JPH04147933A - Contact material and its production - Google Patents

Contact material and its production

Info

Publication number
JPH04147933A
JPH04147933A JP2270788A JP27078890A JPH04147933A JP H04147933 A JPH04147933 A JP H04147933A JP 2270788 A JP2270788 A JP 2270788A JP 27078890 A JP27078890 A JP 27078890A JP H04147933 A JPH04147933 A JP H04147933A
Authority
JP
Japan
Prior art keywords
particles
contact material
composite
dispersed
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2270788A
Other languages
Japanese (ja)
Other versions
JP2613966B2 (en
Inventor
Masayuki Tsuji
辻 公志
Isato Inada
稲田 勇人
Munetake Sato
宗武 佐藤
Kenji Azuma
健司 東
Hiroshi Miyanami
宮南 啓
Shinji Tanimura
谷村 眞治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2270788A priority Critical patent/JP2613966B2/en
Publication of JPH04147933A publication Critical patent/JPH04147933A/en
Application granted granted Critical
Publication of JP2613966B2 publication Critical patent/JP2613966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To obtain an Ag-Ni electrical contact material excellent in deposition resistance by sintering the composite grain of Ag and Ni, prepared by containing with Ni the surface of Ag grain containing Ni inside in the form of particle, fiber, etc. CONSTITUTION:Ag grains and Ni grains are charged to a rotary drum of a high shearing type mill as a mechanical compounding treatment apparatus, and this drum is rotated at high speed. as the Ag grain, a pure Ag grain 1 or an Ag grain, which contains Ni particles of <=0.5mum average particle diameter by 1-6% or in which fibrous Ni of 1mum average diameter or strip-like Ni of <=1mum average width is orientationally dispersed and Ni particles of <0.5mum average particle diameter are incorporated, if necessary, into the spaces among the above Ni fibers or strip-like bodies, is used. By mechanical compounding treatment, Ni layer 3 is formed around respective Ag grains 1, 1' mentioned above and Ag-Ni composite grains containing 6-20%, in total, of Ni are formed. These composite grains are compacted, sintered, and wiredrawn, by which the Ag-Ni electrical contact material excellent in deposition resistance can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、リレー、マグネソトスインチ、ブ
レーカ等の開閉機器の電気接点に用いる接点材料および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a contact material used for electrical contacts of switching devices such as relays, magneto switches, breakers, etc., and a method for manufacturing the same.

〔従来の技術および問題点〕[Conventional technology and problems]

Ag素地接点材料であるAg−Ni系接点材料は、耐消
耗性および加工性に優れている。しかしながら、Ag−
Ni系接点材料は、同じAg素地接点材料であるAg−
Cd0系接点材料やAg−3nO□系接点材料に比べ、
耐溶着性が十分でないことから、利用が低負荷用〜中負
荷用に限られる傾向があり、耐溶着性の改善が望まれて
いる。
Ag-Ni based contact materials, which are Ag-based contact materials, have excellent wear resistance and workability. However, Ag-
The Ni-based contact material is the same Ag-based contact material.
Compared to Cd0-based contact materials and Ag-3nO□-based contact materials,
Since the welding resistance is not sufficient, the use tends to be limited to low to medium load applications, and improvement in the welding resistance is desired.

従来、上記Ag−Ni系接点材料は、つぎのようにして
製造されている。
Conventionally, the above-mentioned Ag-Ni contact material has been manufactured in the following manner.

それぞれ別々に製造したAg粒子にNi粒子を添加混合
し、圧縮成形して成形体を得て、ついで、成形体に対し
〔焼成−熱間圧縮〕を2〜3回繰り返し施すという焼結
工程を経て、焼結後、通常、引き伸ばし工程で引き延ば
すようにする。引き伸ばし工程では、普通、焼結体を熱
間押し出しした後、さらに伸線する。N1粒子は引き伸
ばし工程で伸線方向に引き延ばされており、接点材料中
に伸線方向に長平方向を向けた約5μ程度の平均径の繊
維状になっている。伸線した後、短く切断し、伸線方向
に対し直角の方向の断面(横断面)を接点面として使う
。すなわち、NiはAg素地中に平均径5μの繊維状で
接点面に対し交差する方向に配向分散しているのである
Ni particles are added to and mixed with separately manufactured Ag particles, and compression molded to obtain a molded body.Then, the molded body is subjected to a sintering process in which [firing-hot compression] is repeated two to three times. After the process and sintering, it is usually stretched in a stretching process. In the drawing process, the sintered body is usually hot extruded and then further wire drawn. The N1 particles are stretched in the drawing direction in the drawing process, and are in the form of fibers with an average diameter of about 5 μm, with the elongated direction facing the drawing direction in the contact material. After drawing the wire, cut it into short pieces and use the cross section perpendicular to the drawing direction as the contact surface. That is, Ni is oriented and dispersed in the Ag matrix in the form of fibers with an average diameter of 5 μm in a direction crossing the contact surface.

耐溶着性を向上させるには、Niを接点面へ微細に溝部
無く分散させる必要がある。例えば、Ag粒子とNi粒
子の両方共に粒径1μ以下の微粒子にすれば、接点面に
微細なNi粒子が局在化せず溝部なく分散するはずであ
るが、実際はそうならない。微粒子を混合する段階で微
粒子が凝集して大きな2次粒子になり、結局、大きなN
i粒子として分散することになるからである。
In order to improve the welding resistance, it is necessary to finely disperse Ni onto the contact surface without grooves. For example, if both Ag particles and Ni particles are made into fine particles with a particle size of 1 μm or less, the fine Ni particles should not be localized on the contact surface and be dispersed without grooves, but this is not actually the case. At the stage of mixing fine particles, the fine particles aggregate and become large secondary particles, resulting in a large amount of N.
This is because they will be dispersed as i particles.

また、配合するAg、Ni全量を一緒に熔かした融液を
噴霧しで、N4含有Ag粒子およびNi粒子を同時に得
て、これを成形・焼結することが考えられる。この場合
には、Ag粒子中には微細なNi粒子が存在するが、得
た粒子の中に非常に粒径の大きい粗大Ni粒子が混在す
る。Ag−N1溶湯中の未固溶Niが粗大Ni粒子とな
って混在するのである。この粗大Ni粒子は、成形性・
焼結性を低下させ耐溶着性劣化を招く原因となる。上記
溶湯中でのAg中へのNiの固溶限は約6ivt%であ
るから、溶湯中のNi量が6st%以下であれば粗大N
i粒子の混在は解消されるが、しかしながら、この場合
、Ag  Ni系接点材料として十分なNi量の確保は
難しい。
It is also conceivable to obtain N4-containing Ag particles and Ni particles at the same time by spraying a melt obtained by melting the total amounts of Ag and Ni to be blended together, and then molding and sintering them. In this case, fine Ni particles are present in the Ag particles, but coarse Ni particles with a very large particle size are mixed in the obtained particles. Undissolved Ni in the Ag-N1 molten metal becomes coarse Ni particles and is mixed therein. These coarse Ni particles have good moldability and
This causes a decrease in sinterability and a deterioration in welding resistance. The solid solubility limit of Ni in Ag in the molten metal is about 6 ivt%, so if the amount of Ni in the molten metal is 6st% or less, coarse N
Although the mixture of i-particles is eliminated, in this case, however, it is difficult to ensure a sufficient amount of Ni for the AgNi-based contact material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、上記事情に鑑み、耐溶着性に冨む優れたA
g−Ni系接点材料およびその製造方法を提供すること
を課題とする。
In view of the above circumstances, this invention provides an excellent A
An object of the present invention is to provide a g-Ni-based contact material and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、請求項1.2記載の接点材料
では、表面がNi層で覆われてなるAg粒子の焼結体か
らなり、請求項2記載の接点材料は、加えて、Ag粒子
を、その内部にNi微粒子が分散している粒子としてい
る。
In order to solve the above problem, the contact material according to claim 1.2 is made of a sintered body of Ag particles whose surface is covered with a Ni layer, and the contact material according to claim 2 further includes Ag particles. is a particle in which Ni fine particles are dispersed.

また、請求項3.4記載の接点材料は、Ag素地中にN
iを平均径1μの繊維状ないし平均幅11未満の帯状で
接点面に対し交差する方向に配向分散してなる構成をと
り、請求項4記載の接点材料は、加えて、繊維状ないし
帯状のNi0間に粒径0.5μ以下のNi微粒子を分散
させてなる構成をとっている。
Further, the contact material according to claim 3.4 has N in the Ag base material.
The contact material according to claim 4 has a structure in which i is oriented and dispersed in a fibrous shape with an average diameter of 1 μm or a strip shape with an average width of less than 11 in a direction crossing the contact surface, and It has a structure in which Ni fine particles having a particle size of 0.5 μm or less are dispersed between Ni0 particles.

この発明の接点材料中のNi総全含有量、通常、請求項
5のように、6〜20wt%(接点材料全体を100w
t%とする)である。
The total Ni content in the contact material of this invention is usually 6 to 20 wt% (the entire contact material is 100 wt%).
t%).

前記課題を解決するため、請求項6〜12記載の接点材
料の製造方法では、Ag粒子とNi粒子を機械的複合化
処理により複合化してなる複合粒子を焼結するようにし
ており、複合化には、例えば、請求項7のように、N1
FiがAg粒子表面を覆う形態が挙げられる。
In order to solve the above-mentioned problems, in the method for manufacturing a contact material according to claims 6 to 12, composite particles obtained by compounding Ag particles and Ni particles by mechanical compounding treatment are sintered. For example, as in claim 7, N1
An example is a form in which Fi covers the surface of the Ag particles.

機械的複合化処理を施すAg粒子には、純Ag粒子に限
らず、請求項8のように、Ni微粒子が分散したAg粒
子を用いるようにしてもよく、さらに、請求項9のよう
に、Ag粒子の内部に結晶粒界があって同結晶粒界に複
合化Niが存在しているAg粒子であってもよい。Ni
微粒子が分散したAg粒子の場合、請求項10のように
、Ni微粒子の量が1〜6wt%(同粒子全体を100
wt%とする)、同Ni微粒子の平均粒径が1μ未満で
あることが好ましい。
The Ag particles to be subjected to the mechanical composite treatment are not limited to pure Ag particles, but may also be Ag particles in which Ni fine particles are dispersed, as in claim 8, and furthermore, as in claim 9, It may be an Ag particle in which a grain boundary exists inside the Ag particle and composite Ni exists in the grain boundary. Ni
In the case of Ag particles in which fine particles are dispersed, as in claim 10, the amount of Ni fine particles is 1 to 6 wt% (the whole particle is 100% by weight).
wt%), and the average particle size of the Ni fine particles is preferably less than 1 μm.

得られる接点材料でのNi総含有量は、通常、請求項1
1のように、6〜20wt%(接点材料全体を100w
t%とする)である。
The total Ni content in the resulting contact material is usually as defined in claim 1.
1, 6 to 20wt% (100w of the entire contact material)
t%).

複合粒子は、例えば、請求項12のように、回転可能な
ドラムを備えるとともにドラム内周面に臨む曲面を有す
る固定部材を備えた装置を用い、前記ドラム内にAg粒
子およびNi粒子を投入した状態でドラムを回転させて
両粒子に対し圧縮・剪断を施す機械的複合化処理により
得ることができる。
For example, the composite particles are produced by using a device equipped with a rotatable drum and a fixing member having a curved surface facing the inner peripheral surface of the drum, and injecting Ag particles and Ni particles into the drum. It can be obtained by a mechanical compounding process in which both particles are compressed and sheared by rotating a drum in this state.

以下、この発明を、製造の段階から順を追って具体的に
説明する。
Hereinafter, the present invention will be specifically explained step by step starting from the manufacturing stage.

この発明の接点材料の製造方法では、まず、機械的複合
化処理によりAg粒子とNi粒子とを複合化したAg−
Ni複合粒子を用いて成形体を作る。
In the method for manufacturing a contact material of the present invention, first, Ag particles and Ni particles are composited by a mechanical composite treatment.
A molded body is made using Ni composite particles.

複合粒子作製用のAg粒子には、純Agの粒子、あるい
は、Ni微粒子がAg中に分散した粒子を使う。このA
g粒子の平均粒径は、通常、0.01〜500n程度で
ある。複合粒子作製用のNi粒子の平均粒径は、通常、
0.01〜Ion程度であり、この範囲を外れると適切
な複合化は難かしくなる。普通、Ni粒子はAg粒子よ
り小さいものを使う。Ni粒子の粒径は、Ag粒子の粒
径の1/2以下(より好ましくは1/10以下)程度で
ある。
As the Ag particles for producing composite particles, pure Ag particles or particles in which Ni fine particles are dispersed in Ag are used. This A
The average particle diameter of g particles is usually about 0.01 to 500n. The average particle size of Ni particles for preparing composite particles is usually
It is about 0.01 to Ion, and if it is outside this range, it becomes difficult to perform appropriate compositing. Usually, Ni particles are used that are smaller than Ag particles. The particle size of the Ni particles is about 1/2 or less (more preferably 1/10 or less) of the particle size of the Ag particles.

Ni微粒子分散のAg粒子の場合、Ni微粒子の平均粒
径が1μ以上であったり、Ni含有量が1%1t%未満
である場合、十分なAg素地面強化効果は期待し難く、
Ni含有量が6wt%を超えると粒子製造が困難になる
。このNi微粒子分散のAg粒子は、NiとAgの溶湯
を超急冷することで得られるが、5wt%以上のNiを
固溶することは困難なのである。
In the case of Ag particles dispersed in Ni fine particles, if the average particle size of the Ni fine particles is 1 μ or more or the Ni content is less than 1% or 1t%, it is difficult to expect a sufficient Ag base surface strengthening effect.
If the Ni content exceeds 6 wt%, particle production becomes difficult. The Ag particles in which fine Ni particles are dispersed can be obtained by ultra-quenching a molten metal of Ni and Ag, but it is difficult to incorporate 5 wt % or more of Ni into a solid solution.

複合粒子におけるAg−Niの複合化の適切な形態は、
以下の二つである。
A suitable form of Ag-Ni compositing in composite particles is
These are the following two.

第1の形態は、第1図(a)、(b)にみるように、複
合化Ni3が、純Ag粒子1あるいはNi微微粒子分分
散Ag粒子1′の表面を覆うN1Fiを形成するという
形態である。
In the first form, as shown in FIGS. 1(a) and (b), the composite Ni3 forms N1Fi covering the surface of the pure Ag particles 1 or the Ag particles 1' in which fine Ni particles are dispersed. It is.

第2の形態は、第2図にみるように、Ni微微粒子分分
散Ag粒子1′が結晶粒界を有しており、複合化Ni3
’が結晶粒界に存在するという形態である。結晶粒界を
覆ってしまうほどにNiが存在することが望ましい。
In the second form, as shown in FIG. 2, the Ni fine particle dispersed Ag particles 1' have grain boundaries, and the composite Ni3
' is present at the grain boundaries. It is desirable that Ni exists to the extent that it covers the grain boundaries.

つぎに、Ag粒子とNi粒子の機械的複合化処理を行う
処理装置の説明を行う。処理装置として、第3図に示す
ような高速・高剪断型ミル(例えば、■ホソカワミクロ
ン製のメカノフュージョンシステム用オングミル)が用
いられる。
Next, a processing device that performs mechanical composite processing of Ag particles and Ni particles will be explained. As a processing device, a high-speed, high-shear type mill as shown in FIG. 3 (for example, ■Ong mill for mechanofusion system manufactured by Hosokawa Micron) is used.

第3図の処理装置20は、モータ(図示省略)により高
速回転可能なドラム(円筒容器)21を備え、同ドラム
21内側に固定アーム22で支持されたれたセラミック
(例えば、硬質アルミナ)製半円柱状固定部材23が設
けられた構成である。固定部材23は半円柱部曲面(曲
面)23aをドラム内面21aに臨ませた状態で固定さ
れており、ドラム21の回転中、不動の半円柱部曲面2
3aの前をドラム21内面が移動してゆく。この半円柱
部曲面23aの曲率半径はドラム内面21の曲率半径よ
りも小さい。
The processing device 20 in FIG. 3 includes a drum (cylindrical container) 21 that can be rotated at high speed by a motor (not shown), and a ceramic (for example, hard alumina) semi-circular container supported by a fixed arm 22 inside the drum 21. This is a configuration in which a cylindrical fixing member 23 is provided. The fixing member 23 is fixed with the curved surface 23a of the semi-cylindrical portion facing the inner surface 21a of the drum, and while the drum 21 is rotating, the curved surface 2 of the semi-cylindrical portion remains stationary.
The inner surface of the drum 21 moves in front of the drum 3a. The radius of curvature of this semi-cylindrical curved surface 23a is smaller than the radius of curvature of the inner surface 21 of the drum.

複合化処理を行う場合、ドラム21内にAg粒子および
Ni粒子を(必要に応じて加えられる媒体開用ビーズと
一緒に)投入するとともにドラム21内を不活性ガス雰
囲気としドラム21を高速回転させる。そうすると、第
4図にみるように、Ag粒子およびNi粒子が遠心力で
ドラム内面21aに押し付けられ、ドラム21と一緒に
回転して、半円柱部曲面23aの前側領域(A−B間)
でAg粒子およびNi粒子が強い圧縮力、剪断力を受は
発生する熱も伴って複合化される。媒体用ビーズ(例え
ば、粒径1fi前後のジルコニアビーズ)を併用する場
合、Ni粒子はまずビーズに付着してからAg粒子に付
着することになる。このように、市販の処理装置で容易
に複合粒子を作ることができる。
When performing the compounding process, Ag particles and Ni particles are put into the drum 21 (along with media release beads added as necessary), and the drum 21 is made into an inert gas atmosphere and the drum 21 is rotated at high speed. . Then, as shown in FIG. 4, the Ag particles and Ni particles are pressed against the drum inner surface 21a by centrifugal force, rotate together with the drum 21, and rotate in the front region (between A and B) of the semi-cylindrical curved surface 23a.
When the Ag particles and Ni particles are subjected to strong compressive force and shear force, they are combined with the generated heat. When using media beads (for example, zirconia beads with a particle size of about 1 fi), the Ni particles first adhere to the beads and then to the Ag particles. In this way, composite particles can be easily produced using commercially available processing equipment.

ドラムの回転速度は500〜2000回/分程度である
。半円柱同曲面23aとドラム内面21aの間隔dは、
通常、1〜5n程度である。
The rotation speed of the drum is approximately 500 to 2000 times/min. The distance d between the semi-cylindrical curved surface 23a and the drum inner surface 21a is
Usually, it is about 1 to 5n.

処理開始当初、第5図(alにみるように、弱い凝集状
態にあったNi粒子30は、ドラム21回転に伴い1次
粒子化され、その後、第5図山)にみるように、Ag粒
子1(1’)表面にNi粒子が付着し、処理が進むと、
第5図(C)にみるように、Ni粒子30が規則正しく
配列したオーダードミクスチャー状態となる。さらに、
処理が進むと、強い圧縮力と剪断力および発生する熱の
作用で、第5図(d)にみるように、複合化Ni3がA
g粒子1(1′)表面を覆うNi層を形成する。Ni層
が形成されるまでの処理時間は、通常、15〜70分程
度である。
At the beginning of the process, the Ni particles 30, which were in a weak agglomerated state as shown in Fig. 5 (al), became primary particles as the drum 21 rotated, and then became Ag particles, as shown in Fig. As Ni particles adhere to the surface of 1 (1') and the treatment progresses,
As shown in FIG. 5(C), an ordered mixture state is formed in which the Ni particles 30 are regularly arranged. moreover,
As the treatment progresses, due to the effects of strong compressive force, shearing force, and generated heat, the composite Ni3 becomes A as shown in Figure 5(d).
A Ni layer is formed to cover the surface of the g particle 1 (1'). The processing time until the Ni layer is formed is usually about 15 to 70 minutes.

そして、発明者らは、Ag粒子1’(Ni微粒子分散の
Ag粒子)の場合、適当な結晶粒界を有しておれば、処
理をさらに続けると複合化Niが結晶粒界に入ってゆく
ことを見出している。すなわち、第6図(a)にみるよ
うに、Ag粒子1′の表面を覆った複合化Ni3は、結
晶粒界のすべり・回転に伴い、第6図(b)にみるよう
に、結晶粒界に侵入し、処理が進行するにつれて、第6
図(C1にみるように、粒界に沿って均一に分散し結晶
粒界に複合化Ni3’が存在した状態になる。この状態
となるまでの処理時間は、通常、60〜120分程度で
ある。なお、Ag粒子1′表面に複合化Niが一部まだ
残留しており、複合化NiがAg粒子1′表面および結
晶粒界の両方に存在した状態で処理を終えてもよい。A
g粒子の結晶粒の適当な平均粒径は、2〜50m程度で
ある。前述のNiを1〜6imt%の量含むAg熔溶湯
超急冷(例えば、水によるアトマイズ)して得たAg粒
子1′だと平均粒径5〜30nの結晶粒が出来ている。
In the case of Ag particle 1' (Ag particle with Ni fine particle dispersion), the inventors found that if the process is continued further, composite Ni will enter the crystal grain boundary if it has appropriate grain boundaries. I am discovering that. In other words, as shown in FIG. 6(a), the composite Ni3 covering the surface of the Ag particle 1' causes the grain boundaries to slip and rotate, as shown in FIG. 6(b). As the process progresses, the sixth
As shown in Figure (C1), a state is reached in which composite Ni3' is uniformly dispersed along the grain boundaries and exists at the grain boundaries.The processing time to reach this state is usually about 60 to 120 minutes. Note that some of the composite Ni still remains on the surface of the Ag particles 1', and the treatment may be completed in a state where the composite Ni exists both on the surfaces of the Ag particles 1' and at the grain boundaries.A.
A suitable average grain size of the crystal grains of the g particles is about 2 to 50 m. The Ag particles 1' obtained by ultra-quenching (for example, atomization with water) a molten Ag containing Ni in an amount of 1 to 6 imt% have crystal grains with an average grain size of 5 to 30 nm.

一方、純Ag粒子1の場合、第7図(al〜(dlにみ
るように、純Ag粒子1の表面にNi粒子30が付着し
、その後、さらに機械的複合化処理が進むと、第7図(
Q)にみるように、複数の純Ag粒子1同士が(つつき
、さらに、第7図tf)にみるように、Ni粒子30を
内に取り込んだ融合体IOになり、最終的に十分な量の
微細なNi粒子30が分散した複合粒子1″が造粒され
る。この複合粒子1″の場合、普通、平均粒径0.01
〜51以下のNi粒子30を使うようにする。
On the other hand, in the case of pure Ag particle 1, as seen in FIGS. figure(
As shown in Q), a plurality of pure Ag particles 1 become a fusion product IO that incorporates Ni particles 30 (pecked together, and as shown in Fig. 7 tf), and finally a sufficient amount of Composite particles 1'' are granulated in which fine Ni particles 30 of
- Ni particles 30 of 51 or less are used.

従来、成形前にAg粒子およびNi粒子はV状ミルで混
合するが、粒子は攪拌混合されるだけで複合化されるわ
けではなく、混合状態を微細にみるとAg粒子とNi粒
子は個々に分離した状態である。
Conventionally, Ag particles and Ni particles are mixed in a V-shaped mill before molding, but the particles are only stirred and mixed and are not composited.If you look at the mixing state in detail, the Ag particles and Ni particles are individually mixed. It is in a separated state.

上記のようにして得た複合粒子を加圧成形して成形体を
得る。
The composite particles obtained as described above are pressure-molded to obtain a molded body.

つぎに、成形体の焼結工程に入る。この焼結工程では、
通常、成形体に対し〔焼成−熱間圧縮〕を施す処理を2
〜3回繰り返すことにより焼結体化する。
Next, the molded body is sintered. In this sintering process,
Usually, the molded body is subjected to [firing-hot compression] two times.
A sintered body is formed by repeating the process ~3 times.

焼結した後、引き伸ばし工程に入る。この引き伸ばし工
程では、焼結体を熱間押し出ししだ後さらに伸線する。
After sintering, the drawing process begins. In this drawing step, the sintered body is hot extruded and then wire drawn.

引き伸ばし工程を経た接点材料は、第1図(alの複合
粒子を用いた場合だと、第8図にみるように、Ag素地
4o中のNi41は伸線方向に細長く引き伸ばされた状
態で存在する。第1図(b)の複合粒子を用いた場合も
、第11図にみるように、Ag素地40中にNi41が
伸線方向に細長く引き伸ばされた状態で存在し、その間
にNi微粒子42が分散することになる。
The contact material that has undergone the stretching process is shown in Figure 1 (in the case of using composite particles of Al, as shown in Figure 8, the Ni41 in the Ag matrix 4o exists in a state of being elongated in the drawing direction). Even when the composite particles shown in FIG. 1(b) are used, as shown in FIG. 11, Ni 41 exists in the Ag matrix 40 in a state of being elongated in the wire drawing direction, and the Ni fine particles 42 exist between them. It will be dispersed.

引き伸ばしは、普通、〔引き伸ばし前の断面積〕/〔引
き伸ばし後の断面積〕が150以上となるように行う。
Stretching is usually performed so that the ratio of [cross-sectional area before stretching]/[cross-sectional area after stretching] is 150 or more.

伸線した後、伸線方向と直角の方向に寸断し、その切断
面を接点面にする。普通、切断してから、第9図または
第12図にみるように、リベット加工を施し電気接点5
0.50′にする第8図の接点材料の場合、Ag素地4
o中にNiが繊維状ないし帯状で接点面(切断面)に対
し交差する方向に配向分散しており、接点面では、第1
0図にみるように、繊維状のNiはドツト状Ni41’
として露出しており、帯状のNiは線状Ni41″とし
て露出している。
After drawing the wire, it is cut into pieces in a direction perpendicular to the drawing direction, and the cut surfaces are used as contact surfaces. Usually, after cutting, rivets are applied to the electrical contacts 5 as shown in Fig. 9 or 12.
In the case of the contact material shown in Figure 8, which is made to be 0.50', Ag base 4
In the contact surface, Ni is oriented and dispersed in the form of fibers or bands in the direction crossing the contact surface (cut surface).
As shown in Figure 0, fibrous Ni is dot-like Ni41'
The strip-shaped Ni is exposed as linear Ni41''.

第11図の接点材料の場合、Ag素地40中にNiが繊
維状ないし帯状で接点面(切断面)に対し交差する方向
に配向分散するとともにその間にNi微粒子が分散して
おり、接点面では、第13図にみるように、繊維状Ni
はドツト状Ni41′として露出しており、帯状のNi
は線状Ni41″として露出するとともにその間にNi
微粒子42が顔を出している。ドツト状Ni41’およ
び線状Ni41″は元々Ag粒子表面のNi層を形成し
ており、そのためにミクロには分断されたりしているが
、マクロには環状に繋がっていて、第10.13図にみ
るように、接点面に網目様のNi部分を現出させている
。このように接点面に網目様にNi部分が現出している
場合は、耐溶着性・耐消耗性等の面で有利であると考え
られる。
In the case of the contact material shown in FIG. 11, Ni is oriented and dispersed in the Ag base 40 in the form of fibers or bands in a direction crossing the contact surface (cut surface), and Ni fine particles are dispersed between them. , as shown in Figure 13, fibrous Ni
is exposed as a dot-like Ni41', and a band-like Ni41' is exposed.
is exposed as a linear Ni41'', and Ni
Fine particles 42 are showing their faces. Dot-like Ni41' and linear Ni41'' originally form a Ni layer on the surface of the Ag particle, and for this reason, they are divided microscopically, but macroscopically they are connected in a ring shape, as shown in Fig. 10.13. As shown in Figure 2, a mesh-like Ni portion appears on the contact surface.When a mesh-like Ni portion appears on the contact surface like this, it is difficult to improve welding resistance, wear resistance, etc. It is considered advantageous.

これは、Ag素地の損傷を各環状Ni内側で留められ接
点面の劣化進行が抑えられると推察されるからである。
This is because it is presumed that damage to the Ag substrate can be prevented on the inside of each ring of Ni, and progress of deterioration of the contact surface can be suppressed.

Ag粒子表面を覆っていたNi層の細く裂けた部分は、
引き延ばされて繊維状となり、裂けなかった部分は引き
延ばされて帯状となるのである。
The thinly torn part of the Ni layer covering the Ag particle surface is
It is stretched and becomes fibrous, and the parts that are not torn are stretched and become a band.

繊維状ないし帯状のNiの径・幅はNi層の厚み・引き
伸ばしの程度で決まるが、ln未満の平均径あるいは1
μ未満の平均幅であることが好ましい。また、Ni微粒
子42は平均粒径0.5 tt*以下であることが好ま
しい。このNi微粒子42は、Ag粒子1′内に平均粒
径1n未満のNi微粒子として予め分散しているもので
ある。繊維状、帯状の両方が存在している必要はなく、
いずれか−方だけがある状態でもよい。
The diameter and width of fibrous or band-like Ni are determined by the thickness and degree of stretching of the Ni layer, but the average diameter is less than ln or 1.
Preferably, the average width is less than μ. Further, it is preferable that the Ni fine particles 42 have an average particle diameter of 0.5 tt* or less. The Ni fine particles 42 are previously dispersed within the Ag particles 1' as Ni fine particles having an average particle diameter of less than 1n. It is not necessary that both fibrous and band-like forms exist;
A state in which only one of the two is present may also be acceptable.

この発明の製造方法で得られる接点材料は、第10図、
第13図に示す構成に限らないことは言うまでもない。
The contact material obtained by the manufacturing method of this invention is shown in FIG.
It goes without saying that the configuration is not limited to that shown in FIG.

例えば、複合粒子1″を使う場合はNiは殆ど繊維状で
分散することになる。
For example, when composite particles 1'' are used, most of the Ni will be dispersed in the form of fibers.

〔作   用〕[For production]

請求項1記載の接点材料では、NiがAg粒子の表面を
覆うNi層の形で予め個々のAg粒子に分かち与えられ
ており、そのため、Niは局在することなく各Ag粒子
間に病躯なく存在し、しかも、Niの量が掻く低く抑え
られてしまうこともなく、十分な量のNiが微細に病躯
なくAg素地中に分散して耐溶着性が向上する。
In the contact material according to claim 1, Ni is distributed in advance to each Ag particle in the form of a Ni layer covering the surface of the Ag particle, so that Ni is not localized and spreads between each Ag particle. Furthermore, the amount of Ni is not suppressed too low, and a sufficient amount of Ni is finely and disease-free dispersed in the Ag base material, improving welding resistance.

請求項2のように、Ag粒子の内部にNi微粒子が分散
している場合、Ni層の形で入れられたNi0間のAg
素地がさらにNi微粒子で強化されるため、より耐溶着
性が向上する。
As in claim 2, when Ni fine particles are dispersed inside the Ag particles, the Ag between the Ni0 inserted in the form of a Ni layer
Since the base material is further strengthened with Ni fine particles, welding resistance is further improved.

請求項3記載の接点材料では、平均粒径1n未満のドツ
ト状ないし平均幅1n未満の線状の微細なNiが病躯な
く接点面に現れ、耐溶着性を向上させる。
In the contact material according to the third aspect, fine Ni in the form of dots with an average particle diameter of less than 1n or in the form of lines with an average width of less than 1n appears on the contact surface without any signs of illness, thereby improving the welding resistance.

請求項4の場合、ド−/ )状ないし線状の微細なNi
の間のAg素地も、平均粒径0.5n以下のNi微粒子
でさらに強化されるため、耐溶着性がより向上する。
In the case of claim 4, fine Ni in the form of
Since the Ag base between the two is further strengthened with Ni fine particles having an average particle size of 0.5n or less, the welding resistance is further improved.

接点材料におけるNi総含有量が、請求項5(または請
求項10)のように、6〜20wt%と適切な量の場合
には、顕著なNi添加効果が確実にあられれる。
When the total Ni content in the contact material is an appropriate amount of 6 to 20 wt% as in claim 5 (or claim 10), a significant Ni addition effect can be reliably achieved.

請求項6記載の製造方法の場合、Ag粒子とNi粒子に
対する機械的複合化処理により、十分な量のNiが個々
のAg粒子に予め分かち与えられており、得られた接点
材料では、十分な量のNiが局在せずに微細な状態で病
躯なく存在し、その結果、耐溶着性が向上する。
In the case of the manufacturing method according to claim 6, a sufficient amount of Ni is distributed in advance to each Ag particle by mechanical compounding treatment of Ag particles and Ni particles, and the resulting contact material has a sufficient amount of Ni. A large amount of Ni is present in a fine and healthy state without being localized, and as a result, the welding resistance is improved.

請求項7の場合、個々のAg粒子表面のNi層が十分な
量と偏りのないNi分散状態を作りだす請求項8の場合
、Ag粒子内に予め分散しているNi微粒子がAg素地
をさらに強化する。
In the case of claim 7, the Ni layer on the surface of each Ag particle creates a sufficient amount and even Ni dispersion state. In the case of claim 8, the Ni fine particles pre-dispersed within the Ag particles further strengthen the Ag matrix. do.

請求項9の場合、複合化NiがAg粒子の結晶粒界に存
在しているため、よりNiが病躯なく分散するようにな
り、耐溶着性が一層向上することが期待できる。
In the case of claim 9, since the composite Ni is present at the grain boundaries of the Ag particles, Ni is dispersed more healthily, and it is expected that the welding resistance will be further improved.

請求項1Oのように、Ag粒子中のNi微粒子の量が1
〜6wt%であって、同Ni微粒子の平均粒径が1n未
満である場合、Ni微粒子による強化効果が顕著である
As in claim 1O, the amount of Ni fine particles in the Ag particles is 1
6 wt% and the average particle size of the Ni fine particles is less than 1n, the reinforcing effect of the Ni fine particles is significant.

請求項12のように、回転可能なドラムを備えるととも
にドラム内周面に臨む曲面を有する固定部材を備えた装
置を用い、前記ドラム内にAg粒子およびNi粒子を投
入した状態でドラムを回転させて両粒子に対し圧縮・剪
断を施すようにすれば、耐溶着性に優れたAg−Ni接
点材料製造用の複合粒子を容易に得ることができる。
According to claim 12, an apparatus including a rotatable drum and a fixing member having a curved surface facing the inner peripheral surface of the drum is used, and the drum is rotated with Ag particles and Ni particles introduced into the drum. By compressing and shearing both particles, composite particles for producing Ag-Ni contact materials having excellent welding resistance can be easily obtained.

〔実 施 例〕〔Example〕

以下、この発明の詳細な説明する。この発明は下記の実
施例に限らない。
The present invention will be explained in detail below. This invention is not limited to the following embodiments.

一実施例1 まず、Ni微粒子分散のAg粒子を、以下のようにして
得た。AgおよびNiを高周波炉で一緒に熔解し165
0℃のf+mを作り、これをノズルより噴出させ高圧水
により水アトマイズした。得られたAg粒子は、平均粒
径が4Q、n、Ni含有量が5.2wt%である。
Example 1 First, Ag particles in which Ni fine particles were dispersed were obtained as follows. Ag and Ni are melted together in a high frequency furnace and 165
F+m at 0° C. was prepared, and water was atomized by jetting it out from a nozzle and using high-pressure water. The obtained Ag particles have an average particle size of 4Q, n, and a Ni content of 5.2 wt%.

このAg粒子と平均粒径1nのNi粒子をNi総含有量
が10wt%となるように秤量し、前述の高速・高剪断
ミルを用い、ドラム内をArガス雰囲気とし媒体剤とし
て平均粒径約1mmのジルコニアビーズを使い、300
0秒処理し、複合粒子を得た。
These Ag particles and Ni particles with an average particle size of 1n were weighed so that the total Ni content was 10 wt%, and using the above-mentioned high-speed, high-shear mill, the inside of the drum was set to an Ar gas atmosphere and used as a medium with an average particle size of about 10%. Using 1mm zirconia beads, 300
The treatment was carried out for 0 seconds to obtain composite particles.

複合粒子の外観(粒子構造)を第14図に、粒子断面(
金属組織)を第15.16図に示す。第14〜16図は
、走査型電子顕微鏡による写真であって、第14.15
図は2次電子線(SEM像)写真、第16図は特性X線
(N i Kα像)写真である。特に、第16図をみる
と、Ag粒子は、内部に平均粒径111m未満のNi微
粒子が分散しており、表面に複合化NiによるNi層が
出来ていることがよく分かる。
Figure 14 shows the appearance (particle structure) of the composite particles, and the particle cross section (
The metallographic structure is shown in Fig. 15.16. Figures 14 to 16 are photographs taken with a scanning electron microscope;
The figure is a secondary electron beam (SEM image) photograph, and FIG. 16 is a characteristic X-ray (N i Kα image) photograph. In particular, when looking at FIG. 16, it is clearly seen that the Ag particles have Ni fine particles having an average particle size of less than 111 m dispersed inside them, and a Ni layer formed by composite Ni is formed on the surface.

つぎに、複合粒子を加圧成形(30kgf/1m) シ
成形体を得た。
Next, the composite particles were press-molded (30 kgf/1 m) to obtain a molded body.

ついで、850℃・2時間の焼成−420℃・90kg
f/wの熱間圧縮を3回繰り返し焼結体を得た。なお、
1回目の焼成は真空雰囲気、2・3回目の焼成は窒素雰
囲気で行った。
Then, baking at 850℃ for 2 hours at -420℃ and weighing 90kg.
The f/w hot compression was repeated three times to obtain a sintered body. In addition,
The first firing was performed in a vacuum atmosphere, and the second and third firings were performed in a nitrogen atmosphere.

続いて、焼結体予熱温度800℃、金型温度420℃で
熱間押し出しして直径8NMまで延ばした後、さらに伸
線し直径2WMにした。伸線した接点材料の長平方向に
沿った断面状態を、第17.18図に示す。第17.1
8図は、走査型電子顕微鏡による写真であって、第17
図は2次電子線(SEM像)写真、第18図は特性X線
(N i Kα像)写真である。第17.18図より、
Ag粒子表面のNi層部分が伸線方向に細長く引き延ば
されて薄くなっており、その間に多数のNi微粒子が分
散していることがよく分かる。伸線の後、伸線方向と直
角の方向に寸断してからりヘット加工を施し、接点性能
評価用のりヘット接点を得た。
Subsequently, the sintered compact was hot-extruded at a preheating temperature of 800° C. and a mold temperature of 420° C. to a diameter of 8 NM, and then further drawn to a diameter of 2 WM. A cross-sectional state of the wire-drawn contact material along the longitudinal direction is shown in FIGS. 17 and 18. Chapter 17.1
Figure 8 is a photograph taken with a scanning electron microscope.
The figure is a secondary electron beam (SEM image) photograph, and FIG. 18 is a characteristic X-ray (N i Kα image) photograph. From Figure 17.18,
It is clearly seen that the Ni layer portion on the surface of the Ag particle is elongated and thinned in the wire drawing direction, and a large number of Ni fine particles are dispersed therebetween. After wire drawing, it was cut into pieces in a direction perpendicular to the wire drawing direction and subjected to glue head processing to obtain glue head contacts for contact performance evaluation.

一実施例2 Ag粒子の平均粒径が380μであり、Ni粒子の平均
粒径が0.02nである他は、実施例1と同様にして接
点材料を得た。
Example 2 A contact material was obtained in the same manner as in Example 1, except that the average particle size of the Ag particles was 380μ and the average particle size of the Ni particles was 0.02n.

なお、複合粒子の外観(粒子構造)を第19図に、断面
(金属組織)を第20.21図に示す。
The appearance (particle structure) of the composite particle is shown in FIG. 19, and the cross section (metallic structure) is shown in FIG. 20.21.

第19〜21図は、走査型電子顕微鏡による写真であっ
て、第19.20図は2次電子線(SEM像)写真、第
21図は特性X線(N i Kα像)写真である。特に
、第21図をみると、Ag粒子は、内部にNi微粒子が
分散しており、表面に複合化NiによるNi層が形成さ
れていることがよく分かる。
19 to 21 are photographs taken using a scanning electron microscope, FIGS. 19 and 20 are secondary electron beam (SEM image) photographs, and FIG. 21 is a characteristic X-ray (N i Kα image) photograph. In particular, when looking at FIG. 21, it is clearly seen that the Ag particles have Ni fine particles dispersed inside them, and a Ni layer formed of composite Ni is formed on the surface.

実施例3 Ag粒子の平均粒径がlOハ、Ni含有量が3゜1im
t%であり、Ni粒子の平均粒径が0.02xであり、
Ni総含有量が20wt%となるようにした他は、実施
例1と同様にして接点材料を得た。
Example 3 The average particle size of Ag particles was 1O, and the Ni content was 3°1im.
t%, the average particle size of the Ni particles is 0.02x,
A contact material was obtained in the same manner as in Example 1, except that the total Ni content was 20 wt%.

実施例4 Ag粒子の平均粒径が200n、結晶粒平均粒径がIQ
n、Ni含有量が3.1匈t%であって、Ni粒子に平
均粒径0.2 nのものを使い、Ni総含有量が15w
t%となるようにするとともに、複合化処理時間を62
00秒とし結晶粒界を複合化Niで覆うようにした他は
、実施例1と同様にして接点材料を得た。
Example 4 The average particle size of Ag particles is 200n, the average crystal grain size is IQ
n, the Ni content is 3.1 hot%, the average particle size of the Ni particles is 0.2 n, and the total Ni content is 15 w.
t%, and the decoding processing time is set to 62%.
A contact material was obtained in the same manner as in Example 1, except that the crystal grain boundaries were covered with composite Ni.

実施例5− Ag粒子にNi微粒子を含まない平均粒径1μの純Ag
粒子を使い、Ni粒子に平均粒径0.02−のものを使
って、Ni総含有量が6wt%となるようにした他は、
実施例1と同様にして接点材料を得た。
Example 5 - Pure Ag with an average particle size of 1 μm that does not contain Ni fine particles in Ag particles
Other than using Ni particles with an average particle size of 0.02- to make the total Ni content 6 wt%,
A contact material was obtained in the same manner as in Example 1.

一比較例1一 実施例1のAg粒子をNiを複合化させずそのまま使っ
て成形体を作った後は、実施例1と同様にして接点材料
を得た。
Comparative Example 1 A contact material was obtained in the same manner as in Example 1, except that the Ag particles of Example 1 were used as they were without being combined with Ni to form a molded body.

比較例2 平均粒径45xの電解Ag粒子と平均粒径5nのカルボ
ニールNi粒子(粉)とを混合し成形体を得た後は、実
施例1と同様にして接点材料を得た。なお、Ni含有量
は10wt%である。
Comparative Example 2 After obtaining a molded body by mixing electrolytic Ag particles with an average particle size of 45x and carbonyl Ni particles (powder) with an average particle size of 5n, a contact material was obtained in the same manner as in Example 1. Note that the Ni content is 10 wt%.

実施例1〜5および比較例1.2のリベット接点につい
て、ASTM試験により耐溶着特性、消耗特性を調べた
(サンプル数N=3)。試験条件は下記の通りである。
The rivet contacts of Examples 1 to 5 and Comparative Example 1.2 were examined for welding resistance and wear characteristics by ASTM tests (number of samples N=3). The test conditions are as follows.

試験結果を、第1表に示す負  荷:     抵抗負
荷 電  圧:        1oov 電  流=         40A 開閉回数:      5万回 実施例1、比較例1の接点材料について、高温硬度の測
定を行った。測定結果を、第22図に示す。また、実施
例1〜5および比較例2の接点材料の接点面における繊
維状ないし帯状のNiの平均粒径ないし平均幅を調べ、
実施例1.3.4については、Ni微粒子の平均粒径も
調べた。
The test results are shown in Table 1 Load: Resistance Load Voltage: 1oov Current = 40A Number of openings and closings: 50,000 times The high temperature hardness of the contact materials of Example 1 and Comparative Example 1 was measured. The measurement results are shown in FIG. 22. In addition, the average particle diameter or average width of fibrous or band-like Ni on the contact surface of the contact materials of Examples 1 to 5 and Comparative Example 2 was investigated,
Regarding Example 1.3.4, the average particle size of the Ni fine particles was also investigated.

第 表 第1表にみるように、実施例の接点材料は、良好な耐消
耗性を持ちながら比較例のものよりも耐溶着性に優れる
ものになっている。
As shown in Table 1, the contact materials of the examples have good abrasion resistance and have better welding resistance than those of the comparative examples.

第22図にみるように、実施例1の接点材料は比較例1
のものに比べ高温硬度が高くなっており、耐溶着性の向
上を裏付ける測定結果である。
As shown in FIG. 22, the contact material of Example 1 is the same as that of Comparative Example 1.
The high-temperature hardness is higher than that of the conventional steel, which is a measurement result that confirms the improvement in welding resistance.

接点面での繊維状ないし帯状のNiの平均粒径あるいは
平均幅は、実施例1.3.4.5の接点材料では1n未
満、実施例2の接点材料では3nであった。一方、比較
例2の接点材料では5pであった。実施例の接点材料の
方がNiが微細な状態で分散しており、耐溶着性の向上
を裏付ける測定結果である。なお、実施例1.3.4の
接点材料のNi微粒子の平均粒径は0.5n以下であっ
た〔発明の効果〕 請求項1記載の接点材料は、Niが局在することなく各
Ag粒子間に溝部なく存在するとともにNi含有量の量
的制限が緩和されるため、耐溶着性に富む優れたAg 
 Ni接点が実現できる。
The average particle diameter or average width of the fibrous or strip-like Ni on the contact surface was less than 1n in the contact material of Examples 1.3.4.5, and 3n in the contact material of Example 2. On the other hand, in the contact material of Comparative Example 2, it was 5p. In the contact material of the example, Ni is dispersed in a finer state, and these measurement results confirm that the welding resistance is improved. Note that the average particle size of the Ni fine particles in the contact material of Example 1.3.4 was 0.5 nm or less. Because there are no grooves between particles and quantitative restrictions on Ni content are relaxed, Ag has excellent adhesion resistance.
Ni contacts can be realized.

請求項2の接点材料は、Ag粒子の内部に予め分散して
いるNi微粒子がAg素地を余すところなく強化するた
め、より耐溶着性が向上する。
In the contact material according to the second aspect, the Ni fine particles predispersed inside the Ag particles completely strengthen the Ag base, so that the welding resistance is further improved.

請求項3記載の接点材料は、Ag粒子の内部に予め分散
しているNi微粒子の粒径および含有量が適切であるた
め、同Ni微粒子による顕著な強化作用が確実に奏され
る。
In the contact material according to the third aspect, since the particle size and content of the Ni fine particles previously dispersed inside the Ag particles are appropriate, a remarkable reinforcing effect by the Ni fine particles is reliably exerted.

請求項4記載の接点材料は、ドツト状ないし線状の微細
なNiとその間に分散するNi微粒子とが接点面を十分
に隈無く強化するため、耐溶着性に冨む優れたAg−N
i接点が実現できる。
The contact material according to claim 4 is an Ag-N material with excellent welding resistance, since the dot-shaped or linear fine Ni particles and the Ni fine particles dispersed therebetween sufficiently strengthen the contact surface.
i-contact can be realized.

請求項5記載の接点材料は、Ni総全含有量適切である
ため、Ni添加効果が顕著である。
Since the contact material according to claim 5 has an appropriate total Ni content, the effect of Ni addition is significant.

請求項6〜12記載の接点材料の製造方法では、機械的
複合化処理により個々のAg粒子に十分な量のNiが予
め分かち与えられていて、十分な量のNiが微細に病躯
なくAg素地中に分散することとなるため、耐溶着性に
冨む優れたAg−Ni接点材料を得ることができる。
In the method for manufacturing a contact material according to claims 6 to 12, a sufficient amount of Ni is distributed in advance to each Ag particle by mechanical compositing treatment, and a sufficient amount of Ni is applied to finely disease-free Ag particles. Since it is dispersed in the base material, an excellent Ag-Ni contact material with high welding resistance can be obtained.

請求項7記載の方法の場合は、複合化NiがAg粒子表
面のNi層として分かち与えられ、これにより、十分な
量のNiが微細に病躯なくAg素地中に確実に分散して
くれる。
In the case of the method described in claim 7, the composite Ni is distributed as a Ni layer on the surface of the Ag particles, thereby ensuring that a sufficient amount of Ni is finely and disease-free dispersed in the Ag matrix.

請求項8記載の方法の場合は、Ag粒子の内部に予め分
散しているNi微粒子がAg素地を余すところなく強化
するため、より耐溶着性が向上するようになる。
In the case of the method described in claim 8, the Ni fine particles previously dispersed inside the Ag particles thoroughly strengthen the Ag base, so that the welding resistance is further improved.

請求項9記載の方法の場合は、複合化NiがAg粒子の
結晶粒界に存在しているため、よりNiが病躯なく分散
し、耐溶着性の一層の向上が期待できる。
In the case of the method described in claim 9, since the composite Ni exists at the grain boundaries of the Ag particles, Ni is dispersed more healthily, and further improvement in welding resistance can be expected.

請求項10記載の方法の場合は、Ag粒子の内部に予め
分散しているNi微粒子の粒径および含有量が適切であ
るため、同Ni微粒子による強化作用が顕著で確実であ
る。
In the case of the method according to claim 10, since the particle size and content of the Ni fine particles previously dispersed inside the Ag particles are appropriate, the reinforcing effect of the Ni fine particles is significant and reliable.

請求項11記載の方法の場合は、Ni総全含有量適切で
あるため、Ni添加効果が顕著である。
In the case of the method according to claim 11, since the total Ni content is appropriate, the effect of Ni addition is significant.

請求項12記載の方法の場合は、接点材料を作るために
必要な複合粒子を容易に作れるという利点がある。
The method according to claim 12 has the advantage that the composite particles necessary for making the contact material can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法で使う複合粒子の一例をあら
れす概略断面図、第2図は、この発明の方法で使う複合
粒子の一例の内部状態をあられす説明図、第3図は、こ
の発明の方法で使う複合粒子を作る装置の要部構成をあ
られす概略断面図、第4図は、同装置の機械的複合化処
理中の状態をあられす説明図、第5〜7図は、複合化処
理の進行に伴う粒子変化を進行順にあられす説明図、第
8図および第11図は、この発明の接点材料の伸線方向
に沿う断面でのNiの分散状態をあられす説明図、第9
図および第12図は、この発明の接点材料を用いたリベ
ット接点をあられす平面図、第10図および第13図は
、上記リベット接点の接点面におけるNiの露出状態を
あられす説明図、第14図は、実施例1の複合粒子の粒
子構造をあられす電子顕微鏡写真、第15図および第1
6図は、同複合粒子断面の金属組織をあられす電子顕微
鏡写真、第17図および第18図は、実施例1の接点材
料の断面の金属組織をあられす電子顕微鏡写真、第19
図は、実施例2の複合粒子の粒子構造をあられす電子顕
微鏡写真、第20図および第21図は、同複合粒子断面
の金属組織をあられす電子顕微鏡写真、第22図は、実
施例1および比較例1の接点材料の高温硬度特性をあら
れすグラフである。 1.1′・・・Ag粒子、1“・・・複合粒子 2・・
・Ni微粒子  3・・・Ni層(複合化Ni)  2
0・・・機械的複合化処理装置  21・・・ドラム 
 21a・・・ドラム内面  23・・・固定部材  
23a・・・半円柱円曲面(曲面)  30・・・Ni
粒子  40・・・Ag素地  41・・・(分散)N
i   42・・・Ni微粒子 代理人 弁理士  松 本 武 彦 第2図 第3図 第6図 第7図 (f) 第14図 Qpm 第15図 ・)@16図 第17図 m−でJグ 第18図 、−へ゛lir 第19図 一100μ瓜 第20図 第21区 l0Cs虎
Fig. 1 is a schematic cross-sectional view of an example of a composite particle used in the method of this invention, Fig. 2 is an explanatory diagram showing the internal state of an example of a composite particle used in the method of this invention, and Fig. 3 is FIG. 4 is a schematic sectional view showing the main parts of the apparatus for producing composite particles used in the method of this invention. FIG. 4 is an explanatory diagram showing the state of the apparatus during mechanical compositing processing. FIGS. 8 and 11 are explanatory diagrams showing the particle changes in the progression order as the composite processing progresses, and FIGS. 8 and 11 are explanatory diagrams showing the dispersion state of Ni in a cross section along the wire drawing direction of the contact material of the present invention. Figure, No. 9
10 and 13 are plan views showing the exposed state of Ni on the contact surface of the rivet contact, and FIGS. Figure 14 is an electron micrograph showing the particle structure of the composite particles of Example 1, Figure 15 and Figure 1.
6 is an electron micrograph showing the metal structure of a cross section of the composite particle, FIGS. 17 and 18 are electron micrographs showing the metal structure of a cross section of the contact material of Example 1, and FIG.
The figure is an electron micrograph showing the particle structure of the composite particles of Example 2, FIGS. 20 and 21 are electron micrographs showing the metal structure of the cross section of the same composite particles, and FIG. 2 is a graph showing the high temperature hardness characteristics of the contact material of Comparative Example 1. 1.1'...Ag particle, 1"...composite particle 2...
・Ni fine particles 3...Ni layer (composite Ni) 2
0... Mechanical composite processing device 21... Drum
21a...Drum inner surface 23...Fixing member
23a...Semi-cylindrical curved surface (curved surface) 30...Ni
Particles 40...Ag base material 41...(dispersion) N
i 42...Ni particle agent Patent attorney Takehiko Matsumoto Figure 2 Figure 3 Figure 6 Figure 7 (f) Figure 14 Qpm Figure 15. Fig. 18 -Helir Fig. 19 - 100μ melon Fig. 20 Section 21 l0Cs tiger

Claims (1)

【特許請求の範囲】 1 表面がNi層で覆われてなるAg粒子の焼結体から
なる接点材料。 2 Ag粒子は、その内部にNi微粒子が分散している
ものである請求項1記載の接点材料。 3 Ag素地中にNiが平均径1μmの繊維状ないし平
均幅1μm未満の帯状で接点面に対し交差する方向に配
向分散してなる接点材料。 4 繊維状ないし帯状のNiの間に平均粒径0.5μm
以下のNi微粒子が分散している請求項3記載の接点材
料。 5 Ni総含有量が6〜20wt%である請求項1から
4までのいずれかに記載の接点材料。 6 Ag粒子とNi粒子を機械的複合化処理により複合
化してなる複合粒子を焼結する接点材料の製造方法。 7 複合粒子では、Ni層がAg粒子表面を覆っている
請求項6記載の接点材料の製造方法。 8 Ag粒子として、Ni微粒子が分散したAg粒子を
用いる請求項6または7記載の接点材料の製造方法。 9 Ag粒子が内部に結晶粒界を有し、この結晶粒界に
Niが存在している請求項6記載の接点材料の製造方法
。 10 Ag粒子中のNi微粒子の量が1〜6wt%であ
って、同Ni微粒子の平均粒径が1μm未満である請求
項8または9記載の接点材料の製造方法。 11 総Ni量が6〜20wt%である請求項6から1
0までのいずれかに記載の接点材料の製造方法。 12 機械的複合化処理は、回転可能なドラムを備える
とともにドラム内周面に臨む曲面を有する固定部材を備
えた装置を用い、前記ドラム内にAg粒子およびNi粒
子を投入した状態でドラムを回転させて両粒子に対し圧
縮・剪断を施すことにより行う請求項6から11までの
いずれかに記載の接点材料の製造方法。
[Claims] 1. A contact material made of a sintered body of Ag particles whose surface is covered with a Ni layer. 2. The contact material according to claim 1, wherein the Ag particles have Ni fine particles dispersed therein. 3 A contact material in which Ni is oriented and dispersed in the Ag base in the form of fibers with an average diameter of 1 μm or in the form of bands with an average width of less than 1 μm in a direction crossing the contact surface. 4 Average particle size of 0.5 μm between fibrous or band-like Ni
The contact material according to claim 3, wherein the following Ni fine particles are dispersed. 5. The contact material according to claim 1, wherein the total Ni content is 6 to 20 wt%. 6. A method for producing a contact material, which involves sintering composite particles obtained by compounding Ag particles and Ni particles by mechanical compounding treatment. 7. The method for manufacturing a contact material according to claim 6, wherein in the composite particles, the Ni layer covers the surfaces of the Ag particles. 8. The method for manufacturing a contact material according to claim 6 or 7, wherein Ag particles in which Ni fine particles are dispersed are used as the Ag particles. 9. The method for manufacturing a contact material according to claim 6, wherein the Ag particles have grain boundaries inside and Ni is present in the grain boundaries. 10. The method for manufacturing a contact material according to claim 8 or 9, wherein the amount of Ni fine particles in the Ag particles is 1 to 6 wt%, and the average particle size of the Ni fine particles is less than 1 μm. 11. Claims 6 to 1, wherein the total Ni amount is 6 to 20 wt%.
0. A method for manufacturing a contact material according to any one of items 0 to 0. 12 The mechanical compounding process uses a device equipped with a rotatable drum and a fixed member having a curved surface facing the inner peripheral surface of the drum, and rotates the drum with Ag particles and Ni particles placed in the drum. The method for producing a contact material according to any one of claims 6 to 11, which is carried out by subjecting both particles to compression and shearing.
JP2270788A 1990-10-09 1990-10-09 Manufacturing method of contact material Expired - Lifetime JP2613966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270788A JP2613966B2 (en) 1990-10-09 1990-10-09 Manufacturing method of contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270788A JP2613966B2 (en) 1990-10-09 1990-10-09 Manufacturing method of contact material

Publications (2)

Publication Number Publication Date
JPH04147933A true JPH04147933A (en) 1992-05-21
JP2613966B2 JP2613966B2 (en) 1997-05-28

Family

ID=17491011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270788A Expired - Lifetime JP2613966B2 (en) 1990-10-09 1990-10-09 Manufacturing method of contact material

Country Status (1)

Country Link
JP (1) JP2613966B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material
JPS60251236A (en) * 1984-05-25 1985-12-11 Matsushita Electric Works Ltd Manufacture of electric contact point material
JPS61279644A (en) * 1985-06-03 1986-12-10 Sumitomo Electric Ind Ltd Manufacture of ag-oxide-type electric contact point material
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material
JPS60251236A (en) * 1984-05-25 1985-12-11 Matsushita Electric Works Ltd Manufacture of electric contact point material
JPS61279644A (en) * 1985-06-03 1986-12-10 Sumitomo Electric Ind Ltd Manufacture of ag-oxide-type electric contact point material
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production

Also Published As

Publication number Publication date
JP2613966B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
Sun et al. Microstructure and fracture toughness of nickel particle toughened alumina matrix composites
O'donnell et al. Production of aluminium matrix composite components using conventional PM technology
US3954459A (en) Method for making sintered silver-metal oxide electric contact material
AU608424B2 (en) Hot isostatic pressing of powders to form high density contacts
CA2033139A1 (en) Silver-metal oxide composite material and process for producing the same
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
CN112126810A (en) Preparation method of silver tungsten carbide graphite electrical contact material
JP3825275B2 (en) Electrical contact member and its manufacturing method
JPH08109422A (en) Production of alumina dispersion strengthened copper
EP1520057B1 (en) Method of making a composite product and in particular a heat sink
JPH04147933A (en) Contact material and its production
CN115141967B (en) High-entropy alloy composite material and preparation method and application thereof
KR101516483B1 (en) METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL
US4386970A (en) Production method of compound-type superconducting wire
JPH09506931A (en) Sintered contact material, manufacturing method thereof, and contact made of this material
KR20030041610A (en) A PREPARATION OF W-Cu COMPOSITE POWDER
JPH06184724A (en) Composite thermal-spraying material and thermally sprayed film and production thereof
JPH042743A (en) Special ceramics dispersion strengthened alloy as well as its manufacture and its working method
TW496905B (en) Molded ceramic articles and production method thereof
JPH04147901A (en) Production of ag composite particles for contact material
US3240592A (en) Dispersion hardened materials and processes therefor
RU2769344C1 (en) Material for arc-quenching and breaking electrical contacts based on copper and method of its production
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
KR20090050732A (en) Method for fabricating oxide dispersion strengthened tungsten heavy alloy by two-step mechanical alloying process
JPH04107232A (en) Contact material and its manufacture