JPH04154604A - Oxide superconductor and method and device for preparing the same - Google Patents

Oxide superconductor and method and device for preparing the same

Info

Publication number
JPH04154604A
JPH04154604A JP2275900A JP27590090A JPH04154604A JP H04154604 A JPH04154604 A JP H04154604A JP 2275900 A JP2275900 A JP 2275900A JP 27590090 A JP27590090 A JP 27590090A JP H04154604 A JPH04154604 A JP H04154604A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting layer
oxide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275900A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Taichi Yamaguchi
太一 山口
Akira Kagawa
香川 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2275900A priority Critical patent/JPH04154604A/en
Publication of JPH04154604A publication Critical patent/JPH04154604A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To permit to exhibit a high critical current density even in a high magnetic field by forming heterogeneous sections for dividing an oxide superconductor layer into plural superconductors along the current-flowing direction and orienting the C axis of the crystal of the oxide superconductor in the direction orthogonal with the current-flowing direction. CONSTITUTION:Continuous heterogeneous sections 8, e.g. crystal-non-oriented oxide superconductor layers or composite oxide layers having a different composition, are formed in a stripe or island state along the longitudinal direction of an oxide superconductor layer 7 disposed on a substrate 6 to divide the superconductor layer 7 into plural superconductor sections 7a. The superconductors 7a on the side of the heterogeneous sections 8 are crystallized and oriented so that the C shaft of the crystal is directed vertically on the upper surface of the superconductor 7a.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、高磁界中においても臨界電流特性が高い酸
化物超電導導体とその製造方法および寥造装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an oxide superconducting conductor that has high critical current characteristics even in a high magnetic field, a method for manufacturing the same, and an apparatus for manufacturing the same.

「従来の技術j 従来、スパッタリング法、蒸着法、レーザ蒸着法、CV
D法などの各種の薄膜形成方法によって単結晶基板上や
金属テープ上に酸化物超電導層を直接成膜したり、金属
テープ上にバッファ層を形成してから酸化物超電導層を
形成するなどの手段によって酸化物超電導導体を試作す
ることか行なわれている。
``Conventional technology j Conventional, sputtering method, vapor deposition method, laser vapor deposition method, CV
The oxide superconducting layer can be directly formed on a single crystal substrate or metal tape using various thin film formation methods such as the D method, or the oxide superconducting layer can be formed after forming a buffer layer on the metal tape. Attempts are being made to prototype oxide superconducting conductors.

ところで、酸化物超電導体jこあっては、結晶のa軸方
向とb軸方向には電気を流し易く、C軸方向には電気を
流し難いといった電気的異方性を有している。例えば、
第5図に示すように、Ba原子とY原子とCu原子とO
原子が結合して構成されるY rB a=c uso 
、−6なる組成の酸化物超電導体にあっては、結晶軸の
a軸方向とb軸方向に電流が流れ易く、C軸方向には流
れにくいというものである。従って前記碁打上に形成さ
れる酸化物超電導層は、基材上面に垂直にC軸が向くよ
うに配向され、酸化物超電導層の面方向に平行に電流を
流した時、より高い臨界電流特性が得られるものと考え
られている。
Incidentally, the oxide superconductor has electrical anisotropy such that it is easy to conduct electricity in the a-axis and b-axis directions of the crystal, but it is difficult to conduct electricity in the c-axis direction. for example,
As shown in Figure 5, Ba atoms, Y atoms, Cu atoms, and O
Y rB composed of atoms bonded a=c uso
In an oxide superconductor having a composition of , -6, current easily flows in the a-axis and b-axis directions of the crystal axes, and it is difficult to flow in the c-axis direction. Therefore, the oxide superconducting layer formed on the Go board is oriented so that the C axis is perpendicular to the top surface of the base material, and when a current is passed parallel to the surface direction of the oxide superconducting layer, the critical current property is higher. is considered to be obtained.

「発明か解決しようとする課題」 しかしながら、純粋な成分であって結晶配向性の良好な
酸化物超電導層を形成しようとすればするほど、酸化物
超電導層の磁界下における臨界電流特性は低下する傾向
がある。このように磁界下において臨界電流特性が低下
するのは、第6図に示すように、テープ状の基材lの上
面に酸化物超電導層2を形成してなる酸化物超電導導体
3においては、以下に説明する原因によるものであると
考えられる。
``Invention or problem to be solved'' However, the more an attempt is made to form an oxide superconducting layer with pure components and good crystal orientation, the worse the critical current characteristics of the oxide superconducting layer under a magnetic field. Tend. The reason for this decrease in critical current characteristics under a magnetic field is that in the oxide superconducting conductor 3 formed by forming the oxide superconducting layer 2 on the top surface of the tape-shaped base material l, as shown in FIG. This is thought to be due to the causes explained below.

まず、酸化物超電導層2の上面に垂直に磁界をかけ、酸
化物超電導層2の長平方向に電流を流すと、通電方向と
垂直にローレンツ力が働く。このローレンツ力により酸
化物超電導層2の内部で磁束が動いた場合、その速度に
よる電圧が発生し、臨界電流特性が低下してしまうわけ
である。ここで一般に、超電導状態において超電導体は
完全反磁性を示し、超電導体の内部に磁束を侵入させな
いものであるが、第2種超電導体にあっては、超電導体
の内部に磁束が侵入し、この侵入した磁束線の部分のみ
が常電導状態となり、その他の部分は完全反磁性の超電
導状態となることが知られている。従って、このように
超電導体に侵入した磁束線が前記ローレンツ力によって
移動すると、常電導部分が増加し、いずれは全体が常電
導状態に転移してしまうわけである。
First, when a magnetic field is applied perpendicularly to the upper surface of the oxide superconducting layer 2 and a current is passed in the longitudinal direction of the oxide superconducting layer 2, a Lorentz force acts perpendicularly to the current direction. When the magnetic flux moves inside the oxide superconducting layer 2 due to the Lorentz force, a voltage is generated due to the speed, and the critical current characteristics are deteriorated. Generally, in the superconducting state, a superconductor exhibits complete diamagnetism and does not allow magnetic flux to enter the inside of the superconductor, but in the case of type 2 superconductors, magnetic flux enters the inside of the superconductor, It is known that only the part of the magnetic flux line that enters becomes a normal conductive state, and the other part becomes a completely diamagnetic superconducting state. Therefore, when the magnetic flux lines that have entered the superconductor are moved by the Lorentz force, the normal conducting portion increases, and eventually the entire superconductor transitions to a normal conducting state.

このため従来、金属系あるいは合金系の超電導体にあっ
ては、超電導体の内部に磁束の動きを妨げる働きをする
ピンニングセンタを導入し、臨界電流特性を向上させる
ようにしている。このピンニングセンタとは、超電導体
の内部の不純物、異相部、粒界などの不均質点を示す。
For this reason, conventionally, in metal-based or alloy-based superconductors, a pinning center is introduced inside the superconductor to prevent the movement of magnetic flux in order to improve the critical current characteristics. This pinning center refers to a non-uniform point such as an impurity, a different phase part, or a grain boundary inside the superconductor.

以上のことから、前記構造の酸化物超電導導体3にあっ
ては、ピンニングセンタの導入により粒界電流特性の向
上対策が検討されている状況である。
In view of the above, in the oxide superconducting conductor 3 having the above structure, measures to improve the grain boundary current characteristics by introducing pinning centers are being considered.

本発明は、前記事情に鑑みてなされたもので、高磁界中
においても高臨界電流密度を発揮する酸化物超電導導体
を提供することと、前記酸化物超電導導体を製造する方
法を提供することと、前記酸化物超電導導体を製造する
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has two objects: to provide an oxide superconducting conductor that exhibits a high critical current density even in a high magnetic field, and to provide a method for manufacturing the oxide superconducting conductor. , an object of the present invention is to provide an apparatus for manufacturing the oxide superconducting conductor.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、
基材上に酸化物超電導層を形成してなる酸化物超電導導
体において、前記酸化物超電導層の内部に、酸化物超電
導層をその通電方向に沿う複数の酸化物超電導部に分割
する不均質部が形成され、各酸化物超電導部がその結晶
軸のC軸を通電方向に対して直角に向けるように結晶配
向されてなるものである。
"Means for solving the problem" In order to solve the problem, the invention described in claim 1 has the following features:
In an oxide superconducting conductor formed by forming an oxide superconducting layer on a base material, an inhomogeneous portion is provided inside the oxide superconducting layer to divide the oxide superconducting layer into a plurality of oxide superconducting portions along the current conduction direction. is formed, and the crystals of each oxide superconducting part are oriented so that the C axis of the crystal axis thereof is perpendicular to the current direction.

請求項2に記載した発明は前記課題を解決するために、
基材上に複数の酸化物超電導層を積層してなる酸化物超
電導導体において、前記複数の酸化物超電導層の各々が
それぞれの結晶軸のC軸を通電方向に直角に向けるよう
に結晶配向されてなるとともに、各酸化物超電導層の間
に、前記C軸配向された酸化物超電導層と異なる結晶配
向性を有する酸化物超電導部あるいは超電導特性を発揮
しない材料からなる不均質部が形成されてなるものであ
る。
In order to solve the above problem, the invention described in claim 2 has the following features:
In an oxide superconducting conductor formed by laminating a plurality of oxide superconducting layers on a base material, each of the plurality of oxide superconducting layers is crystal oriented such that the C axis of each crystal axis is oriented at right angles to the current direction. At the same time, an oxide superconducting part having a crystal orientation different from that of the C-axis oriented oxide superconducting layer or a heterogeneous part made of a material that does not exhibit superconducting properties is formed between each oxide superconducting layer. It is what it is.

請求項3に記載した発明は前記課題を解決するために、
リアクタの内部に設置した基材上に酸化物超電導体の原
料ガスを導入し、原料ガスの反応物を基材上に堆積させ
ることにより基材上に酸化物超電導層を形成して酸化物
超電導導体を製造する方法において、 目的の組成の酸化物超電導層を形成するための混合比の
原料ガスと、目的の組成からずれた酸化物超電導層ある
いは絶縁層などの不均質部を形成するための混合比の原
料ガスとを、隣接状態で基板上に導入し、基材上に目的
の組成の酸化物超電導層と不均質部とを交互jこ並列状
態で形成するものである。
In order to solve the above problem, the invention described in claim 3 has the following features:
The raw material gas for the oxide superconductor is introduced onto the base material installed inside the reactor, and the reactants of the raw material gas are deposited on the base material to form an oxide superconducting layer on the base material, resulting in oxide superconductivity. In a method for manufacturing a conductor, a raw material gas with a mixing ratio to form an oxide superconducting layer with a desired composition and a raw material gas with a mixing ratio to form an oxide superconducting layer having a composition deviated from the desired composition or a heterogeneous part such as an insulating layer is used. In this method, raw material gases having a mixed ratio are introduced onto a substrate in an adjacent state, and oxide superconducting layers and heterogeneous portions having a desired composition are formed on the substrate in an alternating and parallel state.

請求項4に記載した発明は前記課題を解決するために、
基材上に酸化物超電導層を積層してなる酸化物超電導導
体の製造方法において、基材上に結晶配向させた酸化物
超電導層を形成する工程と、この酸化物超電導層と結晶
配向性の異なる酸化物超電導層あるいは組成比の異なる
絶縁層などの不均質部を形成する工程と、この不均質部
上に前記酸化物超電導層と同等の酸化物超電導層を形成
する工程とを繰り返し行って酸化物超電導導体を形成す
るしのである。
In order to solve the above problem, the invention described in claim 4 has the following features:
A method for producing an oxide superconducting conductor in which an oxide superconducting layer is laminated on a base material includes a step of forming an oxide superconducting layer with crystal orientation on the base material, and a step of forming an oxide superconducting layer with crystal orientation on the base material. A step of forming a heterogeneous portion such as a different oxide superconducting layer or an insulating layer having a different composition ratio, and a step of forming an oxide superconducting layer equivalent to the oxide superconducting layer on the heterogeneous portion are repeatedly performed. This is the material that forms oxide superconducting conductors.

請求項5に記載し1こ発明は前記課題を解決するために
、内部に基材を収納可能なリアクタと、このリアクタの
内部に酸素ガスを導入するための導入部と、この導入部
の両側に整列状態で配置された複数の導入管と、リアク
タに設けられたガス排出部とを具備してなり、前記複数
の導入管が、目的の組成の酸化物超電導層を形成するた
めの混合比の原料ガスを導入するための主導入管と、目
的の組成からずれた酸化物超電導層あるいは絶縁層など
の不均質層を形成するための混合比の原料ガスを導入す
るたぬの副導入管とからなるものである。
In order to solve the above problem, the present invention includes a reactor capable of storing a base material therein, an introduction part for introducing oxygen gas into the inside of this reactor, and both sides of this introduction part. The reactor includes a plurality of introduction pipes arranged in an aligned state, and a gas discharge part provided in the reactor, and the plurality of introduction pipes are arranged at a mixing ratio for forming an oxide superconducting layer having a desired composition. A main introduction pipe for introducing raw material gas, and a secondary introduction pipe for introducing raw material gas at a mixing ratio to form a heterogeneous layer such as an oxide superconducting layer or an insulating layer with a composition deviated from the desired composition. It consists of.

「作用 − 本発明に係る酸化物超電導導体にあっては、酸化物超電
導層の内部にa層方向に直交するような不均質部を導入
しているので、酸化物超電導層に磁界が作用している中
で通電した場合、酸化物超電導層の内部に侵入した磁束
線がローレンツ力により動かされようとしても前記不均
質部がこれを抑制する。従って超電導導体の臨界電流密
度が向上する。
``Effect - In the oxide superconducting conductor according to the present invention, a heterogeneous portion perpendicular to the a-layer direction is introduced inside the oxide superconducting layer, so that a magnetic field acts on the oxide superconducting layer. When current is applied in the oxide superconducting layer, even if the magnetic flux lines that have entered the inside of the oxide superconducting layer try to be moved by the Lorentz force, the heterogeneous portion suppresses this movement.Therefore, the critical current density of the superconducting conductor is improved.

また、目的の組成の酸化物超電導層を生成させるf二め
混合比の原料ガスとそれと異なる混合比の原料ガスを隣
接状態でリアクタ内の基材上に導入するので、基材上に
は目的の組成の酸化物超電導層とその他の組成の不均一
部とが整列状態で形成される。
In addition, since the raw material gas with the second mixing ratio and the raw material gas with a different mixing ratio are introduced onto the base material in the reactor in an adjacent state, there is no The oxide superconducting layer having the composition and the other non-uniform composition are formed in an aligned state.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明の一実施例の酸化物超電導導体を示すも
ので、この実施例の酸化物超電導導体5は、テープ状の
基材6上に酸化物超電導層7を形成してなるものである
。前記酸化物超電導層7は、酸化物超電導層7の長手方
向に沿って筋状の複数(第1図では3本)の不均質部分
8を形成することにより複数の超電導部7aに分割され
てなるものである。
FIG. 1 shows an oxide superconducting conductor according to an embodiment of the present invention. The oxide superconducting conductor 5 of this embodiment is formed by forming an oxide superconducting layer 7 on a tape-shaped base material 6. It is. The oxide superconducting layer 7 is divided into a plurality of superconducting portions 7a by forming a plurality of (three in FIG. 1) streak-like heterogeneous portions 8 along the longitudinal direction of the oxide superconducting layer 7. It is what it is.

この不均質部8とは、結晶配向していない酸化物超電導
体の層、目的の酸化物超電導体の組成からずれた組成の
複合酸化物層、あるいは、不純物層などからなる部分で
ある。不均質部8の何方の超電導部7aは、その結晶の
C軸を超電導部7aの上面に垂直に向けるように結晶配
向されたものである。ここで酸化物超電導体の結晶にお
いてa、b軸方向には電流を流し易く、C軸方向には電
流を流しにくいことが知られている。従って前述のよう
にC軸配向させた場合、テープ状の基材5の長手方向に
沿って電流か流れ易くなる。
The heterogeneous portion 8 is a portion consisting of a layer of an oxide superconductor whose crystals are not oriented, a composite oxide layer with a composition deviating from the composition of the intended oxide superconductor, or an impurity layer. Both superconducting parts 7a of the heterogeneous part 8 are crystal-oriented so that the C-axis of the crystal is perpendicular to the upper surface of the superconducting part 7a. It is known that in the crystal of an oxide superconductor, it is easy to pass current in the a- and b-axis directions, but it is difficult to pass current in the c-axis direction. Therefore, when the C-axis is oriented as described above, it becomes easier for current to flow along the longitudinal direction of the tape-shaped base material 5.

また、不均質部8は、層状や筋状になっているものに限
らず、島状に不連続なものでも良く、連続型、間欠型の
いずれの形状でも差し支えない。
Further, the heterogeneous portion 8 is not limited to a layered or striped shape, but may be discontinuous like an island, and may be either continuous or intermittent.

更に、不均質部8は酸化物超電導層7内において平面千
鳥状に分散配置されていても良い。
Furthermore, the heterogeneous portions 8 may be distributed in a staggered manner in the oxide superconducting layer 7.

前記基材6は、S rT io s、MgOなどのよう
に酸化物超電導体に対して結晶整合性に優れ、熱膨張係
数が近い材料を用いることが好ましい。基材6として金
属基材を用いる場合は、金属基村上に前記結晶整合性に
優れ、酸化物超電導体に熱膨張係数が近い材料のバッフ
ァ層を形成したものを用いることが好ましい。このバッ
ファ層は、数分の一μ重から数μ釦程度の厚さのもので
差し支えない。
For the base material 6, it is preferable to use a material such as SrTios, MgO, etc., which has excellent crystal consistency and a coefficient of thermal expansion similar to that of the oxide superconductor. When a metal base material is used as the base material 6, it is preferable to use a buffer layer made of a material having excellent crystal consistency and having a coefficient of thermal expansion close to that of the oxide superconductor. This buffer layer may have a thickness ranging from a fraction of a micrometer to several micrometers thick.

また、バッファ層を形成する手段は、CVD法、物理蒸
着法、溶射法などのように広く知られている成膜手段の
いずれを用いても良い。
Furthermore, the buffer layer may be formed using any of the widely known film forming methods such as CVD, physical vapor deposition, thermal spraying, and the like.

酸化物超電導層7は、Y −B a−Cu−0系、Bi
S r−Ca−Cu−0系、T I−B a−Ca−C
u−0系、TIS r−V−0系などに代表される酸化
物超電導体からなる層であれば、いずれのものを用いて
も良い。
The oxide superconducting layer 7 is Y-Ba-Cu-0 based, Bi
S r-Ca-Cu-0 system, T I-B a-Ca-C
Any layer may be used as long as it is made of an oxide superconductor such as u-0 type, TIS r-V-0 type, etc.

また、ここで用いる酸化物超電導層7は前記のものに限
らず、公知の組成の酸化物超電導体の層で差し支えない
。更に、酸化物超電導層7を形成する手段は、CVD法
、レーザ蒸着法、スパッタリング法などのように公知の
成膜手段のいずれを用いても良い。
Further, the oxide superconducting layer 7 used here is not limited to the one described above, and may be a layer of an oxide superconductor having a known composition. Further, the oxide superconducting layer 7 may be formed by any known film forming method such as CVD, laser evaporation, sputtering, or the like.

酸化物超電導li7を形成する一手段として、レーザ蒸
着装置について説明するならば、レーザ蒸着装置とは、
真空排気可能なチャンバの内部にターゲットを収納し、
このターゲットに対向させてチャンバ内に基材を設け、
前記ターゲットにレーザビームを照射することでターゲ
ットの構成粒子を叩き出すかえぐり取って基材上Iこ堆
積させる装置である。また、CVD装置とは、酸化物超
電導体を構成する複数の元素の化合物のガスを真空排気
可能なリアクタに導入し、リアクタの内部で化合物ガス
を反応させ、基材上に酸化物超電導層を形成する装置で
あって、リアクタの内部にプラズマ炎などを発生させて
化合物ガスを反応さけても良い。
To explain a laser evaporation device as a means of forming oxide superconducting li7, the laser evaporation device is:
The target is stored inside a chamber that can be evacuated,
A base material is provided in the chamber facing this target,
This device irradiates the target with a laser beam to knock out and scoop out constituent particles of the target and deposit them on a substrate. In addition, a CVD device is a system in which a gas of a compound of multiple elements constituting an oxide superconductor is introduced into a reactor that can be evacuated, and the compound gas is reacted inside the reactor to form an oxide superconducting layer on a base material. In this apparatus, a plasma flame or the like may be generated inside the reactor to avoid reaction of the compound gas.

第1図に示す構造の酸化物超電導導体5にあっては、酸
化物超電導層7がC軸配向し、基材6の長手方向と幅方
向に電流が流れ5いので、臨界電流密度を高くすること
ができる。また、酸化物超電導層7は不均質部8によっ
て複数に仕切られているので、磁界が作用した場合、仕
切られた各酸化物超電導部にローレンツ力により磁束の
移動現象が生じても、不均質部8によって磁束の移動が
妨げられる結果、酸化物超電導導体5の臨界電流密度を
向上させることができる効果かある。 従って本発明に
よれば、磁界中においても臨界電流密度の高い酸化物超
電導導体5を提供することができる効果がある。
In the oxide superconducting conductor 5 having the structure shown in FIG. 1, the oxide superconducting layer 7 is C-axis oriented and current flows in the longitudinal direction and the width direction of the base material 6, so that the critical current density is high. can do. Furthermore, since the oxide superconducting layer 7 is partitioned into a plurality of parts by the inhomogeneous parts 8, even if a magnetic flux movement phenomenon occurs due to the Lorentz force in each partitioned oxide superconducting part when a magnetic field is applied, the inhomogeneous parts 8 As a result of the movement of magnetic flux being obstructed by the portion 8, there is an effect that the critical current density of the oxide superconducting conductor 5 can be improved. Therefore, according to the present invention, an oxide superconducting conductor 5 having a high critical current density even in a magnetic field can be provided.

前記酸化物超電導層7において、不均質部8か形成され
ている部分の面積は、酸化物超電導層7全体の10%以
下か好ましい。この不均質部8の面積が大きすぎると、
酸化物超電導導体5全体としての臨界電流密度の向上に
寄与しない。
In the oxide superconducting layer 7, the area of the portion where the non-uniform portion 8 is formed is preferably 10% or less of the entire oxide superconducting layer 7. If the area of this heterogeneous portion 8 is too large,
This does not contribute to improving the critical current density of the oxide superconducting conductor 5 as a whole.

また、不均質部8の厚さあるいは幅を0.5μm以下と
することか好ましい。
Further, it is preferable that the thickness or width of the non-uniform portion 8 is 0.5 μm or less.

第2図は本発明の第2実施例の酸化物超電導導体を示す
もので、この例の酸化物超電導導体10は、テープ状の
基材11の上面に複数の酸化物超電導層12を積層して
なる構造である。そして、各酸化物超電導層12の間に
は酸化物超電導層12とは結晶配向性の異なる酸化物超
電導層あるいは絶縁層などの不均質層13が介在されて
いる。
FIG. 2 shows an oxide superconducting conductor according to a second embodiment of the present invention. The oxide superconducting conductor 10 of this example has a plurality of oxide superconducting layers 12 laminated on the upper surface of a tape-shaped base material 11. The structure is as follows. A heterogeneous layer 13 such as an oxide superconducting layer or an insulating layer having a crystal orientation different from that of the oxide superconducting layer 12 is interposed between each of the oxide superconducting layers 12 .

前記基材11と酸化物超電導層12は先に説明した実施
例の基材6と同等のものが用いられる。
The base material 11 and the oxide superconducting layer 12 are the same as the base material 6 of the previously described embodiment.

従って酸化物超電導層12はそのC軸を酸化物超電導層
12の上面に垂直に向けるように結晶配向されている。
Therefore, the crystals of the oxide superconducting layer 12 are oriented such that the C axis thereof is perpendicular to the upper surface of the oxide superconducting layer 12.

不均質層13は、前記結晶配向性とは異なる結晶配向性
の酸化物超電導層、あるいは、酸化物超電導層と近似組
成の複合酸化物などの絶縁層などから構成される。前記
不均質層13は完全に連続した層状のものでも良いが、
酸化物超電導層12゜12の間に島状に点在した微細な
酸化物超電導部が分散した構造のものでも良い。この構
造の場合は、不均質層13の間欠部分を介して上下の酸
化物超電導層12.12が部分的に接合された構造とな
る。
The heterogeneous layer 13 is composed of an oxide superconducting layer having a crystal orientation different from the crystal orientation described above, or an insulating layer such as a composite oxide having a composition similar to that of the oxide superconducting layer. The heterogeneous layer 13 may be a completely continuous layer, but
It may also have a structure in which fine oxide superconducting portions are dispersed in island-like shapes between the oxide superconducting layers 12°12. In this structure, the upper and lower oxide superconducting layers 12.12 are partially joined to each other through the intermittent portions of the heterogeneous layer 13.

第3図は、第1図に示す構造の酸化物超電導導体5をC
VD法を適用して製造する場合に用いて好適な製造装置
の一実施例を示すものである。
FIG. 3 shows an oxide superconducting conductor 5 having the structure shown in FIG.
This is an example of a manufacturing apparatus suitable for use in manufacturing by applying the VD method.

第3図において、符号20は一縦型のリアクタであって
、このリアクタ20は、上部容器21と下部容器22と
を細′ぐくびれた連結部23を介して一体化してなるも
のである。このリアクタ20の下部容器22の向上部に
は、ヒータ加熱機構を備えた基板ホルダ24が設けられ
ていてその上に基板6が設置されるようになっている。
In FIG. 3, reference numeral 20 denotes a vertical reactor, and this reactor 20 is formed by integrating an upper container 21 and a lower container 22 via a narrow and constricted connecting portion 23. A substrate holder 24 equipped with a heater heating mechanism is provided in the upper part of the lower container 22 of this reactor 20, and the substrate 6 is placed on the substrate holder 24.

また、上部容器21の天井部中央には、酸素ガスやキャ
リアガスの導入部26が形成されるとともに、導入部2
6の両側には、複数の導入管が設けられている。これら
の導入管は、主導入管27と副導入管28とからなり、
主導入管27と副導入管28は交互に整列状態で配贋さ
れている。なお、前記主導入管27と副導入管28はそ
れぞれ別のバブラなどの気相源に接続されて各自別個に
所望の原料ガスをキャリアガスとともに導入できるよう
になっている。
Further, an introduction part 26 for oxygen gas and carrier gas is formed in the center of the ceiling of the upper container 21, and an introduction part 26 is formed at the center of the ceiling part of the upper container 21.
A plurality of introduction tubes are provided on both sides of 6. These introduction pipes consist of a main introduction pipe 27 and a sub introduction pipe 28,
The main introduction pipe 27 and the sub introduction pipe 28 are arranged alternately in an aligned state. The main introduction pipe 27 and the sub introduction pipe 28 are each connected to a gas phase source such as a separate bubbler, so that desired source gases can be separately introduced together with the carrier gas.

更に、リアクタ20の下部容器22の底部には排気部2
9が形成されていてリアクタ20の内部の原料ガスを排
出できるようになっている。また、リアクタ20の周囲
部には、加熱装R30が設置されており、基板ホルダ2
4に備えられたヒータとの併用も可能である。
Furthermore, an exhaust part 2 is provided at the bottom of the lower container 22 of the reactor 20.
9 is formed so that the raw material gas inside the reactor 20 can be discharged. Further, a heating device R30 is installed around the reactor 20, and the substrate holder 2
It is also possible to use it together with the heater provided in 4.

前記主導入管27は、目的の組成の酸化物超電導層を生
成させるための原料ガスをリアクタ20内に導入するた
めのもので、副導入管28は前記組成とは異なる組成の
原料ガスをリアクタ20内に導入するた約のものであっ
て、基板26にできるたけ近付けることら可能である。
The main introduction pipe 27 is for introducing into the reactor 20 a raw material gas for producing an oxide superconducting layer having a target composition, and the sub introduction pipe 28 is for introducing a raw material gas having a composition different from the above-mentioned composition into the reactor 20. 20 and can be placed as close to the substrate 26 as possible.

リアクタ20に導入する原料ガスとして例えば、Y −
B a−Cu−0系の酸化物超電導層を形成する場合、
各構成元素を含む気相源から発生させた原料ガスを用い
る。
For example, Y −
When forming a B a-Cu-0 based oxide superconducting layer,
A raw material gas generated from a gas phase source containing each constituent element is used.

より具体的には各気相源として、前記各元素のアセチル
アセトン化合物、ヘキサフルオロアセチルアセトン化合
物などのジケトン化合物、シクロペンタジェニル化合物
などの粉末を使用する。また、BaソースとしてBa−
ビス−2,2,6,6テトラメチルー35−ヘプタンジ
オナート「略称B a(D P M )yJ、Ba−ビ
ス−1,1,1,2,2−ペンタフルオo−6.6−シ
メチルー3.5−へブタンジオン「略称B a(P P
 M)tJ’−Ba−ヒス−1,1,1,5,5,5−
ヘキサフルオロ−2,4−ヘプタンジオン「略称B a
(HF A )Jなどのβ−ジケトンキレート錯体など
が使用される。
More specifically, as each gas phase source, powders of diketone compounds such as acetylacetone compounds and hexafluoroacetylacetone compounds, and cyclopentadienyl compounds of each of the above-mentioned elements are used. In addition, as a Ba source, Ba-
Bis-2,2,6,6-tetramethyl-35-heptanedionate "Abbreviation: Ba(DPM)yJ, Ba-bis-1,1,1,2,2-pentafluoro-6.6-dimethyl-3. 5-hebutanedione “abbreviation B a (P P
M) tJ'-Ba-His-1,1,1,5,5,5-
Hexafluoro-2,4-heptanedione "abbreviation B a
β-diketone chelate complexes such as (HF A )J are used.

次に前記装置を用いて第1図に示す構造の酸化物超電導
導体5を製造する場合について説明する。
Next, a case will be described in which the oxide superconducting conductor 5 having the structure shown in FIG. 1 is manufactured using the above-mentioned apparatus.

第3図に示す装置を用いて酸化物超電導導体5を製造す
るには、加熱装置30を作動させてリアクタ20の内部
を加熱するとともに、各主導入管27と副導入管28を
介してリアクタ20内にそれぞれ各気相源からキャリア
ガスとともに原料ガスを送り、導入部26を介して酸素
ガスをリアクタ20内に送る。
To manufacture the oxide superconducting conductor 5 using the apparatus shown in FIG. 3, the heating device 30 is operated to heat the inside of the reactor 20, and the reactor A raw material gas is sent into the reactor 20 from each gas phase source together with a carrier gas, and oxygen gas is sent into the reactor 20 through the introduction part 26.

これらの原料ガスの内、目的の組成の酸化物超電導層を
形成するための混合比とした原料ガスを主導入管27か
ら、また、前記混合比から外れた組成の原料ガスを副導
入管28からそれぞれキャリアガスとともにリアクタ2
0内に導入すると、混合比の異なる原料ガスは互いに隣
接状態で基板6に向って流動し、基板6上で反応して酸
化物超電導層7が形成される。この場合、基板6に向っ
て流動している原料ガスは目的の混合比のものと、その
混合比からずれたものであるので、基板6上には、目的
の組成の結晶配向性の良好な超電導部7aと不均質部8
とが隣接状態で形成されることになる。
Among these raw material gases, raw material gases with a mixing ratio for forming an oxide superconducting layer with a desired composition are passed through the main introduction pipe 27, and raw material gases with a composition deviating from the above-mentioned mixing ratio are passed through the sub introduction pipe 28. reactor 2 with carrier gas from
0, the raw material gases having different mixing ratios flow adjacent to each other toward the substrate 6, react on the substrate 6, and form the oxide superconducting layer 7. In this case, the raw material gases flowing toward the substrate 6 have a mixture ratio of the target mixture and a mixture ratio that deviates from the target mixture ratio, so there is a mixture of raw material gases with good crystal orientation of the target composition on the substrate 6. Superconducting part 7a and heterogeneous part 8
are formed adjacent to each other.

以上のようにすることで第1図に示す構造の不均質部8
を導入した酸化物超電導導体5を製造することができる
By doing the above, the heterogeneous portion 8 of the structure shown in FIG.
It is possible to manufacture an oxide superconducting conductor 5 into which .

前記構造の装置にあっては、リアクタ20の連結部23
によって原料ガスの流れが絞られるので、基板6に対し
て原料ガスが確実に層状に吹き付けられる結果、第1図
に示すような超電導部7aと不均質部8と7二区分けさ
れた酸化物超電導層7が形成される。
In the device having the above structure, the connecting portion 23 of the reactor 20
Since the flow of the source gas is constricted, the source gas is reliably blown onto the substrate 6 in a layered manner, resulting in an oxide superconductor divided into two sections, a superconducting portion 7a and a heterogeneous portion 8 and 7, as shown in FIG. Layer 7 is formed.

なお、前記構造の製造装置jこおいて、主導入管27の
径と副導入管28の径は10:1程度が好ましく、主導
入管27からの流量と副導入管28からの流量との比は
10:1程度が好ましい。
In the manufacturing apparatus j having the above structure, the diameter of the main introduction pipe 27 and the diameter of the sub introduction pipe 28 are preferably about 10:1, and the ratio of the flow rate from the main introduction pipe 27 to the flow rate from the sub introduction pipe 28 is preferably about 10:1. The ratio is preferably about 10:1.

U製造例1 」 Y:Ba:Ca= 1 :3 :3の組成比を有するタ
ーゲットを用い、RFマグネトロンスパッタリング装置
を用いてS rT io s製の基板上に酸化物超電導
層を成膜した。この際、スパッタリング装置のチャンバ
内の真空度を1 、OX I O−”Torrに設定し
、酸素流量を60cc鱈こ固定して基板加熱用のヒータ
をオン、オフしてC軸配向の酸化物超電導層とこの酸化
物超電導層と近似組成の絶縁層とを交互に積層させた。
U Production Example 1 "An oxide superconducting layer was formed on a substrate made of SrTios using an RF magnetron sputtering device using a target having a composition ratio of Y:Ba:Ca=1:3:3. At this time, the degree of vacuum in the chamber of the sputtering apparatus was set to 1, OX IO-'' Torr, the oxygen flow rate was fixed at 60 cc, and the heater for heating the substrate was turned on and off to remove the C-axis oriented oxide. A superconducting layer and an insulating layer having a composition similar to this oxide superconducting layer were alternately laminated.

加熱ヒータをオンにした状態では、基板を750℃に加
熱し、加熱ヒータをオフとした状態では実質的に基板を
300〜400℃程度に保持している。加熱ヒータをオ
ンとした状態を2時間、加熱ヒータをオフとした状態を
30分間、繰り返し、合計5回積層した。
When the heater is turned on, the substrate is heated to 750°C, and when the heater is turned off, the substrate is substantially maintained at about 300 to 400°C. Lamination was carried out a total of 5 times by repeating a state in which the heater was on for 2 hours and a state in which the heater was off for 30 minutes.

その結果、厚さ0.2μmのC軸配向した酸化物超電導
層と、厚さ0.05μ門でC軸配向が見られず、前記酸
化物超電導層と近似組成の絶縁層とを合計5層形成する
ことができ、合計的1μ−の厚さの酸化物超電導層が得
られた。
As a result, a 0.2 μm thick oxide superconducting layer with C-axis orientation, and a 0.05 μm thick insulating layer with a composition similar to that of the oxide superconducting layer, with no C-axis orientation observed, were found to have a total of 5 layers. An oxide superconducting layer with a total thickness of 1 μm was obtained.

得られた酸化物超電導層の臨界電流特性を測定するため
に、酸化物超電導層の上面に平行に磁界をかけ、それと
直角に電流を流して臨界電流値を測定した。また、通常
のスパッタリング法により厚さ1μmのC軸配向した酸
化物超電導層を形成し、前記と同等の方向jこ磁界をか
けつつ電流を流して臨界電流値を測定した。それらの結
果を第1表に記載した。
In order to measure the critical current characteristics of the obtained oxide superconducting layer, a magnetic field was applied parallel to the top surface of the oxide superconducting layer, a current was passed perpendicular to the magnetic field, and the critical current value was measured. Further, a C-axis oriented oxide superconducting layer having a thickness of 1 μm was formed by a conventional sputtering method, and the critical current value was measured by passing a current while applying a magnetic field in the same direction as described above. The results are listed in Table 1.

第1表から明らかなように本発明方法に係る酸化物超電
導導体は、磁場をかけて通電した場合に臨界電流密度の
低下割合が少なく、優秀な特性を発揮することが明らか
になった。従って、複数の酸化物超電導層の間に介在さ
せた絶#層がピンニングセンタの役割を果たしているこ
とが判明した。
As is clear from Table 1, the oxide superconducting conductor according to the method of the present invention exhibits excellent characteristics with a small decrease in critical current density when energized by applying a magnetic field. Therefore, it has been found that the insulating layer interposed between the plurality of oxide superconducting layers plays the role of a pinning center.

ただし、電子顕微鏡で絶縁層の存在を観察してみると、
C軸配向した酸化物超電導層の間にはさんだ絶縁層は、
均一に存在するのではなく、島状に存在し、約172は
存在しないことか判明しfこ。
However, when observing the presence of an insulating layer with an electron microscope,
The insulating layer sandwiched between the C-axis oriented oxide superconducting layers is
It was found that they do not exist uniformly, but exist in islands, and about 172 are not present.

この結果から、1層目(最上層)の酸化物超電導層の表
面部分に通電してもC軸配向させた各酸化物超電導層j
こ充分に電流が流れており、しかも各酸化物超電導層間
にピンニングセンタも存在する結果となり、前記の良好
な結果が得られたものと思われる。
From this result, it was found that each oxide superconducting layer with C-axis orientation even when the surface portion of the first (top) oxide superconducting layer is energized.
It is believed that the above-mentioned good results were obtained because a sufficient current was flowing and there were also pinning centers between the oxide superconducting layers.

U製造PI 2 J B i:S r:Ca:Cu= 2 :2 :1 :2
の組成比にするため、Bi:Sr:Ca:Cu= I 
、5 :3 :3 :2Jこ合うようDPM系原料を配
合し、A原料とした。又、配合組成をB i:S r:
Ca:Cu= 2 :3 :2 :2とした原料をB原
料とした。前記A原料とB原料をそれぞれ独立に第3図
に示す導入管でチャンバに導入し、導入部からの0.ガ
ス流路に従って基板に向けて流し込んだ。A原料用導入
管を6本、日原料導入管を5本、交互に配置した第3図
に示す構成の製造装置を用い、チャンバ内部を真空引き
して成膜を行った。
U production PI 2 J B i:S r:Ca:Cu= 2:2:1:2
In order to make the composition ratio Bi:Sr:Ca:Cu=I
, 5:3:3:2J were blended with DPM-based raw materials to obtain raw material A. In addition, the blending composition is B i:S r:
A raw material with Ca:Cu=2:3:2:2 was used as a B raw material. The raw material A and the raw material B are each independently introduced into the chamber through the introduction pipes shown in FIG. It was poured into the substrate along the gas flow path. Using a manufacturing apparatus having the configuration shown in FIG. 3 in which six A raw material introduction pipes and five Japanese raw material introduction pipes were arranged alternately, the inside of the chamber was evacuated to form a film.

なお、基板と導入管との間の部分では、チャンバの胴径
を絞り、基板上面全部に反応ガスか十分に当たるように
なっている。また、基板として上面を(100)面とし
たMgO製の基板を用い、基板を850℃に加熱して成
膜した。その結果、基板40上に超電導部41と不均質
部42とが横向きに整列した第4図に示す構造の酸化物
超電導層を生成させることができた。
Note that the diameter of the chamber is narrowed in the area between the substrate and the introduction tube so that the entire upper surface of the substrate is sufficiently exposed to the reaction gas. Further, a MgO substrate having a (100) top surface was used as a substrate, and the substrate was heated to 850° C. to form a film. As a result, an oxide superconducting layer having the structure shown in FIG. 4 in which the superconducting portions 41 and the heterogeneous portions 42 were laterally aligned could be produced on the substrate 40.

第4図に示す構成の酸化物超電導層の境界部分ははっき
りしていないが、成分分析をしてみると、C軸配向しh
酸化物超電導部は幅約1nmであってほぼBi:Sr:
Ca:Cu=2:2:1:2の組成で臨界温度Tc=8
0Kを示すが、配向していない不均質部は、Srが欠如
した部分であり、超電導性を示さない絶縁部分であった
。この不均質部は約1μm〜0.01μmの幅を示し、
層状に成膜されていた。この不均質部分のSME/ED
S分析を行った結果、不均質部分は0゜5〜0.1μm
の幅をとっているが、部分的には0.1μm以下の幅と
なっている可能性も見られた。しかもこの不均質部は、
配向された酸化物超電導部と平行に生成されているが、
所々不生成部分や幅変動部分があり、不規則となってい
る。
Although the boundaries of the oxide superconducting layer with the structure shown in Figure 4 are not clear, component analysis shows that the C-axis is oriented h.
The oxide superconducting portion has a width of approximately 1 nm and is approximately Bi:Sr:
Critical temperature Tc=8 with a composition of Ca:Cu=2:2:1:2
The non-uniform, non-oriented portion that showed 0K was a portion lacking Sr and was an insulating portion that did not exhibit superconductivity. This heterogeneous portion exhibits a width of about 1 μm to 0.01 μm,
The film was formed in layers. SME/ED of this heterogeneous part
As a result of S analysis, the heterogeneous portion was 0°5 to 0.1 μm.
However, there was a possibility that the width was less than 0.1 μm in some parts. Moreover, this heterogeneous part is
Although it is generated parallel to the oriented oxide superconducting part,
There are some ungenerated parts and width varying parts, making it irregular.

前記のように形成された酸化物超電導導体に垂直jこ磁
界をかけて液体窒素中で臨界電流特性を測定した結果を
第2表に示す。
Table 2 shows the results of measuring critical current characteristics in liquid nitrogen by applying a perpendicular magnetic field to the oxide superconducting conductor formed as described above.

第2表 第2表から明らかなように、本発明の酸化物超電導導体
は、磁界jこ強いものであった。
As is clear from Table 2, the oxide superconducting conductor of the present invention had a strong magnetic field.

「発明の効果」 以上説明したように本発明の酸化物超電導導体は、酸化
物超電導層の内部に不均質部を設けているので、磁界が
作用している中で通電した場合、不均質部でローレンツ
力による磁束線の移動が抑制される結果、臨界電流密度
を向上させることができる効果がある。そして、このよ
うな優れた特性は、基材上に不均質部を介して層状に酸
化物超電導層を積層した構造のものであっても、基材上
に形成した酸化物超電導層内?こ不均質部を形成した構
造のものであっても同様に得ることができる。
"Effects of the Invention" As explained above, the oxide superconducting conductor of the present invention has a non-uniform part inside the oxide superconducting layer, so when current is applied in the presence of a magnetic field, the non-uniform part As a result of suppressing the movement of magnetic flux lines due to the Lorentz force, the critical current density can be improved. And, even if such excellent properties are obtained by laminating oxide superconducting layers in a layered manner on a base material with inhomogeneous portions interposed therebetween, do they occur within the oxide superconducting layer formed on the base material? A structure in which a heterogeneous portion is formed can also be obtained in the same manner.

また、目的の組成の酸化物超電導層を得るための原料ガ
スをリアクタ内に送る主導入管とその組成からずれた原
料ガスを導入する副導入管とを備えた装置で基材上に成
膜するならば、ctiI!l配向した酸化物超電導部と
不均質部とが隣接状態で配列された酸化物超電導層を形
成することができる。
In addition, a film is formed on the substrate using an apparatus equipped with a main introduction pipe that sends the raw material gas into the reactor to obtain an oxide superconducting layer with the desired composition, and a sub-induction pipe that introduces the raw material gas whose composition is different from that one. If you do, ctiI! It is possible to form an oxide superconducting layer in which l-oriented oxide superconducting portions and inhomogeneous portions are arranged adjacent to each other.

更に、基材上に酸化物超電導層を積層する場合に酸化物
超電導層を形成してから不均質部を形成し、再び酸化物
超電導層を形成する操作を繰り返すことで、臨界電流密
度が高く、その特性か高磁界中であっても低下しない積
層構造の酸化物超電導導体を製造することができる。
Furthermore, when stacking an oxide superconducting layer on a base material, by repeating the steps of forming the oxide superconducting layer, forming the heterogeneous portion, and forming the oxide superconducting layer again, the critical current density can be increased. , it is possible to produce an oxide superconducting conductor with a laminated structure whose properties do not deteriorate even in high magnetic fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は本発
明の第2実施例の斜視図、第3図は酸化物超電導導体の
製造装置の一例を示す構成図、第4図は実施例で製造さ
れた酸化物超電導導体の斜視図、第5図はY −B a
−Cu−0系の酸化物超電導体の結晶構造を示す原子配
列図、第6図は従来の酸化物超電導導体の斜視図である
。 5.10・・・酸化物超電導導体、6,11.40・・
基材、7.12・・酸化物超電導層、7g、41・・・
超電導部、8.42・・・不均質部、13・・不均質層
、20・・・リアクタ、21・・・上部容器、22・・
・下部容器、26・・・導入部、27・・主導入管、2
8・・・副導入管、29・・・排出部、30・・・加熱
装置。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view of a second embodiment of the invention, FIG. 3 is a configuration diagram showing an example of an oxide superconductor manufacturing apparatus, and FIG. The figure is a perspective view of the oxide superconducting conductor manufactured in the example, and FIG.
An atomic arrangement diagram showing the crystal structure of a -Cu-0 based oxide superconductor, and FIG. 6 is a perspective view of a conventional oxide superconductor. 5.10...Oxide superconductor, 6,11.40...
Base material, 7.12...Oxide superconducting layer, 7g, 41...
Superconducting part, 8.42... Heterogeneous part, 13... Heterogeneous layer, 20... Reactor, 21... Upper container, 22...
・Lower container, 26...Introduction part, 27...Main introduction pipe, 2
8...Sub-introduction pipe, 29...Discharge part, 30...Heating device.

Claims (5)

【特許請求の範囲】[Claims] (1)基材上に酸化物超電導層を形成してなる酸化物超
電導導体において、前記酸化物超電導層の内部に、酸化
物超電導層をその通電方向に沿う複数の酸化物超電導部
に分割する不均質部が形成され、各酸化物超電導部がそ
の結晶軸のc軸を通電方向に対して直角に向けるように
結晶配向されてなることを特徴とする酸化物超電導導体
(1) In an oxide superconducting conductor formed by forming an oxide superconducting layer on a base material, the oxide superconducting layer is divided into a plurality of oxide superconducting portions along the current conduction direction inside the oxide superconducting layer. An oxide superconducting conductor characterized in that a heterogeneous portion is formed and each oxide superconducting portion is crystal oriented such that the c-axis of its crystal axis is oriented at right angles to the current direction.
(2)基材上に複数の酸化物超電導層を積層してなる酸
化物超電導導体において、前記複数の酸化物超電導層の
各々がそれぞれの結晶軸のc軸を通電方向に直角に向け
るように結晶配向されてなるとともに、各酸化物超電導
層の間に、前記c軸配向された酸化物超電導層と異なる
結晶配向性を有する酸化物超電導部あるいは超電導特性
を発揮しない材料からなる不均質部が形成されてなるこ
とを特徴とする酸化物超電導導体。
(2) In an oxide superconducting conductor formed by laminating a plurality of oxide superconducting layers on a base material, each of the plurality of oxide superconducting layers has its crystal axis c-axis oriented at right angles to the current direction. In addition, between each oxide superconducting layer, there is an oxide superconducting part having a crystal orientation different from that of the c-axis oriented oxide superconducting layer, or a heterogeneous part made of a material that does not exhibit superconducting properties. An oxide superconducting conductor characterized by being formed.
(3)リアクタの内部に設置した基材上に酸化物超電導
体の原料ガスを導入し、原料ガスの反応物を基材上に堆
積させることにより基材上に酸化物超電導層を形成して
酸化物超電導導体を製造する方法において、 目的の組成の酸化物超電導層を形成するための混合比の
原料ガスと、目的の組成からずれた酸化物超電導層ある
いは絶縁層などの不均質部を形成するための混合比の原
料ガスとを、隣接状態で基板上に導入し、基材上に目的
の組成の酸化物超電導層と不均質部とを交互に並列状態
で形成することを特徴とする酸化物超電導導体の製造方
法。
(3) Introducing the raw material gas of the oxide superconductor onto the base material installed inside the reactor, and forming the oxide superconducting layer on the base material by depositing the reactants of the raw material gas on the base material. In a method for manufacturing an oxide superconducting conductor, a raw material gas is mixed at a mixing ratio to form an oxide superconducting layer with a desired composition, and a heterogeneous portion such as an oxide superconducting layer or an insulating layer having a composition deviated from the desired composition is formed. The method is characterized by introducing raw material gases in a mixing ratio to achieve the desired composition onto the substrate in an adjacent state, and forming an oxide superconducting layer having a desired composition and a heterogeneous portion on the base material in an alternating and parallel state. Method for manufacturing oxide superconducting conductor.
(4)基材上に酸化物超電導層を積層してなる酸化物超
電導導体の製造方法において、基材上に結晶配向させた
酸化物超電導層を形成する工程と、この酸化物超電導層
と結晶配向性の異なる酸化物超電導層あるいは組成比の
異なる絶縁層などの不均質部を形成する工程と、この不
均質部上に前記酸化物超電導層と同等の酸化物超電導層
を形成する工程とを繰り返し行って酸化物超電導導体を
形成することを特徴とする酸化物超電導導体の製造方法
(4) A method for producing an oxide superconducting conductor formed by laminating an oxide superconducting layer on a base material, which includes a step of forming a crystal-oriented oxide superconducting layer on the base material, and combining the oxide superconducting layer and crystals. A step of forming a heterogeneous portion such as an oxide superconducting layer with different orientation or an insulating layer with a different composition ratio, and a step of forming an oxide superconducting layer equivalent to the oxide superconducting layer on this heterogeneous portion. A method for producing an oxide superconducting conductor, the method comprising repeatedly performing the steps to form an oxide superconducting conductor.
(5)内部に基材を収納可能なリアクタと、このリアク
タの内部に酸素ガスを導入するための導入部と、この導
入部の両側に整列状態で配置された複数の導入管と、リ
アクタに設けられたガス排出部とを具備してなり、前記
複数の導入管が、目的の組成の酸化物超電導層を形成す
るための混合比の原料ガスを導入するための主導入管と
、目的の組成からずれた酸化物超電導層あるいは絶縁層
などの不均質層を形成するための混合比の原料ガスを導
入するための副導入管とからなることを特徴とする酸化
物超電導導体の製造装置。
(5) A reactor capable of storing a base material inside, an introduction part for introducing oxygen gas into the inside of this reactor, a plurality of introduction pipes arranged in an array on both sides of this introduction part, and a reactor. the plurality of introduction pipes include a main introduction pipe for introducing raw material gas at a mixing ratio for forming an oxide superconducting layer having a desired composition; An apparatus for manufacturing an oxide superconducting conductor, comprising a sub-introduction pipe for introducing raw material gases at a mixing ratio for forming a heterogeneous layer such as an oxide superconducting layer or an insulating layer having a mismatched composition.
JP2275900A 1990-10-15 1990-10-15 Oxide superconductor and method and device for preparing the same Pending JPH04154604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275900A JPH04154604A (en) 1990-10-15 1990-10-15 Oxide superconductor and method and device for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275900A JPH04154604A (en) 1990-10-15 1990-10-15 Oxide superconductor and method and device for preparing the same

Publications (1)

Publication Number Publication Date
JPH04154604A true JPH04154604A (en) 1992-05-27

Family

ID=17562004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275900A Pending JPH04154604A (en) 1990-10-15 1990-10-15 Oxide superconductor and method and device for preparing the same

Country Status (1)

Country Link
JP (1) JPH04154604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079350A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency High critical current superconductive element
JP2005079351A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Inplane rotation high critical current superconductive wiring of crystallographic axis
JP2010251006A (en) * 2009-04-13 2010-11-04 Sumitomo Electric Ind Ltd Superconductive wire, and method for manufacturing superconductive wire
JP2012204190A (en) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The Oxide superconducting thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079350A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency High critical current superconductive element
JP2005079351A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Inplane rotation high critical current superconductive wiring of crystallographic axis
JP4523249B2 (en) * 2003-08-29 2010-08-11 独立行政法人科学技術振興機構 In-plane rotating high critical current superconducting wiring of crystal axis
JP4571789B2 (en) * 2003-08-29 2010-10-27 独立行政法人科学技術振興機構 High critical current superconducting element
JP2010251006A (en) * 2009-04-13 2010-11-04 Sumitomo Electric Ind Ltd Superconductive wire, and method for manufacturing superconductive wire
JP2012204190A (en) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The Oxide superconducting thin film

Similar Documents

Publication Publication Date Title
US4916114A (en) Method for producing a layer-like composition of oxide-ceramic superconducting material
Bozovic et al. Atomic-layer engineering of cuprate superconductors
JPH08502629A (en) High temperature Josephson junction and method
JPH04154604A (en) Oxide superconductor and method and device for preparing the same
JPH10507590A (en) Multilayer composite and method of manufacture
JP2970676B2 (en) Growth method of oxide crystal thin film
JPS63242532A (en) Super conductor and its manufacture
JPH04132611A (en) Superconductor
EP0487421B1 (en) Process for preparing a thin film of Bi-type oxide superconductor
JPH0393110A (en) Superconducting wire-rod
EP0504804A1 (en) Bi system copper oxide superconducting thin film and method of forming the same
JP2668532B2 (en) Preparation method of superconducting thin film
JPH04130679A (en) Superconducting junction
JPH07206437A (en) Superconductor and its production
JP2813287B2 (en) Superconducting wire
JP2529347B2 (en) Preparation method of superconducting thin film
JPH057027A (en) Oxide superconducting thin film and manufacture thereof and superconducting tunnel junction and manufacture thereof
JPH03105807A (en) Laminate membrane of oxide superconductor and oxide magnetic substance
JP2519337B2 (en) Substrate material for producing oxide superconductor and method for producing oxide superconductor
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPS63279515A (en) Superconductor structure
DiMeo Jr Deposition and properties of bismuth strontium calcium copper oxide superconducting thin films
JPS63248013A (en) Manufacture of superconductive composite oxide thin film
JPH0417217A (en) Oxides superconducting film and manufacture thereof