidity could not be secured. Furthermore, the inventors of the present application have tried a hot dip galvanizing bath in which various metals are mixed with a focus on Bi. When Bi and Sn are mixed at a certain ratio, the conventional distilled zinc ingot is dissolved. It has been found that fluidity almost the same as that of a hot dip galvanizing bath can be secured.
Based on this knowledge, the present invention can obtain fluidity almost the same as that of a hot dip galvanizing bath obtained from distilled zinc bullion while maintaining the Pb content to 0.1% or less in hot dip galvanizing for precision parts. The challenge is to do so.

上記課題を解決するために、本発明は次のような構成を有する。
請求項1に記載の発明は、Pbが0.1質量%以下、Biが0.2〜0.4質量%、Snが0.2〜0.3質量%、BiとSnとを合わせて0.6質量%以下であり、残部がZn及び不可避的不純物である溶融亜鉛めっき浴である。
請求項2に記載の発明は、Pbが0.1質量%以下、Alが0.02質量%以下、Biが0.2〜0.4質量%、Snが0.2〜0.3質量%、BiとSnとを合わせて0.6質量%以下であり、残部がZn及び不可避的不純物である溶融亜鉛めっき浴である。
請求項3に記載の発明は、請求項1又は2に記載の溶融亜鉛めっき浴を用いて鋼材表面に溶融亜鉛めっき被覆を形成する溶融亜鉛めっき鋼材の製造方法である。
In order to solve the above problems, the present invention has the following configuration.
According to the first aspect of the present invention, Pb is 0.1% by mass or less, Bi is 0.2 to 0.4% by mass, Sn is 0.2 to 0.3% by mass, and Bi and Sn are combined. It is a hot dip galvanizing bath with a balance of .6 mass% or less and the balance being Zn and inevitable impurities.
In the invention according to claim 2, Pb is 0.1 mass% or less, Al is 0.02 mass% or less, Bi is 0.2 to 0.4 mass%, and Sn is 0.2 to 0.3 mass%. , Bi and Sn together are 0.6% by mass or less, and the balance is a hot dip galvanizing bath containing Zn and inevitable impurities.
Invention of Claim 3 is a manufacturing method of the hot dip galvanized steel material which forms the hot dip galvanization coating on the steel material surface using the hot dip galvanization bath of Claim 1 or 2.

以上のような溶融亜鉛めっき浴を用いて、溶融亜鉛めっきを行うと、Pbの含有量を0.1%以下に抑えながら、蒸留亜鉛めっきから得られる溶融亜鉛めっき浴と遜色のない流動性を確保することができ、Pbの含有量を抑えた精密部品に対する溶融亜鉛めっき製品を歩留まりよく製造することができる。   When hot dip galvanization is performed using the hot dip galvanizing bath as described above, the fluidity comparable to that of the hot dip galvanizing bath obtained from distilled galvanizing is achieved while keeping the Pb content to 0.1% or less. The hot-dip galvanized product for precision parts with a reduced Pb content can be produced with high yield.

試験体の形状と測定点を示す正面図である。It is a front view which shows the shape and measurement point of a test body. 試験結果を示す表である。It is a table | surface which shows a test result. 試験結果を示すグラフである。It is a graph which shows a test result.

以下、本発明の実施の形態について、説明する。本発明は、溶融亜鉛めっきにおいて、溶融亜鉛めっき浴の成分を、Pbが0.1質量%以下、Biが0.2〜0.4質量%、Snが0.2〜0.3質量%、BiとSnとを合わせて0.6質量%以下であり、残部がZn及び不可避的不純物としたことに特徴がある。
これにより、ネジなどの精密部品に対して溶融亜鉛めっきを行った場合、ネジ溝などの亜鉛が残りやすい部分に対しても、蒸留亜鉛と遜色ない程度にたれ切りにより亜鉛を排出できる程度の流動性を確保することができる。
ここで、Pb成分は含まなくてもよいが、上記の範囲でPb成分が多いほど流動性は高くなる。
Hereinafter, embodiments of the present invention will be described. In the hot dip galvanizing, the present invention includes components of a hot dip galvanizing bath in which Pb is 0.1 mass% or less, Bi is 0.2 to 0.4 mass%, Sn is 0.2 to 0.3 mass%, The total amount of Bi and Sn is 0.6% by mass or less, with the balance being Zn and inevitable impurities.
As a result, when hot-dip galvanizing is applied to precision parts such as screws, even the parts where zinc is likely to remain, such as screw grooves, can flow out to the extent that it can be discharged to the extent that it is comparable to distilled zinc. Sex can be secured.
Here, the Pb component may not be included, but the fluidity increases as the Pb component increases in the above range.

また、従来の蒸留亜鉛を溶かした溶融亜鉛めっき浴において、0.02質量%以下程度のAlを加えると、めっき表面に付着する亜鉛酸化物等を減少させ、めっき表面の光沢を美しくすることが知られているが、上記成分を有する本発明に係る溶融亜鉛めっき浴に対し0.02質量%以下のAlを混合しても、流動性に影響を与えることなく、めっき表面を美しくすることができる。   In addition, in a conventional hot dip galvanizing bath in which distilled zinc is dissolved, adding 0.02% by mass or less of Al can reduce zinc oxide adhering to the plating surface and make the plating surface beautiful. Although it is known, even if 0.02 mass% or less of Al is mixed with the hot dip galvanizing bath according to the present invention having the above components, the plating surface can be made beautiful without affecting the fluidity. it can.

(流動性試験)
以下に、Bi、Snの混合割合による溶融亜鉛めっき浴の流動性試験の結果を示す。流動性試験は、電気亜鉛地金(Zn:99.99%以上)を溶融したものに、Bi、Snを成分比を変えて混合した溶融亜鉛めっき浴ごとに、図1に示す厚さ1mm、幅50mm、長さ100mmのSS400からなる試験体Tを吊り穴Hに紐を掛けて一定時間浸漬することにより行った。具体的には、試験体を浸漬後引き上げ、冷却した後に、上部15mm位置の5点の測定点aにおける膜厚Aと、下部15mmの5点の測定点bにおける膜厚Bとを膜圧計により測定し、膜圧Aの平均値に対する膜厚Bの平均値と膜厚Aの平均値との差の比率を厚さ比として算出した。この試験を同じ成分比を有する溶融亜鉛めっき浴ごとに3回行い、比率の平均値を算出した。詳細な試験条件は下記の通りである。
(試験条件)
浴温度:465±2℃
浸漬時間: 10秒
引き上げ速度: 0.6m/min
冷却:水冷 24℃
試験鋼材 SS400
ここで浸漬時間が10秒と短いのは、ネジなどの精密部品において、タレ切りが必要なのは合金層に関与しない上層部分であり、この部分の流動性を比較するためである。
また、ベンチマークとして、蒸留亜鉛地金1種(Zn:98.5%以上)を溶融した溶融亜鉛めっき浴に対しても同様の試験を行った。
(Fluidity test)
Below, the result of the fluidity | liquidity test of the hot dip galvanizing bath by the mixing ratio of Bi and Sn is shown. In the fluidity test, a thickness of 1 mm shown in FIG. 1 is obtained for each hot dip galvanizing bath in which Bi and Sn are mixed in a melted electrozinc ingot (Zn: 99.99% or more). A test body T made of SS400 having a width of 50 mm and a length of 100 mm was hung from a hanging hole H and dipped for a predetermined time. Specifically, after dipping and cooling the test specimen, the film thickness A at the five measurement points a at the upper 15 mm position and the film thickness B at the five measurement points b at the lower 15 mm position are measured with a film pressure gauge. The ratio of the difference between the average value of the film thickness B and the average value of the film thickness A to the average value of the film pressure A was calculated as the thickness ratio. This test was performed three times for each hot dip galvanizing bath having the same component ratio, and the average value of the ratios was calculated. Detailed test conditions are as follows.
(Test conditions)
Bath temperature: 465 ± 2 ° C
Immersion time: 10 seconds Lifting speed: 0.6 m / min
Cooling: Water-cooled 24 ° C
Test steel SS400
The reason why the immersion time is as short as 10 seconds is that in a precision part such as a screw, the sagging is necessary for the upper layer part not involved in the alloy layer, and the fluidity of this part is compared.
As a benchmark, a similar test was performed on a hot dip galvanizing bath in which one kind of distilled zinc metal (Zn: 98.5% or more) was melted.

試験結果を図2に示し、試験結果をグラフ化したものを図3に示す。なお、蒸留亜鉛地金から得られる溶融亜鉛めっき浴では、厚さ比は20.0%であった。図3において、蒸留亜鉛めっき浴の試験結果に比較的近いと考えられる16%を超えるものを抽出すると、図2の太線で囲まれた範囲に集中していることがわかる。また、結果からBiとSnの合計が多すぎるものも流動性には良い結果を与えないと推測される。
以上のことから、Biを0.2〜0.4質量%、Snを0.2〜0.3質量%とし、BiとSnの合計が0.6質量%を超えない範囲で、蒸留亜鉛地金から得られる溶融亜鉛めっきに近い流動性が確保できると考えられる。
実際に、この範囲の成分比の溶融亜鉛めっき浴にて、M10のネジにネジに対して溶融亜鉛めっきを施した場合、蒸留亜鉛めっき地金から得られる溶融亜鉛めっき浴と遜色のない、歩留まりを得ることができた。
また、上記範囲の成分比の溶融亜鉛めっき浴に0.01質量%程度のAlを混合したもので同様にM10のネジにネジに対して溶融亜鉛めっきを施した場合でも、蒸留亜鉛めっき地金から得られる溶融亜鉛めっき浴に0.01質量%程度のAlを混合したものと遜色のない歩留まりを得ることができた。
さらに、これらの溶融亜鉛めっき浴に0.1質量%以下のPbを加えた場合、流動性は変わらないか多少増加する傾向が見られる。
The test results are shown in FIG. 2, and the test results are graphed in FIG. In the hot dip galvanizing bath obtained from distilled zinc bullion, the thickness ratio was 20.0%. In FIG. 3, it is found that when more than 16% which is considered to be relatively close to the test result of the distilled galvanizing bath is extracted, it is concentrated in the range surrounded by the thick line in FIG. 2. Moreover, it is estimated from the result that the sum of Bi and Sn is not good for fluidity.
From the above, Bi is 0.2 to 0.4 mass%, Sn is 0.2 to 0.3 mass%, and the total of Bi and Sn does not exceed 0.6 mass%. It is considered that fluidity close to that of hot dip galvanization obtained from gold can be secured.
Actually, when hot dip galvanizing is applied to a screw of M10 screw in a hot dip galvanizing bath having a component ratio in this range, the yield is comparable to that of a hot dip galvanizing bath obtained from distilled galvanized metal. Could get.
Even when a hot dip galvanizing bath with a component ratio in the above range is mixed with about 0.01% by mass of Al and hot galvanizing is similarly applied to the M10 screw, the distilled galvanized metal A yield comparable to that obtained by mixing about 0.01% by mass of Al with the hot dip galvanizing bath obtained from No. 1 was obtained.
Furthermore, when 0.1 mass% or less of Pb is added to these hot dip galvanizing baths, the fluidity does not change or tends to increase somewhat.

Claims (3)

Pbが0.1質量%以下、Biが0.2〜0.4質量%、Snが0.2〜0.3質量%、BiとSnとを合わせて0.6質量%以下であり、残部がZn及び不可避的不純物である溶融亜鉛めっき浴。   Pb is 0.1% by mass or less, Bi is 0.2 to 0.4% by mass, Sn is 0.2 to 0.3% by mass, Bi and Sn are combined and 0.6% by mass or less, and the balance Is a hot dip galvanizing bath in which Zn and inevitable impurities are present. Pbが0.1質量%以下、Alが0.02質量%以下、Biが0.2〜0.4質量%、Snが0.2〜0.3質量%、BiとSnとを合わせて0.6質量%以下であり、残部がZn及び不可避的不純物である溶融亜鉛めっき浴。   Pb is 0.1 mass% or less, Al is 0.02 mass% or less, Bi is 0.2 to 0.4 mass%, Sn is 0.2 to 0.3 mass%, and Bi and Sn are combined to 0 A hot dip galvanizing bath with a balance of 6% by mass or less and the balance being Zn and inevitable impurities. 請求項1又は2に記載の溶融亜鉛めっき浴を用いて鋼材表面に溶融亜鉛めっき被覆を形成する溶融亜鉛めっき鋼材の製造方法。   A method for producing a hot dip galvanized steel material, wherein a hot dip galvanized coating is formed on the surface of the steel material using the hot dip galvanizing bath according to claim 1.
JP2010013849A 2010-01-26 2010-01-26 Hot dip galvanizing Active JP4497431B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013849A JP4497431B1 (en) 2010-01-26 2010-01-26 Hot dip galvanizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013849A JP4497431B1 (en) 2010-01-26 2010-01-26 Hot dip galvanizing

Publications (2)

Publication Number Publication Date
JP4497431B1 JP4497431B1 (en) 2010-07-07
JP2011153326A true JP2011153326A (en) 2011-08-11

Family

ID=42575650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013849A Active JP4497431B1 (en) 2010-01-26 2010-01-26 Hot dip galvanizing

Country Status (1)

Country Link
JP (1) JP4497431B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227678A (en) * 2013-05-16 2013-11-07 Nippon Steel & Sumitomo Metal Corp Hot dip galvanized steel tube and method for manufacturing the hot dip galvanized steel tube
CN103695712A (en) * 2013-11-22 2014-04-02 山东华彩新材料有限公司 Alloy for diluting molten zinc and melting method therefor
US9593796B2 (en) 2012-04-24 2017-03-14 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel pipe and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620154A (en) * 1979-07-28 1981-02-25 Nisshin Steel Co Ltd Manufacture of galvanized steel sheet having excellent surface appearance
JPH04154950A (en) * 1990-10-16 1992-05-27 Nippon Steel Corp Production of fe-zn alloy coated steel sheet
JPH11217660A (en) * 1998-01-30 1999-08-10 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production
JP2001525890A (en) * 1997-05-23 2001-12-11 エヌ.ヴェー.ユニオン ミニエル エス.アー. Alloys and methods for galvanizing steel
JP2004285387A (en) * 2003-03-20 2004-10-14 Nippon Steel Corp Hot-dip galvanized steel sheet superior in appearance, and manufacturing method therefor
WO2006025176A1 (en) * 2004-09-01 2006-03-09 Ck Metals Co., Ltd. Hot-dip galvanizing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620154A (en) * 1979-07-28 1981-02-25 Nisshin Steel Co Ltd Manufacture of galvanized steel sheet having excellent surface appearance
JPH04154950A (en) * 1990-10-16 1992-05-27 Nippon Steel Corp Production of fe-zn alloy coated steel sheet
JP2001525890A (en) * 1997-05-23 2001-12-11 エヌ.ヴェー.ユニオン ミニエル エス.アー. Alloys and methods for galvanizing steel
JPH11217660A (en) * 1998-01-30 1999-08-10 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production
JP2004285387A (en) * 2003-03-20 2004-10-14 Nippon Steel Corp Hot-dip galvanized steel sheet superior in appearance, and manufacturing method therefor
WO2006025176A1 (en) * 2004-09-01 2006-03-09 Ck Metals Co., Ltd. Hot-dip galvanizing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593796B2 (en) 2012-04-24 2017-03-14 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel pipe and method of manufacturing the same
JP2013227678A (en) * 2013-05-16 2013-11-07 Nippon Steel & Sumitomo Metal Corp Hot dip galvanized steel tube and method for manufacturing the hot dip galvanized steel tube
CN103695712A (en) * 2013-11-22 2014-04-02 山东华彩新材料有限公司 Alloy for diluting molten zinc and melting method therefor

Also Published As

Publication number Publication date
JP4497431B1 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP7359894B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same
JP5482914B2 (en) High corrosion resistance hot-dip galvanized steel sheet with excellent appearance uniformity and method for producing the same
EP2876182B1 (en) Hot dip zinc alloy plated steel sheet having excellent corrosion resistance and external surface and method for manufacturing same
WO2008056821A1 (en) HOT-DIP Zn-Al ALLOY COATED STEEL SHEET AND PROCESS FOR THE PRODUCTION THEREOF
KR20110088573A (en) Hot-dip zn-al-mg-si-cr alloy coated steel material with excellent corrosion resistance
JP5884200B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP4163232B2 (en) Hot-dip galvanized
KR101052697B1 (en) Hot dip galvanizing bath and galvanized iron products
JP4497431B1 (en) Hot dip galvanizing
KR20150073314A (en) HOT DIP Zn-BASED ALLOY COATING BATH COMPRISING CALCIUM OXIDE, HOT DIP Zn-BASED ALLOY COATED STEEL SHEET AND METHOD FOR PREPARING THE SAME
JP5672727B2 (en) Hot-dip galvanizing method with less environmental impact and hot-dip galvanized steel using the same
JP5871035B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP5879020B2 (en) Hot-dip galvanized steel pipe
JP4115572B2 (en) Zn-Al-Mg alloy for hot dipping with excellent corrosion resistance
JP2964678B2 (en) Zn-Al alloy plating method
JP5979186B2 (en) Hot-dip galvanizing flux, hot-dip galvanizing flux bath, and method for producing hot-dip galvanized steel
JP6468493B2 (en) High corrosion resistance plated steel material and method for producing the same
JP3009269B2 (en) Hot-dip zinc alloy plating coating
JP6065042B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
JP6131774B2 (en) Hot-dip galvanized steel material with excellent corrosion resistance and method for producing the same
JP5577272B2 (en) Hot-dip galvanized steel pipe
JP7290757B2 (en) Plated steel wire and its manufacturing method
KR20150074977A (en) HOT DIP Zn-BASED ALLOY COATING BATH AND HOT DIP Zn-BASED ALLOY COATED STEEL SHEET
JP2017190472A (en) Production method of alloyed galvanized steel sheet
JP2004250734A (en) COLORED Al PLATED STEEL

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4497431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250