JPH04150512A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH04150512A
JPH04150512A JP27492890A JP27492890A JPH04150512A JP H04150512 A JPH04150512 A JP H04150512A JP 27492890 A JP27492890 A JP 27492890A JP 27492890 A JP27492890 A JP 27492890A JP H04150512 A JPH04150512 A JP H04150512A
Authority
JP
Japan
Prior art keywords
comb
thin film
acoustic wave
surface acoustic
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27492890A
Other languages
Japanese (ja)
Other versions
JPH0758876B2 (en
Inventor
Hiroshi Ohashi
寛 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2274928A priority Critical patent/JPH0758876B2/en
Publication of JPH04150512A publication Critical patent/JPH04150512A/en
Publication of JPH0758876B2 publication Critical patent/JPH0758876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To prevent discharge breakdown in the course of manufacturing work by connecting and covering every opposite combs of a comb line electrode with the semi-insulating thin film of DC resistance 10<3>OMEGA to 10<9>OMEGA. CONSTITUTION:Every opposite combs of the comb line electrodes 2a, 2b and 3a, 3b formed on a piezoelectric base board 1 are connected and covered with the semi-insulating thin film 11 of the DC resistance 10<3>OMEGA to 10<9>OMEGA. Namely, the comb line electrodes 2a and 2b and the comb line electrodes 3a and 3b are connected to the semi-insulating thin film 11, and the DC resistance between the electrodes becomes small. Accordingly since static electricity is never accumulated on the piezoelectric base board 1 by mechanical friction or temperature change to encounter during a working process such as the connection of wire or the welding and sealing of a cap, etc., a surface acoustic wave element can be prevented from being discharge-broken because of discharge between the electrodes. Besides, since the charge of the surface of the piezoelectric base board is neutralized by the semi-insulating thin film, and dust in air is not attracted, the surface acoustic wave element becomes easy to manufacture.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば通信機器用のフィルタ回路や共振器回
路として使用するのに適した表面弾性波素子に関するも
のである。
The present invention relates to a surface acoustic wave element suitable for use as a filter circuit or a resonator circuit for communication equipment, for example.

【従来の技術】[Conventional technology]

圧電体に電圧を印加して生ずる表面弾性波を利用する素
子として表面弾性波素子が知られている。 第4図には、従来の表面弾性波素子本体の外観図が示し
である。この図に示すように、表面弾性波素子lOは、
圧電基板1上に櫛型電極2aと2b及び櫛型電極3aと
3bが形成されている。 各櫛型電極2aはパッド部4aにつながっており、各櫛
型電極2bはパッド部4bに、各櫛型電極3aはパッド
部5aに、各櫛型電極3bはパッド部5bに夫々つなが
っている。パッド部4aは外部電極6aに接続され、パ
ッド部4bは外部電極6bに、パッド部5aは外部電極
7aに、パッド部5bは外部電極7bに接続している。 第5図は櫛型電極2aと2b及びパッド部4aと4bの
拡大正面図であり、櫛型電極3aと3b及びパッド部5
aと5bも同じような形状をしている。第6図には櫛型
電極2aと2bの断面図が示しである。櫛型電極3aと
3bの断面も同じような形状をしている。櫛型電極2a
の各ピッチと櫛型電極2bの各ピッチは夫々対向し、櫛
型電極3aの各ピッチと櫛型電極3bの各ピッチも夫々
対向している。横型電極2aと2bおよび櫛型電極3a
と3bは通常アルミニニウム金属薄膜で、厚みが100
0人〜5000人程度、電極ピッチは1μm〜10μm
程度に形成する。 この表面弾性波素子10で櫛型電極の一対、例えば櫛型
電極2aと2b間に外部電極6aと6bを通じて高周波
信号が入力すると、電極ピッチに対応した周期で圧電基
板1の表面に機械的歪が生ずる。この機械的歪は表面波
として圧電基板1の表面を伝わり、もう一方の対の櫛型
電極3aと3bまで到達する。櫛型電極3aと3bでは
この機械的な歪から起電力が生じ、電気信号として検出
できる。このとき櫛型電極2aと2bおよび櫛型電極3
aと3bのピッチに一致しない人力周波数の信号は多数
の電極ピッチで互いに打消されて伝達されず、電極ピッ
チに一致した周波数信号のみが伝達される。 上記した表面弾性波素子はフィルタ回路や共振器回路と
して使用される。表面弾性波素子を回路部品として完成
させるには、表面弾性波素子を金属性ベースに貼りつけ
たり、櫛型電極のパッドを外部接続端子にワイヤで接続
する(ワイヤボンディング)の作業や、表面弾性波素子
にキャップを被せてその周辺部を溶接封止するといった
作業が必要である。 表面弾性波素子は圧電基板を使用しているため、このよ
うな作業工程中に遭遇する機械的な摩擦や温度変化によ
り静電気を生ずることがある。 このとき櫛型電極の電極ピッチが非常に狭いため、電極
間で放電し、表面弾性波素子が放電破壊してしまうこと
があった。また、圧電基板表面の帯電により空気中のご
みを吸着しやすいので、製品に欠陥を生ずることがあっ
た。
A surface acoustic wave element is known as an element that utilizes surface acoustic waves generated by applying a voltage to a piezoelectric material. FIG. 4 shows an external view of a conventional surface acoustic wave element main body. As shown in this figure, the surface acoustic wave element IO is
On a piezoelectric substrate 1, comb-shaped electrodes 2a and 2b and comb-shaped electrodes 3a and 3b are formed. Each comb-shaped electrode 2a is connected to a pad part 4a, each comb-shaped electrode 2b is connected to a pad part 4b, each comb-shaped electrode 3a is connected to a pad part 5a, and each comb-shaped electrode 3b is connected to a pad part 5b. . The pad portion 4a is connected to the external electrode 6a, the pad portion 4b is connected to the external electrode 6b, the pad portion 5a is connected to the external electrode 7a, and the pad portion 5b is connected to the external electrode 7b. FIG. 5 is an enlarged front view of the comb-shaped electrodes 2a and 2b and the pad portions 4a and 4b.
A and 5b also have similar shapes. FIG. 6 shows a cross-sectional view of the comb-shaped electrodes 2a and 2b. The cross sections of the comb-shaped electrodes 3a and 3b also have similar shapes. Comb-shaped electrode 2a
Each pitch of the comb-shaped electrode 2b and each pitch of the comb-shaped electrode 2b are opposed to each other, and each pitch of the comb-shaped electrode 3a and each pitch of the comb-shaped electrode 3b are also opposed to each other. Horizontal electrodes 2a and 2b and comb-shaped electrode 3a
and 3b are usually aluminum metal thin films with a thickness of 100 mm.
0 to 5000 people, electrode pitch 1μm to 10μm
Form to a certain degree. In this surface acoustic wave element 10, when a high frequency signal is input between a pair of comb-shaped electrodes, for example, comb-shaped electrodes 2a and 2b, through external electrodes 6a and 6b, mechanical strain is generated on the surface of the piezoelectric substrate 1 at a period corresponding to the electrode pitch. occurs. This mechanical strain is transmitted as a surface wave on the surface of the piezoelectric substrate 1 and reaches the other pair of comb-shaped electrodes 3a and 3b. This mechanical strain generates an electromotive force in the comb-shaped electrodes 3a and 3b, which can be detected as an electrical signal. At this time, the comb-shaped electrodes 2a and 2b and the comb-shaped electrode 3
Signals with human frequencies that do not match the pitches of a and 3b are canceled by each other at a large number of electrode pitches and are not transmitted, and only frequency signals that match the electrode pitches are transmitted. The surface acoustic wave device described above is used as a filter circuit or a resonator circuit. To complete a surface acoustic wave device as a circuit component, it is necessary to attach the surface acoustic wave device to a metal base, connect the comb-shaped electrode pads to external connection terminals with wires (wire bonding), and perform surface acoustic wave It is necessary to cover the element with a cap and seal the surrounding area by welding. Because surface acoustic wave devices use piezoelectric substrates, static electricity can be generated due to mechanical friction and temperature changes encountered during these operations. At this time, since the electrode pitch of the comb-shaped electrodes is very narrow, discharge may occur between the electrodes, and the surface acoustic wave element may be destroyed by discharge. In addition, since the surface of the piezoelectric substrate is electrically charged, it tends to attract dust in the air, resulting in defects in the product.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、従来の表面弾性波素子がもつ上記のような不
都合を解消するためになされたもので、製作作業工程中
に放電破壊してしまうことがない表面弾性波素子を提供
するものである。
The present invention was made in order to eliminate the above-mentioned disadvantages of conventional surface acoustic wave devices, and provides a surface acoustic wave device that will not be destroyed by electrical discharge during the manufacturing process. .

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための本発明を適用した表面弾性波
素子は、実施例に対応する第1図および第2図に示すよ
うに、圧電基板1上に形成された櫛型電極2aと2bお
よび3aと3bの対向する各欄が、直流抵抗10’Ω〜
to”Ωの半絶縁性薄膜11により接続被覆されている
。 また、半絶縁性薄膜11の比抵抗は10’Ωc11〜1
01ΩC−程度であることが好ましい。
A surface acoustic wave device to which the present invention is applied to solve the above problems is as shown in FIGS. Each column 3a and 3b facing each other has a DC resistance of 10'Ω~
The connection is covered by a semi-insulating thin film 11 with a resistance of 10'Ωc11 to 10'Ω.
It is preferable that the resistance is about 0.01ΩC-.

【作用】[Effect]

本発明の表面弾性波素子は、櫛型電極2aと2bおよび
3aと3bが半絶縁性薄膜11と接続することにより、
電極間の直流抵抗が小さくなる。半絶縁性薄膜11の比
抵抗値は、薄膜に加わる電界に依存するが5例えば圧電
基板lの帯電により放電する電界強度2 V / C@
では、約10”0cmとなる。第1図に示すように、一
対の電極2a−2bの電極間隔なd、電極長さをβ、電
極本数をnとし、電極の上部に半絶縁性薄l111をt
の厚さに形成したとき、対向する各欄の直流抵抗Rは、
次式(1)により近似的に求められる。 i R:88 ρ ・□・ □   ・−・・−(1)tj
     n 前記の電界強度2V/amの場合、 p ==10’ 
Qcw+、d = 1 u+、t = 100+1人、
  A = l as、  n = 11100とする
とR= 10’Ωとなり、半絶縁性薄膜を使用しないと
きの電極の直流抵抗R> 10”Ωよりも6桁小さくな
る。従って、ワイア9の接続およびキャップ14の溶接
封止などの作業工程中に遭遇する機械的な摩擦や温度変
化によって静電気が圧電基板1上にたまることがないの
で、電極間で放電して表面弾性波素子が放電破壊するこ
とを防止できる。 また、圧電基板表面の帯電は半絶縁性薄膜によって中和
されるため、空気中のごみも吸着しないので製造しやす
い。
In the surface acoustic wave device of the present invention, the comb-shaped electrodes 2a and 2b and 3a and 3b are connected to the semi-insulating thin film 11.
DC resistance between electrodes becomes smaller. The specific resistance value of the semi-insulating thin film 11 depends on the electric field applied to the thin film.
As shown in Fig. 1, the distance between the pair of electrodes 2a and 2b is d, the electrode length is β, the number of electrodes is n, and a semi-insulating thin l111 is placed on top of the electrodes. t
When formed to a thickness of , the DC resistance R of each opposing column is
It can be approximately determined by the following equation (1). i R:88 ρ ・□・ □ ・−・・−(1)tj
n In the case of the electric field strength 2V/am, p ==10'
Qcw+, d = 1 u+, t = 100+1 person,
If A = l as, n = 11100, then R = 10'Ω, which is 6 orders of magnitude smaller than the DC resistance of the electrode R >10'Ω when no semi-insulating thin film is used. Therefore, the connection of wire 9 and the cap Since static electricity does not accumulate on the piezoelectric substrate 1 due to mechanical friction or temperature changes encountered during work processes such as welding and sealing in step 14, it is possible to prevent electrical discharge between the electrodes and damage to the surface acoustic wave element. In addition, since the electrostatic charge on the surface of the piezoelectric substrate is neutralized by the semi-insulating thin film, it does not attract dust in the air, making it easy to manufacture.

【実施例】【Example】

以下、本発明の実施例を図面により詳細に説明する。 !1図に示すように、表面弾性波素子10は。 圧電基板l上に横型電極2aと2bおよび3aと3bを
形成しである。各櫛型電極2aはパッド部4aにつなが
っており、各櫛型電極2bはパッド部4bに、各櫛型電
極3aはパッド部5aに、各櫛型電極3bはパッド部5
bに夫々つながっている。パッド部4aは外部電極6a
に接続され、パッド部4bは外部電極6bに、パッド部
5aは外部電極7aに、パッド部5bは外部電極7bに
接続している。櫛型電極2aと2bおよびパッド部4a
と4b、櫛型電極3aと3bおよびパッド部5aと5b
の拡大形状は第5図のとおりである。第2図に示しであ
るように、櫛型電極2aと2bの表面を半絶縁性薄膜1
1であるシリコン窒化膜で被覆してあり、その比抵抗は
10’Ωcm〜109ΩC園程度である。櫛型電極3a
と3bの表面も同様に、比抵抗が104Ωccm−10
”Ωcmであるシリコン窒化膜で被覆しである。 櫛型電極2aと2bおよび3aと3bは、以下のような
リングラフのパターン形成法により作成される。先ず圧
電基板1にアルミニュウム薄膜を真空蒸着法又はスパッ
タ法で約3000人形成する。 この上にフォトレジストを約1μmの厚さに均一にコー
ティングする。そこに横型電極のパターンを有するフォ
トマスクを介して、紫外線光で照射する0次いでフォト
レジストを現像すれば、櫛型電極のパターンを残した光
照射部分が除去されアルミニュウム薄膜の表面が露出さ
れる。これをリン酸/酢酸/硝酸の混合液に浸してアル
ミニュウム薄膜の表面が露出している部分を溶解すると
フォトレジストに覆われている部分のアルミニュウム薄
膜は残る。これを水洗い後、フォトレジストを除去する
とアルミニニウム薄膜からなる櫛型電極2aと2bおよ
び3aと3bのパターンが形成される。 櫛型電極2aと2bおよび3aと3bの表面をシリコン
窒化膜11により覆う工程は、以下のとおりである。上
記により櫛型電極のパターンが形成されている圧電基板
1上の櫛型電極2aと2bおよび3aと3b以外の部分
に、同様のパターン形成法によりフォトレジストで被覆
する。そこにプラズマCVD (化学気相成長)法によ
り、圧電基板lの温度を200・℃以下に保ったままで
シリコン窒化膜を約500Å以上の厚さに形成する。次
にフォトレジストを除去すると電極部以外のシリコン窒
化膜も除去される。 最後にパッド部4aと4bおよびパッド部5aと5bの
電極を以下により形成する。上記により櫛型電極のパタ
ーンおよびシリコン窒化膜が形成されている圧電基板1
上のパッド部4aと4bおよびパッド部5aと5bに該
当する以外の部分に、同様のパターン形成法によりフォ
トレジストを被覆する。この上に真空蒸着法またはスパ
ッタ法でアルミニニウム薄膜を約5000人形成する。 この後フォトレジストを除去するとパッド部4aと4b
およびパッド部5aと5bの電極が形成できる。 上記によりできた表面弾性波素子lOは、さらに以下の
工程により回路部品として完成する。第3図に示すよう
に、表面弾性波素子lOは金属性ベース8に貼りつけら
れる。尚、この図に示す表面弾性波素子lOは櫛型電極
2aと2bが半絶縁性薄膜12、櫛型電極3aと3bが
半絶縁性薄膜13に夫々覆われている例である。櫛型電
極2aのパッド部4aはワイヤ9が接続され、さらにワ
イヤ9は外部接続端子6aに接続される。同様に櫛型電
極2bのパッド部4bは外部接続端子6bに、櫛型電極
3aのパッド部5aは外部接続端子7aに、櫛型電極3
bのパッド部5bは外部接続端子7bに夫々ワイヤで接
続される。これらのワイヤボンディングが終了したら金
属性ベース8の上にキャップ14を被せ、その周辺部を
気密にろう付けし、回路部品として完成する。 半絶縁
性薄膜として用いる材質は、表面弾性波・素子の特性が
薄膜の質量に依存するので比重が小さいものがよい、シ
リコン窒化II (SLL 、 x < 4 )は、比
重が3.4g/cm”と軽いので表面弾性波素子の特性
が劣化しない。また、半絶縁性薄膜は圧電基板表面の帯
電を効率よく中和するために比抵抗の小さいものがよい
、しかしながら、電極間の直流抵抗が約101Ω以下に
なると、通常用いられる電気的整合インピーダンスであ
る50Ωもしくは70Ωに対し、表面弾性波素子本来の
インピーダンス整合回路特性が劣化する。半絶縁性薄膜
の比抵抗は電橋構成により変化するが、通常の構成では
104ΩC−〜lO″ΩC−の範囲で、厚さ500人程
度であれば電気的特性も劣化せず、櫛型電極に溜る静電
気は半絶縁性薄膜を通して潤沢に放電され、圧電基板表
面は帯電しない。 本発明で使用したシリコン窒化膜(5isNワ)は、本
来の組成比、例えばSiJ<では絶縁抵抗が高く、比抵
抗がto”0cm以上であるが、SL組成を大きくする
ことにより導電性を上げることができる。このような特
性をもつ半絶縁性薄膜の形成方法は、以下にその方法に
ついて記す。 5IIN11薄膜の形成は、マイクロ波を使用したプラ
ズマCVD法により、成膜時の圧力13m+*torr
、SiH,カス流量53CCM、 N2ガス流量25S
CCM、マイクロ波電力300w、圧電基板温度は基準
の条件下で行なう。これらの条件は、 5isNx薄膜
のシリコン組成比が化学量論比より多くなる条件である
。また、スパッタ法でも形成可能である。 なお、半絶縁性薄膜11は、シリコン酸化膜(SiOm
、 x < 2 、比重2.2g/cmり、シリコン酸
化窒化膜(SiON、比重2.2g/am”〜3.4g
/cm”J 、およびシリコンカーバイト(SLCIl
、 X < 1 、比重3.2g/cn+3)も成膜時
の条件を変えることにより。 同様に形成できる。 τ発明の効果】 以上、説明したように本発明を適用する表面弾性波素子
は、製造作業工程中で放電破壊することを防止でき、さ
らにまたごみなどによる電極の短絡がないため、製造歩
留が飛躍的に増大するとともに品質が均一になるという
利点がある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. ! As shown in FIG. 1, a surface acoustic wave device 10 is. Horizontal electrodes 2a and 2b and 3a and 3b are formed on a piezoelectric substrate l. Each comb-shaped electrode 2a is connected to the pad part 4a, each comb-shaped electrode 2b is connected to the pad part 4b, each comb-shaped electrode 3a is connected to the pad part 5a, and each comb-shaped electrode 3b is connected to the pad part 5.
Each is connected to b. The pad portion 4a is an external electrode 6a
The pad portion 4b is connected to the external electrode 6b, the pad portion 5a is connected to the external electrode 7a, and the pad portion 5b is connected to the external electrode 7b. Comb-shaped electrodes 2a and 2b and pad portion 4a
and 4b, comb-shaped electrodes 3a and 3b, and pad portions 5a and 5b.
The enlarged shape of is shown in FIG. As shown in FIG. 2, the surfaces of the comb-shaped electrodes 2a and 2b are covered with a semi-insulating thin film 1.
1, and its specific resistance is approximately 10'Ωcm to 109ΩC. Comb-shaped electrode 3a
Similarly, the surface of 3b has a specific resistance of 104Ωccm-10
The comb-shaped electrodes 2a and 2b and 3a and 3b are formed by the following ring graph pattern forming method.First, a thin aluminum film is deposited on the piezoelectric substrate 1 by vacuum evaporation. Alternatively, about 3,000 layers are formed using a sputtering method. A photoresist is uniformly coated on this to a thickness of about 1 μm. A photoresist is then irradiated with ultraviolet light through a photomask having a pattern of horizontal electrodes. When developed, the light irradiated part leaving the comb-shaped electrode pattern is removed and the surface of the aluminum thin film is exposed.This is immersed in a mixed solution of phosphoric acid/acetic acid/nitric acid to expose the surface of the aluminum thin film. When the parts covered by the photoresist are dissolved, the aluminum thin film remains in the parts covered by the photoresist.After washing this with water and removing the photoresist, patterns of comb-shaped electrodes 2a and 2b and 3a and 3b made of the aluminum thin film are formed. The process of covering the surfaces of the comb-shaped electrodes 2a and 2b and 3a and 3b with the silicon nitride film 11 is as follows.The comb-shaped electrode 2a on the piezoelectric substrate 1 on which the comb-shaped electrode pattern is formed as described above. 2b, 3a, and 3b are coated with photoresist using the same pattern forming method.Then, the piezoelectric substrate 1 is coated with photoresist using a plasma CVD (chemical vapor deposition) method while keeping the temperature of the piezoelectric substrate 1 below 200°C. A silicon nitride film is formed to a thickness of about 500 Å or more.Next, when the photoresist is removed, the silicon nitride film other than the electrode parts is also removed.Finally, the electrodes of pad parts 4a and 4b and pad parts 5a and 5b are formed as follows. A piezoelectric substrate 1 on which a comb-shaped electrode pattern and a silicon nitride film are formed as described above.
Portions other than those corresponding to upper pad portions 4a and 4b and pad portions 5a and 5b are coated with photoresist by a similar pattern forming method. Approximately 5000 aluminum thin films are formed on this by vacuum evaporation or sputtering. After that, when the photoresist is removed, the pad portions 4a and 4b are removed.
And electrodes for pad portions 5a and 5b can be formed. The surface acoustic wave device 1O produced as described above is further completed as a circuit component through the following steps. As shown in FIG. 3, the surface acoustic wave element IO is attached to a metal base 8. As shown in FIG. The surface acoustic wave element IO shown in this figure is an example in which the comb-shaped electrodes 2a and 2b are covered with a semi-insulating thin film 12, and the comb-shaped electrodes 3a and 3b are covered with a semi-insulating thin film 13, respectively. A wire 9 is connected to the pad portion 4a of the comb-shaped electrode 2a, and the wire 9 is further connected to an external connection terminal 6a. Similarly, the pad portion 4b of the comb-shaped electrode 2b is connected to the external connection terminal 6b, and the pad portion 5a of the comb-shaped electrode 3a is connected to the external connection terminal 7a.
The pad portions 5b of b are respectively connected to external connection terminals 7b by wires. After these wire bondings are completed, the cap 14 is placed on the metal base 8, and the peripheral portion thereof is brazed to be airtight, thereby completing the circuit component. The material used for the semi-insulating thin film should have a low specific gravity because the surface acoustic wave/element characteristics depend on the mass of the thin film. Silicon nitride II (SLL, x < 4) has a specific gravity of 3.4 g/cm. ”, so the characteristics of the surface acoustic wave device will not deteriorate.In addition, the semi-insulating thin film should have a low resistivity in order to efficiently neutralize the charge on the surface of the piezoelectric substrate. However, the DC resistance between the electrodes is If it is less than about 101 Ω, the impedance matching circuit characteristics inherent to the surface acoustic wave element will deteriorate compared to the commonly used electrical matching impedance of 50 Ω or 70 Ω.The resistivity of the semi-insulating thin film changes depending on the electric bridge configuration. , in a normal configuration, it is in the range of 104 ΩC- to lO'' ΩC-, and if the thickness is about 500 people, the electrical characteristics will not deteriorate, and the static electricity accumulated in the comb-shaped electrode will be abundantly discharged through the semi-insulating thin film, and the piezoelectric The substrate surface is not charged. The silicon nitride film (5isN) used in the present invention has a high insulation resistance at its original composition ratio, for example, SiJ<, and has a specific resistance of 0 cm or more, but by increasing the SL composition, the conductivity can be increased. The method for forming a semi-insulating thin film with such characteristics is described below.The 5IIN11 thin film was formed by plasma CVD using microwaves at a pressure of 13m+*torr during film formation.
, SiH, gas flow rate 53CCM, N2 gas flow rate 25S
CCM, microwave power of 300 W, and piezoelectric substrate temperature are performed under standard conditions. These conditions are such that the silicon composition ratio of the 5isNx thin film is greater than the stoichiometric ratio. It can also be formed by sputtering. Note that the semi-insulating thin film 11 is a silicon oxide film (SiOm
, x < 2, specific gravity 2.2 g/cm, silicon oxynitride film (SiON, specific gravity 2.2 g/am''~3.4 g
/cm”J, and silicon carbide (SLCIl)
, X < 1, specific gravity 3.2g/cn+3) by changing the conditions during film formation. It can be formed similarly. τEffects of the Invention As explained above, the surface acoustic wave device to which the present invention is applied can prevent breakdown due to discharge during the manufacturing process, and furthermore, since there is no short circuit of electrodes due to dust etc., the manufacturing yield can be improved. This has the advantage that the quality increases dramatically and the quality becomes uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する表面弾性波素子の斜視図、第
2図はその要部断面図、第3図は表面弾性波素子を組み
込んだ回路部品の斜視図、第4図は従来の表面弾性波素
子の斜視図、第5図は櫛型電極の拡大図、第6図は従来
の表面弾性波素子の要部断面図である。 1−・・圧電基板 2a、2b、3a、3 b−・・櫛型電極4a、4b、
5a、5 b−・・パッド部6a、6b、7a、7 b
 −・・外部tS8・・・金属性ベース 9・・・ワイヤ 10・・・表面弾性波素子 11.12.13・・・半絶縁性薄膜 14・・・キャップ 第3図 第4図 第5図 第6図
Fig. 1 is a perspective view of a surface acoustic wave device to which the present invention is applied, Fig. 2 is a cross-sectional view of its main parts, Fig. 3 is a perspective view of a circuit component incorporating the surface acoustic wave device, and Fig. 4 is a conventional FIG. 5 is an enlarged view of a comb-shaped electrode, and FIG. 6 is a sectional view of a main part of a conventional surface acoustic wave device. 1-...Piezoelectric substrates 2a, 2b, 3a, 3b-...Comb-shaped electrodes 4a, 4b,
5a, 5b--Pad portions 6a, 6b, 7a, 7b
-...External tS8...Metallic base 9...Wire 10...Surface acoustic wave element 11.12.13...Semi-insulating thin film 14...Cap Fig. 3 Fig. 4 Fig. 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] 1.圧電基板上に形成された櫛型電極の対向する各櫛が
、直流抵抗10^3Ω〜10^9Ωの半絶縁性薄膜によ
り接続被覆されていることを特徴とする表面弾性波素子
1. A surface acoustic wave device characterized in that each opposing comb of a comb-shaped electrode formed on a piezoelectric substrate is connected and covered with a semi-insulating thin film having a DC resistance of 10^3Ω to 10^9Ω.
2.前記半絶縁性薄膜がシリコン酸化膜、シリコン酸化
窒化膜、シリコン窒化膜およびシリコンカーバイトから
選ばれる薄膜であり、その比抵抗が10^4Ωcm〜1
0^9Ωcmであることを特徴とする請求項第1項記載
の表面弾性波素子。
2. The semi-insulating thin film is a thin film selected from a silicon oxide film, a silicon oxynitride film, a silicon nitride film, and a silicon carbide film, and has a specific resistance of 10^4 Ωcm to 1
The surface acoustic wave device according to claim 1, characterized in that the resistance is 0^9 Ωcm.
JP2274928A 1990-10-12 1990-10-12 Surface acoustic wave device Expired - Lifetime JPH0758876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274928A JPH0758876B2 (en) 1990-10-12 1990-10-12 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274928A JPH0758876B2 (en) 1990-10-12 1990-10-12 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH04150512A true JPH04150512A (en) 1992-05-25
JPH0758876B2 JPH0758876B2 (en) 1995-06-21

Family

ID=17548500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274928A Expired - Lifetime JPH0758876B2 (en) 1990-10-12 1990-10-12 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH0758876B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021040A1 (en) * 1993-03-11 1994-09-15 Siemens Matsushita Components Gmbh & Co. Kg Component working with acoustic surface waves
JPH08167826A (en) * 1994-12-13 1996-06-25 Nec Corp Surface acoustic wave element
US5889446A (en) * 1996-01-19 1999-03-30 Nec Corporation Surface acoustic wave device with a resistor thin film to remove pyroelectric effect charges
US6078229A (en) * 1997-08-05 2000-06-20 Nec Corporation Surface acoustic wave device mounted with a resin film and method of making same
US6580198B2 (en) 1999-11-30 2003-06-17 Tdk Corporation Surface acoustic wave device having a thin metal oxide film fully covering at least the electrodes and method of fabricating same
KR20130094918A (en) * 2012-02-17 2013-08-27 삼성전자주식회사 Nano scale resonator and nano scale sensor and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642418A (en) * 1979-09-13 1981-04-20 Murata Mfg Co Ltd Bulk wave piezoelectric resonator device
JPS56162523A (en) * 1980-05-19 1981-12-14 Nippon Dempa Kogyo Co Ltd Elastic surface wave device
JPS61191624U (en) * 1985-05-20 1986-11-28
JPH022327A (en) * 1987-12-18 1990-01-08 Univ Claude Bernard Lyon 1 Sweetener having heterocyclic group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642418A (en) * 1979-09-13 1981-04-20 Murata Mfg Co Ltd Bulk wave piezoelectric resonator device
JPS56162523A (en) * 1980-05-19 1981-12-14 Nippon Dempa Kogyo Co Ltd Elastic surface wave device
JPS61191624U (en) * 1985-05-20 1986-11-28
JPH022327A (en) * 1987-12-18 1990-01-08 Univ Claude Bernard Lyon 1 Sweetener having heterocyclic group

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021040A1 (en) * 1993-03-11 1994-09-15 Siemens Matsushita Components Gmbh & Co. Kg Component working with acoustic surface waves
US5699026A (en) * 1993-03-11 1997-12-16 Siemens Aktiengesellschaft Component working with surface acoustic waves
JPH08167826A (en) * 1994-12-13 1996-06-25 Nec Corp Surface acoustic wave element
US5889446A (en) * 1996-01-19 1999-03-30 Nec Corporation Surface acoustic wave device with a resistor thin film to remove pyroelectric effect charges
US6078229A (en) * 1997-08-05 2000-06-20 Nec Corporation Surface acoustic wave device mounted with a resin film and method of making same
US6580198B2 (en) 1999-11-30 2003-06-17 Tdk Corporation Surface acoustic wave device having a thin metal oxide film fully covering at least the electrodes and method of fabricating same
KR20130094918A (en) * 2012-02-17 2013-08-27 삼성전자주식회사 Nano scale resonator and nano scale sensor and fabrication method thereof

Also Published As

Publication number Publication date
JPH0758876B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
CN1173467C (en) Sound surface wave device and its mfg. method
JP3265889B2 (en) Surface acoustic wave device and method of manufacturing the same
JP3470031B2 (en) Manufacturing method of surface acoustic wave device
CN107134986A (en) Electronic device
US7282835B2 (en) Surface acoustic wave element
CN1322059A (en) Method for mfg. surface acoustic wave device
JPH04150512A (en) Surface acoustic wave element
JP3389530B2 (en) Semiconductor device
JPH09153758A (en) Surface acoustic wave device
JPH09172341A (en) Surface acoustic wave device and its manufacture
JP3235467B2 (en) Electronic components
JPH08330894A (en) Surface acoustic wave device
JPH04150511A (en) Surface acoustic wave element and its manufacture
JPS60244108A (en) Surface acoustic wave element
JP2001345667A (en) Elastic surface wave element
JPH0998043A (en) Surface acoustic wave device and its production
JPH08167826A (en) Surface acoustic wave element
JPH04150510A (en) Surface acoustic wave element and its manufacture
JPS61277215A (en) Surface wave filter chip
JP2005020423A (en) Surface acoustic wave device
JPH09214280A (en) Surface elastic wave element
JPH11214951A (en) Surface-acoustic-wave element
JPS6142943A (en) Manufacture of complex semiconductor device
JPH02299311A (en) Surface acoustic wave device
JPS58184753A (en) Composite semiconductor device