JPH04149097A - Barrel type vapor growth device - Google Patents

Barrel type vapor growth device

Info

Publication number
JPH04149097A
JPH04149097A JP27444890A JP27444890A JPH04149097A JP H04149097 A JPH04149097 A JP H04149097A JP 27444890 A JP27444890 A JP 27444890A JP 27444890 A JP27444890 A JP 27444890A JP H04149097 A JPH04149097 A JP H04149097A
Authority
JP
Japan
Prior art keywords
chamber
gas
vapor phase
susceptor
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27444890A
Other languages
Japanese (ja)
Inventor
Hideyuki Doi
秀之 土井
Kouichi Koukado
香門 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27444890A priority Critical patent/JPH04149097A/en
Publication of JPH04149097A publication Critical patent/JPH04149097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve growth efficiency and the uniformity of crystal films by mounting nozzles for injecting gaseous raw materials to the side face of a chamber which encloses, with nearly a constant spacing, a barrel type susceptor supported with a perpendicular revolving shaft. CONSTITUTION:The barrel type susceptor 1 mounted with plural semiconductor substrates 2 is supported by the perpendicular revolving shaft 6 and the nozzles 4 for injecting the gaseous raw materials via bellows 9 are mounted to plural gas introducing pipes 5 provided on the side face of the chamber 3 which encloses this susceptor 1 with nearly a constant spacing therebetween. The gaseous raw materials supplied from a gas supply source 11 are supplied via gas flow rate controllers 20 provided to each of the nozzles 4, the nozzles 4 and the gas introducing pipes 5 into the chamber 3 to grow the crystal films in a vapor phase on the heated substrates 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バレル型サセプタを有する、■−V族化合物
半導体などの気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vapor phase growth apparatus for Ⅰ-V group compound semiconductors, etc., having a barrel-shaped susceptor.

〔従来の技術〕[Conventional technology]

第4図は従来のバレル型気相成長装置の断面図である。 FIG. 4 is a sectional view of a conventional barrel type vapor phase growth apparatus.

(例えば特開平1−294598号)垂直回転軸6で支
持したサセプタ1に複数の半導体基板2を装着し、チャ
ンバ3の頂部に設けたノズル4から原料ガスを供給する
。原料ガスはガス流8となって供給され、高周波誘導加
熱、抵抗加熱などの加熱手段により所定の温度に加熱さ
れた半導体基板2の表面で気相反応または熱分解反応に
より半導体基板2の上に結晶膜を、形成した後、チャン
バ3の下方の排気ロアから排出される。
(For example, Japanese Unexamined Patent Publication No. 1-294598) A plurality of semiconductor substrates 2 are mounted on a susceptor 1 supported by a vertical rotation shaft 6, and source gas is supplied from a nozzle 4 provided at the top of a chamber 3. The raw material gas is supplied in the form of a gas flow 8, and is heated onto the semiconductor substrate 2 by a gas phase reaction or a thermal decomposition reaction on the surface of the semiconductor substrate 2, which is heated to a predetermined temperature by heating means such as high-frequency induction heating or resistance heating. After the crystal film is formed, it is discharged from the exhaust lower part of the chamber 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のような従来の気相成長装置は、複数の半導体基板
を同時に処理できるため量産性に優れている。しかし、
原料ガスが基板の表面に対してほぼ平行に通過するため
に、多量の原料ガスが結晶膜の形成に寄与せずそのまま
排出されてしまい、したがって成長効率すなわち原料の
利用効率が低いという問題かあった。
The conventional vapor phase growth apparatus as described above has excellent mass productivity because it can process a plurality of semiconductor substrates at the same time. but,
Since the raw material gas passes almost parallel to the surface of the substrate, a large amount of the raw material gas does not contribute to the formation of the crystal film and is emitted as is, resulting in a problem of low growth efficiency, that is, raw material utilization efficiency. Ta.

この発明は上記のような従来の装置の欠点を除き、成長
効率が大幅に改善された、バレル型サセプタを有する気
相成長装置を提供しようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks of the conventional apparatus and provide a vapor phase growth apparatus having a barrel-shaped susceptor, which has significantly improved growth efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、半導体基板を装着するバし・ル型サセプタ
を垂直回転軸で支持し、前記サセプタをほぼ一定の間隔
を空けて包囲するチャンバを設け、前記チャンバの側面
に原料ガスを噴射するノズルを取り01けたことを特徴
とする気相成長装置である。また、チャンバの側面にチ
ャンバ軸を中心として放射状に複数本のガス導入管を設
け、原料を噴射するノズルをベローを介して各ガス導入
管に取り付けたことを特徴とする。
The present invention includes a barrel-type susceptor on which a semiconductor substrate is mounted, which is supported by a vertical rotating shaft, a chamber surrounding the susceptor at a substantially constant interval, and a nozzle for injecting raw material gas onto the side surface of the chamber. This is a vapor phase growth apparatus characterized in that it takes 0.01 digits. Another feature is that a plurality of gas introduction pipes are provided on the side surface of the chamber radially around the chamber axis, and a nozzle for injecting the raw material is attached to each gas introduction pipe via a bellows.

さらに、各ノズルから噴射するガスの流量を、それぞれ
独立に制御する手段を設けたことを特徴とする。
Furthermore, the present invention is characterized by providing means for independently controlling the flow rate of gas injected from each nozzle.

〔作用〕 この発明の気相成長装置は、チャンバの側面に原料ガス
を噴射するノズルを取り付けたことを特徴とし、このノ
ズルから直接基板表面の付近に向かって原料ガスを噴射
する。したかって供給した原料ガスか有効に膜形成に寄
与し、高い成長効率か得られる。
[Operation] The vapor phase growth apparatus of the present invention is characterized in that a nozzle for injecting source gas is attached to the side surface of the chamber, and the source gas is injected directly toward the vicinity of the substrate surface from this nozzle. Therefore, the supplied raw material gas effectively contributes to film formation, and high growth efficiency can be obtained.

またチャンバの側面にガス導入管を複数本設け、各ガス
導入管に対してベローを介してノズルを取り付けた。し
たがって、ノズルか1本しかない場合に比べてチャンバ
内のガスの流れが均一になり、形成される結晶膜の均一
性か改善できるとともに、ノズルをガス導入管に対して
自由に調節することが出来るために、成長効率および結
晶膜の均一性の観点から最適なノズルの角度および位置
を設定することが出来る。
Further, a plurality of gas introduction pipes were provided on the side of the chamber, and a nozzle was attached to each gas introduction pipe via a bellows. Therefore, compared to the case where there is only one nozzle, the gas flow inside the chamber becomes more uniform, the uniformity of the formed crystal film can be improved, and the nozzle can be freely adjusted with respect to the gas introduction pipe. Therefore, it is possible to set the optimum nozzle angle and position from the viewpoint of growth efficiency and uniformity of the crystal film.

さらに取り付1ノたノズルから噴射するガスの流量を独
立に制御するようにした結果、各ガス導入管から正確に
同し量のガスを供給することが出来る。
Furthermore, as a result of independently controlling the flow rate of gas injected from each installed nozzle, it is possible to supply exactly the same amount of gas from each gas introduction pipe.

[7たがってサセプタに装着し7た各基板に対する原料
ガスの流れを均一にすることができ、成長する結晶膜の
厚みおよび不純物濃度なとの各ウェハ間での均一性か改
善される。
[7] Therefore, the flow of the raw material gas to each substrate mounted on the susceptor can be made uniform, and the uniformity of the thickness and impurity concentration of the grown crystal film among each wafer is improved.

また、もしサセプタとチャンバの間の間隙に僅かな不均
一かあるな占の原因て結晶膜に不均一か生しるような場
合には、各ガス導入管からのガス供給量を微調整するこ
とによって、結晶膜の均一性を確保することも出来る。
Also, if the crystal film is uneven due to slight unevenness in the gap between the susceptor and the chamber, finely adjust the amount of gas supplied from each gas introduction pipe. By doing so, it is also possible to ensure the uniformity of the crystal film.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す、バレル型気相成長装置
の断面概略図である。垂直回転軸6て支持したバレル型
のサセプタ1には複数の半導体基板2を装着することが
出来る。サセプタ1に対してほぼ一定の間隔を空けて包
囲するチャンバ3か設けられ、チャンバ3の側面に設け
られたガス導入管5にはベロー9を介してノズル4か取
り付けられている。
FIG. 1 is a schematic cross-sectional view of a barrel-type vapor phase growth apparatus showing an embodiment of the present invention. A plurality of semiconductor substrates 2 can be mounted on a barrel-shaped susceptor 1 supported by a vertical rotation shaft 6. A chamber 3 surrounding the susceptor 1 is provided at a substantially constant interval, and a nozzle 4 is attached to a gas introduction pipe 5 provided on the side surface of the chamber 3 via a bellows 9.

ガス導入管5の長さしは300mm、直径φは25mm
とし、チャンバ3に対して角度θ1−60゜で取り伺け
た。
The length of the gas introduction pipe 5 is 300 mm, and the diameter φ is 25 mm.
The sample was taken at an angle of θ1-60° with respect to the chamber 3.

またサセプタ1の基板装着面は鉛直方向に対して角度θ
2−6°の傾きとし、基板2の中心とチャンバ3の内壁
面との間隔1は20mmとした。ガス導入管5はチャン
/<3の周囲に放射状に、等間隔に4本設けた。
Also, the board mounting surface of susceptor 1 is at an angle θ with respect to the vertical direction.
The inclination was 2-6 degrees, and the distance 1 between the center of the substrate 2 and the inner wall surface of the chamber 3 was 20 mm. Four gas introduction pipes 5 were provided radially around the chamber/<3 at equal intervals.

上記の実施例の気相成長装置を用いてG a A s結
晶膜を成長した。
A GaAs crystal film was grown using the vapor phase growth apparatus of the above example.

原料ガスの全供給量は毎分601とし、これを各ガス導
入管に分配して供給した。原料ガス中、トリメチルガリ
ウムの流量は毎分50m1とし、AsHaは水素中10
%希釈したものを毎分81の流量で供給した。
The total feed rate of raw material gas was 60 l/min, and this was distributed and fed to each gas introduction pipe. In the raw material gas, the flow rate of trimethyl gallium was 50 m1 per minute, and the flow rate of AsHa was 10 m1 in hydrogen.
% dilution was fed at a flow rate of 81 per minute.

口径50mmのGaAs基板2は抵抗加熱によって65
0℃に加熱した。
A GaAs substrate 2 with a diameter of 50 mm is heated to 65 mm by resistance heating.
Heated to 0°C.

上記の条件で1時間成長したところ、GaAs基板2の
中心部において厚み3,5μmのGaAs結晶膜が得ら
れた。
After growing for one hour under the above conditions, a GaAs crystal film with a thickness of 3.5 μm was obtained at the center of the GaAs substrate 2.

比較のためガス流量および温度条件を同じにして、第4
図に示す従来の気相成長装置で同様の成長を行った。得
られたGaAs結晶膜の厚みは基板中心部において1μ
mであった。
For comparison, the fourth test was conducted under the same gas flow rate and temperature conditions.
Similar growth was performed using the conventional vapor phase growth apparatus shown in the figure. The thickness of the obtained GaAs crystal film was 1μ at the center of the substrate.
It was m.

本発明の気相成長装置で成長した場合と従来の気相成長
装置で成長した場合の、結晶膜の厚みの比較を第2図に
示す。同じ流量条件で成長した場合、本発明の装置では
従来の装置に比べて約3.5倍の厚みか得られることが
確認できた。第2図に見られるとおり、直径50mmの
基板の面内における膜厚の分布は±6%以下となってお
り、従来の装置に比べて遜色ないものであった。
FIG. 2 shows a comparison of the thicknesses of crystal films grown using the vapor phase growth apparatus of the present invention and those grown using a conventional vapor phase growth apparatus. It was confirmed that when growth was performed under the same flow rate conditions, the device of the present invention could obtain a thickness approximately 3.5 times that of the conventional device. As seen in FIG. 2, the film thickness distribution within the plane of a substrate with a diameter of 50 mm was ±6% or less, which was comparable to that of the conventional device.

」−記の実施例において、ノズルはベローを介してガス
供給管に取り付け、その角度および位置を調節できるよ
うにし、た。しかし、例えば常時一定条件で膜を形成す
るような用途においては、ノズルの角度・位置を固定し
た方が機構が簡素になり、ガスのリークなとの問題も少
ない。そのような場合にはノズルをベローを介さすに直
接所定の角度でチャンバに取りイ」けるのが望ましい。
In the embodiment described above, the nozzle was attached to the gas supply pipe via a bellows so that its angle and position could be adjusted. However, in applications where a film is always formed under constant conditions, for example, fixing the angle and position of the nozzle simplifies the mechanism and reduces problems such as gas leakage. In such a case, it is desirable to insert the nozzle directly into the chamber at a predetermined angle via the bellows.

原料ガスをサセプタ1に吹き付ける角度は、実施例にお
いてはθ1+θ2−66°としたが、この角度は30°
から80°程度の範囲で適宜選択することか出来る。3
0°よりも小さくなると従来の気相成長装置と同様にガ
ス流8か基板2に対してほぼ平行に流れることになり、
成長効率か悪い。
The angle at which the raw material gas is blown onto the susceptor 1 was θ1+θ2−66° in the example, but this angle was changed to 30°.
The angle can be selected as appropriate within a range of about 80°. 3
When the angle is smaller than 0°, the gas flow 8 flows almost parallel to the substrate 2, similar to the conventional vapor phase growth apparatus.
Growth efficiency is poor.

一方、80°よりも大きくなるとガス流8か基板2に対
して直角に近い角度で流れることになり、基板2の表面
」二を通過するガスの流れが面内において不均一になり
やすく、結晶膜の均一性か損なわれる。
On the other hand, if the angle is larger than 80°, the gas flow 8 will flow at an angle close to perpendicular to the substrate 2, and the gas flow passing through the surface 2 of the substrate 2 will likely become non-uniform within the plane, resulting in crystallization. The uniformity of the film is compromised.

また、第3図に示すように各ノズル毎にガス流量調節器
10を設け、ガス供給源11から供給される原料ガスを
各ノズル毎に独立に制御するように装置を構成すれば、
チャンバとサセプタの中心軸のわずかなずれなとに起因
するチャンバ内のガスの流れの不均一を補正することが
出来るので、さらに結晶膜の均一性を改善することか出
来る。
Furthermore, as shown in FIG. 3, if the apparatus is configured such that a gas flow rate regulator 10 is provided for each nozzle and the raw material gas supplied from the gas supply source 11 is independently controlled for each nozzle,
Since it is possible to correct the non-uniformity of the gas flow within the chamber due to a slight misalignment between the central axes of the chamber and the susceptor, it is possible to further improve the uniformity of the crystal film.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記の構成を採用することにより、原料ガス
を有効に結晶膜の形成に使用することを可能にし、複数
のウェハを同時に処理するバレル型気相成長装置におい
て成長効率の高い気相成長を行うことができるという優
れた効果を奏する。
By adopting the above configuration, the present invention makes it possible to effectively use raw material gas to form a crystal film, and achieves high growth efficiency in a barrel-type vapor phase growth apparatus that processes multiple wafers simultaneously. It has the excellent effect of being able to grow.

また、成長する結晶膜の均一性も良好なものが得られる
Furthermore, a grown crystal film with good uniformity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す、バレル型気相成長装置
の断面概略図である。 第2図は本発明および従来の気相成長装置を使用して成
長した結晶膜の厚みの、基板面内での分布を示すグラフ
である。 第3図は本発明の別の実施例を示す気相成長装置の概念
図である。 第4図は従来のバレル型気相成長装置の断面概略図であ
る。 1・・  ・サセプタ 2・ ・・・半導体基板 3・  ・  ・チャンバ 4・・  ・ノズル 5・ ・ ・ガス導入管 6・・  ・垂直回転軸 7・   ・排気口 8・・ ・・ガス流 9・  ・・・ベロ ガス流量調節器 ガス供給源
FIG. 1 is a schematic cross-sectional view of a barrel-type vapor phase growth apparatus showing an embodiment of the present invention. FIG. 2 is a graph showing the distribution in the substrate plane of the thickness of crystal films grown using the present invention and the conventional vapor phase growth apparatus. FIG. 3 is a conceptual diagram of a vapor phase growth apparatus showing another embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a conventional barrel type vapor phase growth apparatus. 1. Susceptor 2. Semiconductor substrate 3. Chamber 4. Nozzle 5. Gas introduction pipe 6. Vertical rotation axis 7. Exhaust port 8. Gas flow 9. ...Verogas flow controller gas supply source

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板を装着するバレル型サセプタを垂直回
転軸で支持し、前記サセプタをほぼ一定の間隔を空けて
包囲するチャンバを設け、前記チャンバの側面に原料ガ
スを噴射するノズルを取り付けたことを特徴とするバレ
ル型気相成長装置。
(1) A barrel-shaped susceptor on which a semiconductor substrate is mounted is supported by a vertical rotating shaft, a chamber is provided surrounding the susceptor at a substantially constant interval, and a nozzle for injecting raw material gas is attached to the side of the chamber. A barrel-type vapor phase growth device featuring:
(2)チャンバの側面にチャンバ軸を中心として放射状
に複数本のガス導入管を設け、原料を噴射するノズルを
ベローを介して各ガス導入管に取り付けたことを特徴と
する請求項(1)記載のバレル型気相成長装置。
(2) Claim (1) characterized in that a plurality of gas introduction pipes are provided on the side surface of the chamber radially around the chamber axis, and a nozzle for injecting the raw material is attached to each gas introduction pipe via a bellows. Barrel type vapor phase growth apparatus described.
(3)各ノズルから噴射するガスの流量を、それぞれ独
立に制御する手段を設けた ことを特徴とする請求項(2)記載のバレル型気相成長
装置。
(3) The barrel type vapor phase growth apparatus according to claim (2), further comprising means for independently controlling the flow rate of the gas injected from each nozzle.
JP27444890A 1990-10-12 1990-10-12 Barrel type vapor growth device Pending JPH04149097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27444890A JPH04149097A (en) 1990-10-12 1990-10-12 Barrel type vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27444890A JPH04149097A (en) 1990-10-12 1990-10-12 Barrel type vapor growth device

Publications (1)

Publication Number Publication Date
JPH04149097A true JPH04149097A (en) 1992-05-22

Family

ID=17541833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27444890A Pending JPH04149097A (en) 1990-10-12 1990-10-12 Barrel type vapor growth device

Country Status (1)

Country Link
JP (1) JPH04149097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234611A1 (en) * 2017-06-21 2018-12-27 Picosun Oy Substrate processing apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234611A1 (en) * 2017-06-21 2018-12-27 Picosun Oy Substrate processing apparatus and method
US11505864B2 (en) 2017-06-21 2022-11-22 Picosun Oy Adjustable fluid inlet assembly for a substrate processing apparatus and method

Similar Documents

Publication Publication Date Title
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
US5421288A (en) Process for growing silicon epitaxial layer
US6352594B2 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JP2668687B2 (en) CVD device
JP2641351B2 (en) Variable distribution gas flow reaction chamber
KR940011099B1 (en) Vapour deposition apparatus
JP2010238831A (en) Vapor phase deposition device, and vapor phase deposition method
JPH04149097A (en) Barrel type vapor growth device
JPS62263629A (en) Vapor growth device
JPH03142823A (en) Vapor growth device
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JPH01253229A (en) Vapor growth device
JPH0547669A (en) Vapor growth apparatus
JP4910105B2 (en) Vapor thin film growth apparatus and vapor thin film growth method
JP3473251B2 (en) Multi-charge lateral vapor deposition method and apparatus
JPH06349748A (en) Vapor growth device for semiconductor
JPS58132932A (en) Plasma processing device
JP2000349030A (en) Gas-phase reactor
JPS6240720A (en) Vapor phase epitaxial growing device
JPH01257321A (en) Vapor growth apparatus
JPH10158098A (en) Vapor phase growth method and system for gan thin film
JPS62150711A (en) Vapor phase growth
JPH0362514A (en) Vapor growth device
JPH02152224A (en) Vapor growth apparatus