JPH0414836A - Si substrate - Google Patents

Si substrate

Info

Publication number
JPH0414836A
JPH0414836A JP11816390A JP11816390A JPH0414836A JP H0414836 A JPH0414836 A JP H0414836A JP 11816390 A JP11816390 A JP 11816390A JP 11816390 A JP11816390 A JP 11816390A JP H0414836 A JPH0414836 A JP H0414836A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
substrate
deposited
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11816390A
Other languages
Japanese (ja)
Inventor
Fumitoshi Toyokawa
豊川 文敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11816390A priority Critical patent/JPH0414836A/en
Publication of JPH0414836A publication Critical patent/JPH0414836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To maintain the gettering effect of a rear polycrystalline Si film for a long time by a method wherein a polycrystalline Si film deposited on the rear of an Si substrate is covered with an SiO2 film or an Si3N4 film by a vapor growth method or with an SiO2 film by a coating and baking method. CONSTITUTION:A polycrystalline Si film 2 in a desired thickness is deposited, by using a vapor growth technique, on the whole surface of a roughly polished Si substrate 1 which has been cut off from an Si single-crystal ingot. In succession, an SiO2 film 3 is deposited on the whole surface by using a vapor growth technique. After that, the SiO2 film 3 on one main face is removed selectively; in addition, the main face is mirror-polished to form an Si substrate 4. It is desirable that the film thickness of the polycrystalline Si film and the SiO2 film is within a range of 1 to 1.5)mum when the Si substrate has a diameter within a range of, e.g. 150 to 200 mm and a thickness within a range of, e.g. 0.6 to 0.75 mm. An SiO2 film by a coating and baking method or an Si3N4 film by a vapor growth method may be used as the film with which the polycrystalline Si film is coated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大規模集積回路等の半導体装置の製造に供さ
れるSi基板に関し、特に、エクストリンシックゲッタ
リング能力付与のため、裏面に多結晶Si膜を堆積した
Si基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Si substrate used for manufacturing semiconductor devices such as large-scale integrated circuits. The present invention relates to a Si substrate on which a crystalline Si film is deposited.

〔従来の技術〕[Conventional technology]

今日、大規模集積回路等の半導体装置は、極めて清浄な
環境下で製造されているが、ドライエツチング等、多く
の工程を得る間にSi基板は極微量ながら鉄、銅、ニッ
ケル等の重金属元素により汚染される。これら重金属汚
染は半導体装置の特性劣化(接合リーク増大、薄い絶縁
膜の耐圧低下)を引き起こし、ひいては、製品の歩留り
低下の原因となる事が知られている。
Today, semiconductor devices such as large-scale integrated circuits are manufactured in extremely clean environments, but during many processes such as dry etching, Si substrates are exposed to extremely small amounts of heavy metal elements such as iron, copper, and nickel. contaminated by It is known that these heavy metal contaminations cause deterioration of the characteristics of semiconductor devices (increase in junction leakage, decrease in breakdown voltage of thin insulating films), and in turn cause a decrease in product yield.

この様な汚染不純物を半導体装置形成領域であるSi基
板表面から除去するゲッタリンダ技術としてエクストリ
ンシックゲッタリング(ExtrinsicGette
ring 、以下EGと略す)が広く知られている。
Extrinsic gettering is a getter-linda technology that removes such contaminant impurities from the surface of a Si substrate, which is a semiconductor device formation region.
ring (hereinafter abbreviated as EG) is widely known.

EGは主にSi基板裏面に、結晶欠陥等の歪を導入し、
これをゲッタリング源として、81基板表面の汚染不純
物を裏面側に捕獲・固着するものである。従来、EG技
術としてはSi基板裏面にシリカ等の細粒を打ちつけ、
機械的に損傷を与えるサイドブラスト法が広く利用され
ていたが、Si基板裏面よりSiあるいはSiO2の微
粒子が発生するという欠点がある事から、第2図に示し
たようにSi基板裏面に多結晶Siを堆積し、この多結
晶Siの結晶粒界等をゲッタリング源とする手法が提案
されている( VLSI Technology 2n
dedition、 S、 M、 Sze、 McGr
aw−Hill Book Company)。この手
法によれば、Si基板裏面からの微粒子の発生は抑制さ
れる。
EG mainly introduces distortion such as crystal defects into the back surface of the Si substrate,
This is used as a gettering source to capture and fix contaminant impurities on the surface of the substrate 81 to the back surface side. Conventionally, EG technology involves pounding fine particles such as silica onto the back side of a Si substrate.
Side blasting, which causes mechanical damage, has been widely used, but it has the drawback of generating Si or SiO2 fine particles from the back surface of the Si substrate, so as shown in Figure 2, polycrystalline A method has been proposed in which Si is deposited and the grain boundaries of this polycrystalline Si are used as gettering sources (VLSI Technology 2n
dedition, S, M, Sze, McGr
aw-Hill Book Company). According to this method, generation of fine particles from the back surface of the Si substrate is suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多結晶SiによるEGでは、ゲッタリング効果が
接続せず、半導体装置製造工程の初期のみに有効で充分
なゲッタリング効果が得られないという欠点があった。
Conventional EG using polycrystalline Si has the drawback that the gettering effect does not connect and is effective only at the initial stage of the semiconductor device manufacturing process, and a sufficient gettering effect cannot be obtained.

これは、半導体装置の製造工程におけるアニル、酸化の
ための熱処理により、堆積当初は数十〜数百nm程度の
サイズを有した多結晶81粒が成長し、ゲッタリング能
力が徐々に減退し、さらに酸化処理により多結晶Si膜
膜体体SiO2膜となりゲッタリング源として多結晶S
i膜が徐々に失われる事による。
This is because due to the heat treatment for anilization and oxidation in the manufacturing process of semiconductor devices, 81 polycrystalline grains with a size of several tens to hundreds of nanometers initially grow, and the gettering ability gradually decreases. Furthermore, by oxidation treatment, the polycrystalline Si film becomes a polycrystalline SiO2 film as a gettering source.
This is due to the gradual loss of the i-film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のSi基板は、Si基板裏面に多結晶Si膜を堆
積した後、この多結晶Si膜を気相成長法もしくは塗布
焼成法によるSiO□膜もしくは気相成長法による81
3N4膜で被覆する事を特徴とする。また、多結晶Si
膜の堆積に先立ってSi基板裏面に複数の溝を設け、こ
の溝を埋設するようにSi基板裏面に多結晶Si膜を堆
積した後、この多結晶Si膜を気相成長法もしくは塗布
焼成法によるS i O2膜もしくは気相成長法による
5i3Nt膜で被覆する事を特徴とする。
The Si substrate of the present invention is produced by depositing a polycrystalline Si film on the back surface of the Si substrate, and then converting this polycrystalline Si film into an SiO
It is characterized by being coated with a 3N4 film. In addition, polycrystalline Si
Prior to film deposition, a plurality of grooves are formed on the back surface of the Si substrate, and after a polycrystalline Si film is deposited on the back surface of the Si substrate so as to fill the grooves, this polycrystalline Si film is deposited using a vapor phase growth method or a coating baking method. It is characterized by being coated with a SiO2 film produced by the method or a 5i3Nt film produced by the vapor phase growth method.

〔作用〕[Effect]

ここで、多結晶Si膜を被覆するSi、Oz膜もしくは
5i3Nt膜は、酸化熱処理時、酸素が多結晶Si膜に
達するのを抑制する作用を持ち、ゲッタリング源となる
多結晶Si膜が酸化され膜厚が減少するのを抑制する作
用を有する。
Here, the Si, Oz film or 5i3Nt film that covers the polycrystalline Si film has the effect of suppressing oxygen from reaching the polycrystalline Si film during oxidation heat treatment, and the polycrystalline Si film, which is a gettering source, is oxidized. This has the effect of suppressing the decrease in film thickness.

〔実施例〕〔Example〕

次に本実施例について図面を参照して説明する。 Next, the present embodiment will be described with reference to the drawings.

第1図は本発明の第1の実施例の81基板の製造工程の
概略を示すSi基板の断面図である。
FIG. 1 is a sectional view of a Si substrate schematically showing the manufacturing process of the 81 substrate of the first embodiment of the present invention.

Si単結晶インゴットより切り圧された粗研磨Si基板
1の全面に、気相成長技術を用いて多結晶Si膜2を所
望の厚さで堆積させる(第1−1図)。
A polycrystalline Si film 2 is deposited to a desired thickness on the entire surface of a roughly polished Si substrate 1 cut from a Si single crystal ingot using a vapor phase growth technique (FIG. 1-1).

続いて、気相成長技術を用いてSiO2膜3を全面に堆
積させる(第1−2図)。この後、〜・主面のSiO2
膜3を選択的に除去し、さらにこの主面を鏡面研磨し、
Si基板4とする。
Subsequently, a SiO2 film 3 is deposited on the entire surface using a vapor phase growth technique (FIGS. 1-2). After this, ~・SiO2 on the main surface
The film 3 is selectively removed, and the main surface is mirror-polished.
A Si substrate 4 is used.

堆積する多結晶Si膜、5iCh膜の膜厚は、Si基板
の反りに影響を及ぼすが、これはSi基板の直径及び厚
さに依存するため一義的に決定する事はてきない。しか
し、直径150〜200mm。
The thickness of the deposited polycrystalline Si film and 5iCh film affects the warpage of the Si substrate, but this cannot be determined uniquely because it depends on the diameter and thickness of the Si substrate. However, the diameter is 150-200mm.

厚さ0.6〜0.75mmの範囲のSi基板であれば、
多結晶Si膜及びSiO2膜の膜厚は1〜1.5μmの
範囲である事が望ましい。
If the Si substrate has a thickness of 0.6 to 0.75 mm,
The thickness of the polycrystalline Si film and SiO2 film is preferably in the range of 1 to 1.5 μm.

本実施例によるSi基板(多結晶Si膜1.0μm。Si substrate (polycrystalline Si film 1.0 μm thick) according to this example.

SiO2膜1.5μm)第2−1図及び従来技術による
Si基・板(裏面を1.0μmの多結晶Si膜のみで被
覆)(第2−1図)上にMOSグイオートを作製し、M
OS  C−を法による小数キャリア生成ライフタイム
(τg)の比較を試みた。
SiO2 film 1.5 μm) (Fig. 2-1) and a conventional Si substrate/plate (back side covered only with 1.0 μm polycrystalline Si film) (Fig. 2-1) were fabricated with MOS guiot.
An attempt was made to compare the fractional carrier generation lifetime (τg) using the OS C-method.

両Si基板に0MO8製造の初期工程を模した熱処理(
1000℃水素燃焼酸化2時間、 1200℃乾燥02
酸化4時間)を行ない、Si基板5上に0.7μmの熱
SiO□膜を形成した後、表面の熱5in2膜を選択的
に除去した(第2−2図)。この時点で本実施例による
Si基板の裏面には0.8μmの多結晶Si膜6が残存
していたのに対し、従来技術のものでは、0.4μmま
で膜厚が減少していた。続いて、Siの選択酸化技術に
よりフィールド5iCh膜8を形成し、この後、’r”
−)Sin2膜9.ゲート電極10を形成してMOSダ
イオードを完成したく第2−3図)。このMOSダイオ
ードについてMO3C−を法 表1 τg      5〜6m冠   0.5〜4m5ec
によりτgを測定した結果、本実施例では5〜7m5e
cの値が得られ、従来技術によった場合の0.5〜4m
5ecと比較して明らかなゲッタリング効果の優位性が
確認された。
Both Si substrates were subjected to heat treatment (
Hydrogen combustion oxidation at 1000°C for 2 hours, drying at 1200°C 02
After 4 hours of oxidation to form a 0.7 μm thermal SiO□ film on the Si substrate 5, the thermal 5in2 film on the surface was selectively removed (Figure 2-2). At this point, a polycrystalline Si film 6 of 0.8 .mu.m remained on the back surface of the Si substrate according to the present example, whereas in the conventional technique, the film thickness had decreased to 0.4 .mu.m. Subsequently, a field 5iCh film 8 is formed using Si selective oxidation technology, and then 'r'
-) Sin2 film9. 2-3) to complete the MOS diode by forming the gate electrode 10. For this MOS diode, MO3C- is calculated using Table 1: τg 5~6m crown 0.5~4m5ec
As a result of measuring τg, in this example, it was 5 to 7 m5e.
The value of c is obtained and is 0.5 to 4 m when using conventional technology.
A clear superiority of gettering effect was confirmed compared to 5ec.

なお、本実施例では多結晶Si膜を被覆する膜として気
相成長法によるS i Oz膜を用いたが、塗布焼成法
による5iCh膜を用いても同等の結果が得られている
。また、SiO□膜の代わりに気相成長法によるSi3
N4膜を用いても良い。
In this example, a SiOz film produced by a vapor phase growth method was used as a film to cover the polycrystalline Si film, but similar results were obtained using a 5iCh film produced by a coating and firing method. In addition, instead of SiO□ film, Si3
An N4 film may also be used.

第3図は本発明の第2の実施例のSi基板の製造工程の
概略を示す断面図である。
FIG. 3 is a cross-sectional view schematically showing the manufacturing process of a Si substrate according to a second embodiment of the present invention.

第3−1図のように粗研磨Si基板11の一主面に溝1
2を設ける。続いて、第3−2図のように粗研磨Si基
板11の全面に多結晶Si膜13を堆積する。この際溝
12は多結晶Si膜13で完全に埋設する。この後、全
面にS i O2膜14を気相成長法により堆積する。
As shown in FIG. 3-1, a groove 1 is formed on one main surface of the roughly polished Si substrate 11.
2 will be provided. Subsequently, as shown in FIG. 3-2, a polycrystalline Si film 13 is deposited on the entire surface of the roughly polished Si substrate 11. At this time, the groove 12 is completely filled with the polycrystalline Si film 13. Thereafter, a SiO2 film 14 is deposited on the entire surface by vapor phase growth.

続いて、第3−3図のように、溝12が形成されていな
い側の主面を鏡面研磨しSi基板15とする。
Subsequently, as shown in FIG. 3-3, the main surface on the side where the grooves 12 are not formed is mirror-polished to form a Si substrate 15.

なお、溝12の形状、数は任意に設定可能であるが、多
結晶Si膜13の堆積により、溝が完全に埋設される様
溝寸法と多結晶Si膜の膜厚を設定する必要がある。
Note that the shape and number of the grooves 12 can be set arbitrarily, but it is necessary to set the groove dimensions and the thickness of the polycrystalline Si film so that the grooves are completely buried by depositing the polycrystalline Si film 13. .

本実施例においては、ゲッタリング源となる多結晶Si
が溝内に埋設されているため、第4図のようにより長時
間の酸化処理を経て、裏面の多結晶Siが全て酸化され
ても溝内に多結晶Siが残存し、高いゲッタリング効果
をより長く持続できる。
In this example, polycrystalline Si serves as a gettering source.
is buried in the groove, so even if all the polycrystalline Si on the back side is oxidized through a longer oxidation process as shown in Figure 4, the polycrystalline Si remains in the groove, resulting in a high gettering effect. Can last longer.

本実施例により幅1.0μm、深さ2.0μmの溝を格
子状に形成し、多結晶Si膜0.7μm、SiO2膜1
.0μmを堆積したSi基板を作製し、第1の実施例と
同様にMOSダイオードを作製(第2図)しτgを測定
した結果、7g27〜9m5ecと極めて良好な結果を
得た。
In this example, grooves with a width of 1.0 μm and a depth of 2.0 μm were formed in a lattice shape, a polycrystalline Si film of 0.7 μm, and an SiO2 film of 1
.. A Si substrate having a thickness of 0 μm deposited thereon was prepared, and a MOS diode was prepared in the same manner as in the first embodiment (FIG. 2). As a result of measuring τg, an extremely good result of 7 g 27 to 9 m 5 ec was obtained.

なお、本実施例においても、多結晶Si膜を被覆する膜
として、塗布焼成によるSiO□膜を使用する事が可能
であり、気相成長によるS iO2膜を用いた場合と同
等のτgが得られる事を確認した。
In this example as well, it is possible to use a coated and fired SiO□ film as a film to cover the polycrystalline Si film, and it is possible to obtain the same τg as when using a vapor-phase grown SiO2 film. I confirmed that it is possible.

第5図は本発明の第3の実施例の製造工程の概略を示す
断面図である。
FIG. 5 is a sectional view schematically showing the manufacturing process of a third embodiment of the present invention.

第5−1図のように粗研磨Si基板16の一主面に溝1
7を設ける。続いて、第5−2図のように粗研磨Si基
板16の全面に多結晶Si膜18を堆積する。この際、
溝17は、多結晶Si膜18で完全に埋設する。この後
、全面に5isNt膜19を気相成長法により堆積する
。続いて、第5−3図のように、溝が形成されていない
側の主面を鏡面研磨しSi基板20とする。
As shown in FIG. 5-1, a groove 1 is formed on one main surface of the roughly polished Si substrate 16.
7 will be provided. Subsequently, as shown in FIG. 5-2, a polycrystalline Si film 18 is deposited on the entire surface of the roughly polished Si substrate 16. On this occasion,
The groove 17 is completely filled with a polycrystalline Si film 18. Thereafter, a 5isNt film 19 is deposited on the entire surface by vapor phase growth. Subsequently, as shown in FIG. 5-3, the main surface on the side where no grooves are formed is mirror-polished to form a Si substrate 20.

溝形状・数等、及び多結晶Si膜18の膜厚等は任意に
設定可能であるが、第2の実施例と同様に溝は多結晶S
i膜18で完全に埋設される様に設定される必要がある
。本実施例では多結晶Si膜18の被覆にSi!N4膜
19を膜用9ているが、Si3N<膜は02の遮へい能
力が高い事からS i 3N 1膜の膜厚は50nm程
度で充分な効果を得られる。
Although the groove shape, number, etc., and the film thickness of the polycrystalline Si film 18 can be set arbitrarily, the grooves are made of polycrystalline Si as in the second embodiment.
It is necessary to set it so that it is completely buried with the i-film 18. In this embodiment, the polycrystalline Si film 18 is coated with Si! Although the N4 film 19 is used as the film 9, since the Si3N<02 film has a high shielding ability, a sufficient effect can be obtained with the thickness of the Si3N1 film of about 50 nm.

本実施例においても第1第2の実施例と同様、MOSタ
イオードによるτg測定を行ったが、7g27〜9m5
ecと第2の実施例と同等の結果を得た。
In this example, as in the first and second examples, τg was measured using a MOS diode.
Results equivalent to those of ec and the second example were obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、Si基板裏面に堆積し
た多結晶Si膜を気相成長法によるSiO2膜あるいは
5iiNi膜、もしくは塗布焼成による5iCh膜で被
覆した事により、裏面多結晶Si膜のゲッタリング効果
が長く持続させられるという効果を有する。また、Si
基板裏面に溝を形成した後、多結晶Si膜を堆積し、先
述のSiO□膜あるいは5ixNs膜で被覆した場合に
は、通常、裏面多結晶Si膜が完全に酸化されてしまう
ような半導体装置の製造条件においても、溝内に多結晶
Siを残存させる事が可能で、より持続性の高いゲッタ
リンダ能力をSi基板に付与できる効果を有する。
As explained above, the present invention covers the polycrystalline Si film deposited on the back surface of the Si substrate with an SiO2 film or 5iiNi film formed by vapor phase growth, or a 5iCh film formed by coating and baking. This has the effect that the gettering effect can be sustained for a long time. Also, Si
When a polycrystalline Si film is deposited after forming a groove on the back side of the substrate and then covered with the aforementioned SiO□ film or 5ixNs film, the back side polycrystalline Si film is usually completely oxidized in a semiconductor device. Even under these manufacturing conditions, it is possible to leave polycrystalline Si in the groove, which has the effect of imparting a more sustainable getter-linda ability to the Si substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜1図乃至第1−3図は、本発明の第1の実施例に
よるSi基板の製造工程の概略を示す断面図、第2−1
図乃至第2−3図は、第1の実施例及び従来技術による
Si基板により、MOSダイオードを作製する工程の概
略を示す断面図、第3−1図乃至第3−3図は、本発明
の第2の実施例によるSi基板の製造工程の概略を示す
断面図、第4図は第2の実施例によるSi基板において
、Si基板裏面の多結晶Si膜が完全に酸化されても溝
内に多結晶Si膜が残存する事を示す断面図、第5−1
図乃至第5−3図は本発明の第3の実施例によるSi基
板の製造工程の概略を示す断面図である。 1・・・・・・粗研磨Si基板、2・・・・・・多結晶
Si膜、3・・・・・・SiO2膜、4・・・・・・S
i基板、5・・・・・・Si基板、6・・・・・多結晶
Si膜、7・・・・・SiO2膜、8・・・・・・フィ
ールドSin、膜、9・・・・・・ゲー)SiO□膜、
10・・・・・・ゲート電極、11・・・・・粗研磨S
i基板、12・・・・・・溝、13・・・・・・多結晶
Si膜、14・・・・・・SiO2膜、I5・・・・・
Si基板、16・・・・・・粗研磨S】基板、17・・
・・・・溝、18・・・・・・多結晶Si膜、19・・
山S 13N4膜、20・・・・・・Si基板。 代理人 弁理士  内 原   晋 本寅施例 従来我町 第r−r図 第2−1図 第1−2図 第2−2図 第1−3図 第 1 図 第2−3図 第2図 拓 図 第 図
1 to 1 to 1-3 are cross-sectional views schematically showing the manufacturing process of a Si substrate according to the first embodiment of the present invention, and FIG.
Figures 2-3 are cross-sectional views schematically showing the process of manufacturing a MOS diode using a Si substrate according to the first embodiment and the prior art, and Figures 3-1 to 3-3 are cross-sectional views showing the process of manufacturing a MOS diode according to the present invention. FIG. 4 is a cross-sectional view showing an outline of the manufacturing process of the Si substrate according to the second embodiment. Cross-sectional view showing that the polycrystalline Si film remains in 5-1
5-3 are cross-sectional views schematically showing the manufacturing process of a Si substrate according to a third embodiment of the present invention. 1... Roughly polished Si substrate, 2... Polycrystalline Si film, 3... SiO2 film, 4... S
i substrate, 5... Si substrate, 6... polycrystalline Si film, 7... SiO2 film, 8... field Sin, film, 9... ... Game) SiO□ film,
10...Gate electrode, 11...Rough polishing S
i substrate, 12...groove, 13...polycrystalline Si film, 14...SiO2 film, I5...
Si substrate, 16... Rough polishing S] Substrate, 17...
...Groove, 18...Polycrystalline Si film, 19...
Mountain S 13N4 film, 20...Si substrate. Agent Patent Attorney Shinmoto Tora UchiharaExampleConventionalWamachi No. rrFigure 2-1Figure 1-2Figure 2-2Figure 1-3Figure 1Figure 2-3Figure 2 Taku map

Claims (1)

【特許請求の範囲】 1、裏面に多結晶Si膜が堆積されているSi基板にお
いて、該多結晶Si膜の全面が、気相成長法もしくは、
塗布焼成法によるSiO_2膜で被覆されている事を特
徴とするSi基板 2、裏面に多結晶Si膜が堆積されているSi基板にお
いて、該多結晶Si膜が気相成長法によるSi_3N_
4膜で被覆されている事を特徴とするSi基板 3、裏面に複数の溝が形成され、この溝が完全に埋設さ
れるよう該裏面に多結晶Si膜が堆積され、かつ、該裏
面の多結晶Si膜の全面が気相成長法もしくは塗布焼成
法によるSiO_2膜で被覆されている事を特徴とする
特許請求の範囲第1項記載のSi基板 4、裏面に複数の溝が形成され、この溝が完全に埋設さ
れる様該裏面に多結晶Si膜が堆積され、かつ、該裏面
の多結晶Si膜の全面が気相成長法によるSi_3N_
4膜で被覆されている事を特徴とする特許請求の範囲第
2項記載のSi基板
[Claims] 1. In a Si substrate on which a polycrystalline Si film is deposited on the back surface, the entire surface of the polycrystalline Si film is grown by vapor phase growth or
A Si substrate 2 characterized in that it is coated with a SiO_2 film formed by coating and firing, and a Si substrate having a polycrystalline Si film deposited on the back surface, in which the polycrystalline Si film is coated with a Si_3N_ film formed by vapor phase growth.
A polycrystalline Si substrate 3 is characterized in that it is coated with 4 films, a plurality of grooves are formed on the back surface, a polycrystalline Si film is deposited on the back surface so that the grooves are completely buried, and The Si substrate 4 according to claim 1, characterized in that the entire surface of the polycrystalline Si film is coated with a SiO_2 film by a vapor growth method or a coating and firing method, and a plurality of grooves are formed on the back surface, A polycrystalline Si film is deposited on the back surface so that this groove is completely buried, and the entire surface of the polycrystalline Si film on the back surface is made of Si_3N_
The Si substrate according to claim 2, characterized in that the Si substrate is coated with four films.
JP11816390A 1990-05-08 1990-05-08 Si substrate Pending JPH0414836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11816390A JPH0414836A (en) 1990-05-08 1990-05-08 Si substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816390A JPH0414836A (en) 1990-05-08 1990-05-08 Si substrate

Publications (1)

Publication Number Publication Date
JPH0414836A true JPH0414836A (en) 1992-01-20

Family

ID=14729668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816390A Pending JPH0414836A (en) 1990-05-08 1990-05-08 Si substrate

Country Status (1)

Country Link
JP (1) JPH0414836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104268A (en) * 1992-09-21 1994-04-15 Mitsubishi Electric Corp Semiconductor substrate having gettering effect and its manufacturing method
JPH07161724A (en) * 1993-12-13 1995-06-23 Nec Corp Silicon semiconductor substrate
US6229196B1 (en) 1997-07-30 2001-05-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method thereof
JP2012129312A (en) * 2010-12-14 2012-07-05 Canon Inc Semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104268A (en) * 1992-09-21 1994-04-15 Mitsubishi Electric Corp Semiconductor substrate having gettering effect and its manufacturing method
JPH07161724A (en) * 1993-12-13 1995-06-23 Nec Corp Silicon semiconductor substrate
US6229196B1 (en) 1997-07-30 2001-05-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method thereof
JP2012129312A (en) * 2010-12-14 2012-07-05 Canon Inc Semiconductor device manufacturing method
US8426291B2 (en) 2010-12-14 2013-04-23 Canon Kabushiki Kaisha Method for isolation formation in manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3454033B2 (en) Silicon wafer and manufacturing method thereof
US5690736A (en) Method of forming crystal
JPH0414836A (en) Si substrate
TW201816204A (en) Growth of epitaxial gallium nitride material using a thermally matched substrate
JP3344205B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH09266212A (en) Silicon wafer
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JPS637672A (en) Semiconductor device
JP2732393B2 (en) Cylinder type silicon epitaxial layer growth equipment
JPS6386450A (en) Manufacture of substrate for formation of semiconductor element
JPS63260014A (en) Method of forming silicon carbide single crystal thin film
JP2932544B2 (en) Manufacturing method of dielectric isolation substrate
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH02119123A (en) Manufacture of semiconductor device
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPS6095936A (en) Manufacture of semiconductor substrate
JP2020111495A (en) Silicon carbide polycrystalline substrate, method of manufacturing silicon carbide polycrystalline film, and method of manufacturing silicon carbide polycrystalline substrate
JPS613424A (en) Dielectric isolation substrate
JPH0677311A (en) Manufacture of semiconductor substrate
JPH09266175A (en) Semiconductor wafer manufacturing method and semiconductor wafer
JPS61214515A (en) Susceptor for semiconductor substrate
JPS6136370B2 (en)
JPH01321653A (en) Manufacture of semiconductor device
JPH08264640A (en) Composite semiconductor substrate
JPS61107724A (en) Manufacture of semiconductor device