JPH0414549B2 - - Google Patents

Info

Publication number
JPH0414549B2
JPH0414549B2 JP57008440A JP844082A JPH0414549B2 JP H0414549 B2 JPH0414549 B2 JP H0414549B2 JP 57008440 A JP57008440 A JP 57008440A JP 844082 A JP844082 A JP 844082A JP H0414549 B2 JPH0414549 B2 JP H0414549B2
Authority
JP
Japan
Prior art keywords
depth
photoelectric conversion
bonding
region
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008440A
Other languages
Japanese (ja)
Other versions
JPS58125967A (en
Inventor
Masanobu Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57008440A priority Critical patent/JPS58125967A/en
Publication of JPS58125967A publication Critical patent/JPS58125967A/en
Publication of JPH0414549B2 publication Critical patent/JPH0414549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14825Linear CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は電荷転送装置を用いた撮像装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device using a charge transfer device.

電荷転送装置を用いた撮像装置は光電変換素子
群が1次元的に配列されたものと2次元的に配列
されたものとがある。とくに1次元的に配列され
たものはフアクシミリ装置やOCR(光学式文字読
取装置)や画像入力装置などに用いられており主
走査は撮像装置自身の走査機能で行い、副走査を
原稿の機械的な送り機構によつて行なつて、2次
元画像の読み取りを行つている。
Imaging devices using charge transfer devices include those in which photoelectric conversion element groups are arranged one-dimensionally and those in which photoelectric conversion element groups are arranged two-dimensionally. In particular, one-dimensional arrays are used in facsimile devices, OCR (optical character reading devices), image input devices, etc. Main scanning is performed by the scanning function of the imaging device itself, and sub-scanning is performed by the mechanical scanning of the document. The two-dimensional image is read using a feeding mechanism.

従来の電荷転送装置を用いた撮像装置はリセツ
ト機能を持たないため、光電変換した信号をすべ
て読み出し、外部に出力しないと改めて信号の読
み出しを行えなかつた。そのため、OCRのよう
にいろいろな大きさの原稿を同一の装置で読み取
るとき、原稿の大きさ(とくに幅方向)が異なつ
ていても読み取り速度は変わらないことになり、
原稿が小さいときは読み取り速度を早たいという
要望に答えられなかつた。
Since an image pickup device using a conventional charge transfer device does not have a reset function, the signal cannot be read out again unless all the photoelectrically converted signals are read out and output to the outside. Therefore, when reading originals of various sizes using the same device, such as OCR, the reading speed remains the same even if the original sizes (especially in the width direction) are different.
When the originals were small, we were unable to meet the demand for faster reading speed.

本発明の目的はこのような欠点を除くため電荷
転送装置を用いた撮像装置から信号を読み出して
いる途中でリセツトできる撮像装置およびその駆
動方法を提供することにある。
SUMMARY OF THE INVENTION In order to eliminate such drawbacks, it is an object of the present invention to provide an imaging device that can be reset while reading signals from an imaging device using a charge transfer device, and a method for driving the same.

本発明によれば、半導体基板の主面に、前記基
板と反対の導電型を形成してなる第1と第2の接
合領域で、第1の接合領域の接合深さが所定の第
1の深さに形成され、第2の接合領域の接合深さ
が第1の深さに対して浅い所定の第2の深さに形
成され、前記第1の接合領域の主面に光電変換素
子群を形成し、前記第2の接合領域の主面に前記
光電変換素子群からの信号を読み出す装置を形成
してなることを特徴とする固体撮像装置が得られ
る。
According to the present invention, the first and second bonding regions are formed on the main surface of a semiconductor substrate and have a conductivity type opposite to that of the substrate, and the bonding depth of the first bonding region is a predetermined first bonding region. The junction depth of the second junction region is formed at a predetermined second depth shallower than the first depth, and the photoelectric conversion element group is formed on the main surface of the first junction region. There is obtained a solid-state imaging device characterized in that a device for reading signals from the photoelectric conversion element group is formed on the main surface of the second bonding region.

さらに本発明によれば、前記第2の接合領域の
主面にある前記光電変換素子群からの信号を読み
出す装置内にとどまつている信号電荷を前記半導
体基板の深さ方向に掃き出すための逆バイアス電
圧を前記第1の接合領域および第2の接合領域と
前記半導体基板間に、前記光電変換素子群からの
信号電荷を読み出す一周期内の所定の期間印加す
ることを特徴とする固体撮像装置の駆動方法が得
られる。
Further, according to the present invention, a reverse bias is applied to sweep out signal charges remaining in a device for reading out signals from the photoelectric conversion element group on the main surface of the second junction region in the depth direction of the semiconductor substrate. A solid-state imaging device characterized in that a voltage is applied between the first junction region and the second junction region and the semiconductor substrate for a predetermined period within one cycle of reading signal charges from the photoelectric conversion element group. A driving method is obtained.

以下図面にて詳細に説明する。 This will be explained in detail below with reference to the drawings.

第1図は一般的な電荷転送装置を用いた1次元
撮像装置の構成図である。光電変換素子1にて蓄
積された信号電荷は転送電極2に加えられたバイ
アス電圧によつて、信号を読み出すための電荷転
送装置4に送られ、その信号は入力端子5,5′
に加えられるパルス信号にて、出力ゲート電極6
を通して電荷検出部8に送られ、出力端子9から
信号が得られる。
FIG. 1 is a block diagram of a one-dimensional imaging device using a general charge transfer device. The signal charge accumulated in the photoelectric conversion element 1 is sent to the charge transfer device 4 for reading out the signal by the bias voltage applied to the transfer electrode 2, and the signal is sent to the input terminals 5, 5'.
With the pulse signal applied to the output gate electrode 6
The signal is sent to the charge detection section 8 through the charge detection section 8, and a signal is obtained from the output terminal 9.

第1図においてA−A′断面を模式的に示した
ものが第2図である。半導体基板11の主面に絶
縁層12を介してシフトレジスタの電荷転送電極
13、光電変換部からシフトレジスタへの信号電
荷転送を制御する転送ゲート電極14、基板半導
体と異なつた導電型層15(p−n接合)で構成
される光電変換部が形成されており、光電変換部
は隣接するシフトレジスタと、例えば基板不純物
濃度より高い不純物層をもつチヤネルストツプ領
域17によつて分離されている。また、光電変換
部以外は例えば金属層18で光遮蔽されている。
このような1次元撮像装置は、光電変換部1で入
射光量に応じて蓄積して信号電荷を、転送ゲート
2を介してそれぞれ対応するシフトレジスタ4へ
転送する。シフトレジスタへ信号電荷を転送した
のち、転送ゲートが閉じられ、光電変換部1は次
の周期の信号電荷を蓄積する。一方、シフトレジ
スタ4へ転送された信号電荷は矢印10の方向に
転送され、電荷検出部8から信号として外部に取
り出される。
FIG. 2 schematically shows a cross section taken along line A-A' in FIG. 1. A charge transfer electrode 13 of a shift register is provided on the main surface of the semiconductor substrate 11 via an insulating layer 12, a transfer gate electrode 14 for controlling signal charge transfer from the photoelectric conversion section to the shift register, and a layer 15 of a conductivity type different from that of the substrate semiconductor ( A photoelectric conversion section consisting of a pn junction (pn junction) is formed, and the photoelectric conversion section is separated from an adjacent shift register by, for example, a channel stop region 17 having an impurity layer higher than the substrate impurity concentration. Furthermore, parts other than the photoelectric conversion part are shielded from light by, for example, a metal layer 18.
In such a one-dimensional imaging device, the photoelectric conversion unit 1 accumulates signal charges according to the amount of incident light, and transfers the signal charges to the corresponding shift registers 4 via the transfer gates 2. After the signal charges are transferred to the shift register, the transfer gate is closed, and the photoelectric conversion section 1 accumulates the signal charges for the next cycle. On the other hand, the signal charge transferred to the shift register 4 is transferred in the direction of the arrow 10, and is taken out as a signal from the charge detection section 8 to the outside.

このように信号電荷を転送するためには第3図
に示したようなパルス信号を各電極に印加すれば
よい。すなわち、転送ゲート2に加えるパルス信
号は第3図aのとおりで、入力端子3に加えられ
る。電荷転送電極13に加えるパルス信号は第3
図bのとおりで、入力端子5に加えられる。第3
図で周期Teは光電変換された信号電荷がすべて
読み出される一周期を表わし、パルス数n0はすべ
ての光電変換素子1からすべて外部に読み出され
るときに必要なパルス数を表わす。
In order to transfer signal charges in this manner, a pulse signal as shown in FIG. 3 may be applied to each electrode. That is, the pulse signal applied to the transfer gate 2 is as shown in FIG. 3a, and is applied to the input terminal 3. The pulse signal applied to the charge transfer electrode 13 is the third
As shown in Figure b, it is applied to input terminal 5. Third
In the figure, the period T e represents one period in which all photoelectrically converted signal charges are read out, and the number of pulses n 0 represents the number of pulses required when all of the photoelectric conversion elements 1 are read out to the outside.

このように第2図で示した撮像装置ではすべて
の光電変換部1に蓄積された信号電荷はすべて電
荷検出部8から外部へ取り出さないと次の周期の
読み出しができない。したがつて、OCRのよう
に原稿の紙幅がいろいろ変化するような場合でも
すべての光電変換された信号をすべて読み出す必
要があり、原稿の紙幅が狭いものでも、紙幅の広
いものと同じだけ読み出し時間が必要となる。高
速読み出しをしたいときには不利となる。
In this way, in the image pickup device shown in FIG. 2, the next cycle cannot be read unless all the signal charges accumulated in all the photoelectric conversion sections 1 are taken out from the charge detection section 8. Therefore, even when the paper width of the original varies, as in OCR, it is necessary to read out all the photoelectrically converted signals, and even if the paper width of the original is narrow, the readout time is the same as that of a wide paper. Is required. This is disadvantageous when high-speed reading is desired.

次に本発明の実施例について図面を用いて説明
する。以後、説明を簡単にするためNチヤネルの
半導体装置について述べる。
Next, embodiments of the present invention will be described using the drawings. Hereinafter, in order to simplify the explanation, an N-channel semiconductor device will be described.

第4図は本発明の一実施例で、従来例で説明し
た第2図と同様に、第1図に示す電荷転送撮像装
置のA−A′断面を模式的に示したものである。
第4図において第2図と同一機能をもつ領域は同
一記号で示してある。この第4図に示す実施例と
第2図の示した従来例との違いは、基板半導体2
1とp−n接合を形成し、かつ、接合深さが深い
第1のP型領域19と、接合深さが第1のP型領
域19に比較して浅い第2のP型領域20が形成
されていることにある。
FIG. 4 shows one embodiment of the present invention, and similarly to FIG. 2 described in the conventional example, it schematically shows the A-A' cross section of the charge transfer imaging device shown in FIG.
In FIG. 4, areas having the same functions as those in FIG. 2 are indicated by the same symbols. The difference between the embodiment shown in FIG. 4 and the conventional example shown in FIG.
A first P-type region 19 that forms a p-n junction with 1 and has a deep junction depth, and a second P-type region 20 that has a shallow junction depth compared to the first P-type region 19. It lies in the fact that it is being formed.

次に本発明の実施例の動作について説明する。
撮像装置としての基本的な動作は、第2図に示し
た従来例の撮像装置と同様であるため、第4図に
示した本発明の重要な要素であるP型領域19,
20の動作について説明する。
Next, the operation of the embodiment of the present invention will be explained.
Since the basic operation as an imaging device is the same as that of the conventional imaging device shown in FIG. 2, the P-type region 19, which is an important element of the present invention shown in FIG.
The operation of 20 will be explained.

第5図は第4図の実施例の撮像装置の各電極に
加えるパルス信号波形である。第5図aは転送ゲ
ート14に加えるパルス信号で第1図に示した端
子3に印加する。第5図b,cは電荷転送電極1
3に加えるパルス信号で、第1図に示した端子5
と5′に印加する。第5図dは半導体基板21に
加えるパルス信号である。半導体基板21への端
子は第1図には示されていない。
FIG. 5 shows a pulse signal waveform applied to each electrode of the imaging device of the embodiment shown in FIG. FIG. 5a shows a pulse signal applied to the transfer gate 14 and is applied to the terminal 3 shown in FIG. Figure 5b and c are charge transfer electrodes 1
With the pulse signal applied to terminal 3, terminal 5 shown in FIG.
and 5'. FIG. 5d shows a pulse signal applied to the semiconductor substrate 21. FIG. Terminals to semiconductor substrate 21 are not shown in FIG.

第5図b,cに示されているパルス数n1は第1
図に示された光電変換部1の電荷検出部8に近い
方から数えてn1個によつて得られた信号だけを読
み出す場合の駆動方法を示している。したがつ
て、この撮像装置が有している光電変換部1の数
がn0個とすると、それより少ないn1個の光電変換
部からのみ信号を読み出す場合の駆動が可能とな
る。第5図b,cに示したようにパルス数n1であ
れば、まだすべての信号電荷が外部に取り出され
ていない。その取り出されていない信号電荷は第
1図に示した電荷転送部4内にとどまつている。
その残された信号電荷は第5図に示したタイミン
グt1において半導体基板21の方向にはき出して
しまい、光電変換部1から信号を読み出す直前の
状態にすることができる。
The number of pulses n 1 shown in Fig. 5 b, c is the first
A driving method is shown in which only signals obtained by n 1 signals counted from the side closest to the charge detection section 8 of the photoelectric conversion section 1 shown in the figure are read out. Therefore, if the number of photoelectric conversion units 1 included in this imaging device is n 0 , driving is possible when signals are read only from n 1 photoelectric conversion units, which is smaller than n 0 . As shown in FIGS. 5b and 5c, if the number of pulses is n 1 , all signal charges have not yet been extracted to the outside. The signal charges that have not been taken out remain within the charge transfer section 4 shown in FIG.
The remaining signal charges are ejected toward the semiconductor substrate 21 at timing t1 shown in FIG. 5, and a state immediately before reading out a signal from the photoelectric conversion section 1 can be achieved.

第6図は第5図に示したタイミングt0のときの
第4図に示した光電変換部の断面B−B′の深さ
方向の電位分布を示し、第7図は同じタイミング
t0のときの第4図に示した電荷転送装置の断面C
−C′の深さ方向の電位分布を示している。第6
図,第7図とも横軸は深さ方向の距離、縦軸は電
位を表わしている。そしてP型領域19の接合深
さが深く、P型領域20の接合深さが浅い場合で
ある。今、第4図に示すチヤネルトツプ領域17
の電位を基準電位(この場合0ボルト)とする、
N型光電変換部15は転送ゲート14の電位
VTG、転送ゲート閾値電圧VTとするとVTG−VT
電位でセツトされる。そして、P型領域19と基
板21にいたる電位分布は曲線22のとおりであ
る。また曲線23は電荷転送電極13に印加され
ているパルスがハイレベルで電荷転送装置には信
号電荷が存在しない状態での電位分布である。曲
線24は同様に印加されているパルスがローレベ
ルのときの電位分布である。このような状態のと
きは電荷転送装置4内には信号電荷がまだとどま
つている状態である。
Figure 6 shows the potential distribution in the depth direction of the cross section B-B' of the photoelectric conversion section shown in Figure 4 at timing t0 shown in Figure 5, and Figure 7 shows the potential distribution at the same timing.
Cross section C of the charge transfer device shown in Figure 4 at t 0
The potential distribution in the depth direction of −C′ is shown. 6th
In both FIGS. 7 and 7, the horizontal axis represents distance in the depth direction, and the vertical axis represents potential. This is the case where the junction depth of the P-type region 19 is deep and the junction depth of the P-type region 20 is shallow. Now, the channel top area 17 shown in FIG.
Let the potential of be the reference potential (in this case 0 volts),
The N-type photoelectric conversion unit 15 has the potential of the transfer gate 14.
When V TG is the transfer gate threshold voltage V T , it is set at a potential of V TG − V T . The potential distribution between the P-type region 19 and the substrate 21 is as shown by a curve 22. Further, a curve 23 is a potential distribution in a state where the pulse applied to the charge transfer electrode 13 is at a high level and there is no signal charge in the charge transfer device. Similarly, a curve 24 is a potential distribution when the applied pulse is at a low level. In such a state, the signal charge still remains within the charge transfer device 4.

次に第5図に示したタイミングt1のときの断面
B−B′の深さ方向の電位分布を示すと、第8図
の曲線25のとおりとなる。すなわち、P型領域
19と基板半導体21との間に逆バイアス電圧を
第5図のタイミングt1のようにかけててもP型領
域16は完全に空乏化しないような厚さに形成す
ることが望ましく、空乏化してもN型領域15と
P型領域19およびP型領域19と基板半導体2
1のそれぞれが順方向にならないようなP型領域
19の厚さおよび不純物濃度をもたなければなら
ない。
Next, the potential distribution in the depth direction of the cross section B-B' at timing t1 shown in FIG. 5 is shown as a curve 25 in FIG. 8. That is, it is desirable to form the P-type region 16 to a thickness such that it will not be completely depleted even if a reverse bias voltage is applied between the P-type region 19 and the substrate semiconductor 21 at timing t1 in FIG. , even if depleted, the N-type region 15 and the P-type region 19 and the P-type region 19 and the substrate semiconductor 2
The thickness and impurity concentration of the P-type region 19 must be such that each of the P-type regions 19 is not in the forward direction.

そして電荷転送電極13直下の埋込みチヤネル
16からP型領域20、基板半導体21までの断
面C−C′の深さ方向の電位分布をタイミングt1
ときについて示すと第9図のようになる。すなわ
ちP型領域20と基板半導体21間に深い逆バイ
アス電圧が加えるとP型領域20が空乏化し、埋
込みチヤネル16とP型領域20の間が順方向に
なり、転送電極13直下の埋込チヤネル16内に
あつた信号電荷はすべて基板半導体21の方向に
はき出されることになる。このようにして、信号
電荷を転送している途中で、残つている信号電荷
をすべて基板半導体にはき出し、信号をリセツト
することができる。
FIG. 9 shows the potential distribution in the depth direction of the cross section C-C' from the buried channel 16 directly under the charge transfer electrode 13 to the P-type region 20 and the substrate semiconductor 21 at timing t1. That is, when a deep reverse bias voltage is applied between the P-type region 20 and the substrate semiconductor 21, the P-type region 20 is depleted, and the direction between the buried channel 16 and the P-type region 20 becomes forward, and the buried channel directly under the transfer electrode 13 is depleted. All the signal charges in the semiconductor substrate 16 are discharged in the direction of the substrate semiconductor 21. In this way, while the signal charges are being transferred, all remaining signal charges can be discharged to the substrate semiconductor and the signal can be reset.

このことはn0ビツトを有している1次元電荷転
送撮像装置をあたかもn1ビツト(n0>n1)を有し
ている1次元電荷転送撮像装置として動作させて
いることになり、従来例の欠点を克服し、読み出
すビツト数を自由に設定することができる。すな
わち、OCRのような原稿の紙幅がいろいろ変化
してもその紙幅に合せて読み出すべき光電変換部
のビツト数を切換えることが可能となり、文字読
取りの高速化が達成できる。
This means that a one-dimensional charge transfer imaging device having n 0 bits is operated as if it were a one-dimensional charge transfer imaging device having n 1 bits (n 0 > n 1 ). The disadvantages of the example can be overcome and the number of bits to be read can be freely set. That is, even if the paper width of a document such as OCR varies, it is possible to switch the number of bits of the photoelectric conversion unit to be read according to the paper width, and high-speed character reading can be achieved.

第4図の実施例では光電変換部15に過剰に発
生した電荷を電荷転送部16の方にあふれる前に
その過剰電荷を外部にはき出すためのオーバーフ
ロードレイン領域を示していないが、もちろん、
そのような機能を有する電荷転送撮像装置12に
対しても本発明が適用されることはいうまでもな
い。
Although the embodiment shown in FIG. 4 does not show an overflow drain region for discharging the excess charge generated in the photoelectric conversion section 15 to the outside before it overflows to the charge transfer section 16, of course,
It goes without saying that the present invention is also applicable to the charge transfer imaging device 12 having such a function.

次に光電変換部15の直下のP型領域19の深
さを浅くしていき、同一出願人による特願昭55−
130517号固体撮像装置およびその駆動方法に示さ
れた動作をさせて、光電変換部15にて発生した
過剰電荷を基板半導体21にはき出させることが
できる。すなわち、第4図でP型領域19をある
程度浅くすることによつて、第5図に示したタイ
ミングt0のときのP型領域19に対する基板半導
体21に加える逆バイアス電圧を選ぶとP型領域
19は空乏化され、発生した過剰電荷は基板半導
体21の方向にはき出される。そして第5図に示
したタイミングt1のときに加える基板半導体21
へのより高い逆バイアス電圧のときでも、光電変
換部15とP型領域19およびP型領域19と基
板半導体21間が順方向にならないようにP型領
域19の深さを選ぶようにしておく。
Next, the depth of the P-type region 19 directly under the photoelectric conversion section 15 is made shallower, and
Excess charge generated in the photoelectric conversion unit 15 can be discharged to the substrate semiconductor 21 by performing the operation shown in No. 130517 solid-state imaging device and method for driving the same. That is, by making the P-type region 19 shallow to some extent in FIG. 4 and selecting the reverse bias voltage to be applied to the substrate semiconductor 21 with respect to the P-type region 19 at timing t0 shown in FIG. 19 is depleted, and the generated excess charge is discharged toward the substrate semiconductor 21. Then, the substrate semiconductor 21 added at timing t1 shown in FIG.
The depth of the P-type region 19 is selected so that the photoelectric conversion section 15 and the P-type region 19 and between the P-type region 19 and the substrate semiconductor 21 are not in the forward direction even when a higher reverse bias voltage is applied to the P-type region 19. .

第10図に断面B−B′の電位分布図を示し、
曲線29はタイミングt0のときの電位分布を示
し、曲線30はタイミングt1のときの電位分布を
示す。光電変換部15で過剰に発生した電荷はポ
テンシヤルの山29′をこえて、基板半導体21
の方にはき出される。
Figure 10 shows a potential distribution diagram of cross section B-B',
A curve 29 shows the potential distribution at timing t0 , and a curve 30 shows the potential distribution at timing t1 . The excess electric charge generated in the photoelectric conversion unit 15 exceeds the potential peak 29' and is transferred to the substrate semiconductor 21.
It is pushed out towards.

第11図は断面C−C′の電位分布を示し、曲線
32はタイミングt0のときの電位分布を示し転送
電極14直下の埋込みチヤネル16に電荷31は
蓄えられている。この電荷31はタイミングt1
状態になると第9図および第11図の曲線26に
示したような電位分布となり電荷31は電荷27
の状態となり、矢印28の方向に移動し基板半導
体21の方向にはき出される。
FIG. 11 shows the potential distribution on the cross section C-C', and a curve 32 shows the potential distribution at timing t0 , and charges 31 are stored in the buried channel 16 directly below the transfer electrode 14. When this charge 31 enters the state at timing t 1 , the potential distribution becomes as shown by the curve 26 in FIGS. 9 and 11, and the charge 31 becomes the charge 27.
It moves in the direction of arrow 28 and is ejected in the direction of substrate semiconductor 21 .

このようにすると、ブルーミング抑制がオーバ
フロードレインのような領域を設けなくとも可能
であるので、チツプサイズを小さくすることがで
き、量産性に富んだ撮像装置が得られる。
In this way, blooming can be suppressed without providing a region such as an overflow drain, so the chip size can be reduced and an imaging device that is highly mass-producible can be obtained.

第9図および第11図の曲線26に示したよう
な電位分布を得るため、第5図b,cに示したよ
うに電極5,5′にタイミングt1にて期準電位よ
りさらに負方向の電位を印加した方が望ましい場
合がある。
In order to obtain the potential distribution as shown in the curve 26 of FIGS. 9 and 11, the electrodes 5 and 5' are set in a more negative direction than the target potential at timing t1 , as shown in FIGS. 5b and 5c. It may be desirable to apply a potential of .

また、実施例ではNチヤネル型半導体について
説明したが、各領域の導電型を反対にすることで
Pチヤネル半導体に適用できることは言うまでも
ない。
Further, in the embodiment, an N-channel semiconductor has been described, but it goes without saying that the present invention can be applied to a P-channel semiconductor by reversing the conductivity type of each region.

さらに1次元電荷転送撮像装置に限定されるこ
とはなく、インターライン転送形2次元電荷転送
撮像装置にも適用できることは明らかである。
Furthermore, it is clear that the present invention is not limited to a one-dimensional charge transfer imaging device, but can also be applied to an interline transfer type two-dimensional charge transfer imaging device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1次元電荷転送撮像装置の構成図、第
2図は従来の電荷転送撮像装置の第1図に示す断
面A−A′の模式図、第3図a,bは従来の電荷
転送撮像装置に加える駆動パルス信号、第4図は
本発明の一実施例を示す装置の第1図に示す断面
A−A′の模式図、第5図a,b,c,dは本発
明の電荷転送撮像装置に加える駆動パルス信号、
第6図,第8図,第10図は本発明の撮像装置の
第4図に示す断面B−B′の深さ方向の電位分布
図、第7図,第9図,第11図は本発明の撮像装
置の第4図に示す断面C−C′の深さ方向の電位分
布図を示す。 15は光電変換素子、16は埋込みチヤネル、
19は基板と反対の導電型をもち接合領域におい
て順方向にならない領域、20は基板と反対の導
電型をもち接合領域において順方向になりうる領
域を示す。
Fig. 1 is a block diagram of a one-dimensional charge transfer imaging device, Fig. 2 is a schematic diagram of the cross section A-A' shown in Fig. 1 of a conventional charge transfer imaging device, and Fig. 3 a and b are a diagram of a conventional charge transfer imaging device. Driving pulse signals applied to the imaging device, FIG. 4 is a schematic diagram of the cross section A-A′ shown in FIG. 1 of the device showing one embodiment of the present invention, and FIG. a drive pulse signal applied to the charge transfer imaging device;
6, 8, and 10 are potential distribution diagrams in the depth direction of the cross section B-B' shown in FIG. 4 of the imaging device of the present invention, and FIG. 7, FIG. 9, and FIG. 4 shows a potential distribution diagram in the depth direction of the cross section C-C' shown in FIG. 4 of the imaging device of the invention. FIG. 15 is a photoelectric conversion element, 16 is a buried channel,
Reference numeral 19 indicates a region having a conductivity type opposite to that of the substrate and which does not lead to a forward direction in the junction region, and 20 indicates a region having a conductivity type opposite to that of the substrate and which can lead to a forward direction in the junction region.

Claims (1)

【特許請求の範囲】 1 半導体基板の主面に、前記基板と反対の導電
型を形成してなる第1と第2の接合領域で、第1
の接合領域の接合深さが所定の第1の深さに形成
され、第2の接合領域の接合深さが第1の深さに
対して浅い所定の第2の深さに形成され、前記第
1の接合領域の主面に光電変換素子群を形成し、
前記第2の接合領域の主面に前記光電変換素子群
からの信号を読み出す装置を形成してなることを
特徴とする固体撮像装置。 2 半導体基板の主面に、前記基板と反対の導電
型を形成してなる第1と第2の接合領域で、第1
の接合領域の接合深さが所定の第1の深さに形成
され、第2の接合領域の接合深さが第1の深さに
対して浅い所定の第2の深さに形成され、前記第
1の接合領域の主面に光電変換素子群を形成し、
前記第2の接合領域の主面に前記光電変換素子群
からの信号を読み出す装置を形成して構成された
固体撮像装置において、前記第2の接合領域の主
面にある前記光電変換素子群からの信号を読み出
す装置内にとどまつている信号電荷を前記半導体
基板の深さ方向に掃き出すための逆バイアス電圧
を前記第1の接合領域および第2の接合領域と前
記半導体基板間に、前記光電変換素子群からの信
号電荷を読み出す一周期内の所定の期間印加する
ことを特徴とする固体撮像装置の駆動方法。
[Scope of Claims] 1. First and second bonding regions formed on the principal surface of a semiconductor substrate and having a conductivity type opposite to that of the substrate;
The bonding depth of the bonding region is formed to a predetermined first depth, the bonding depth of the second bonding region is formed to a predetermined second depth shallower than the first depth, and forming a photoelectric conversion element group on the main surface of the first bonding region;
A solid-state imaging device characterized in that a device for reading signals from the photoelectric conversion element group is formed on the main surface of the second bonding region. 2. At first and second bonding regions formed on the main surface of a semiconductor substrate and having a conductivity type opposite to that of the substrate,
The bonding depth of the bonding region is formed to a predetermined first depth, the bonding depth of the second bonding region is formed to a predetermined second depth shallower than the first depth, and forming a photoelectric conversion element group on the main surface of the first bonding region;
In the solid-state imaging device configured such that a device for reading out signals from the photoelectric conversion element group is formed on the main surface of the second bonding region, a device for reading signals from the photoelectric conversion element group on the main surface of the second bonding region is formed. A reverse bias voltage is applied between the first junction region and the second junction region and the semiconductor substrate to sweep out the signal charge remaining in the device for reading out the signal in the depth direction of the semiconductor substrate. A method for driving a solid-state imaging device, characterized in that signal charges from a group of elements are applied for a predetermined period within one reading period.
JP57008440A 1982-01-22 1982-01-22 Solid-state image pickup device and its driving method Granted JPS58125967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008440A JPS58125967A (en) 1982-01-22 1982-01-22 Solid-state image pickup device and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008440A JPS58125967A (en) 1982-01-22 1982-01-22 Solid-state image pickup device and its driving method

Publications (2)

Publication Number Publication Date
JPS58125967A JPS58125967A (en) 1983-07-27
JPH0414549B2 true JPH0414549B2 (en) 1992-03-13

Family

ID=11693182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008440A Granted JPS58125967A (en) 1982-01-22 1982-01-22 Solid-state image pickup device and its driving method

Country Status (1)

Country Link
JP (1) JPS58125967A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724576A (en) * 1980-07-22 1982-02-09 Toshiba Corp Solid state image pick up device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124480U (en) * 1978-02-20 1979-08-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724576A (en) * 1980-07-22 1982-02-09 Toshiba Corp Solid state image pick up device

Also Published As

Publication number Publication date
JPS58125967A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
US4322753A (en) Smear and/or blooming in a solid state charge transfer image pickup device
JP3645585B2 (en) Charge coupled device type solid-state imaging device having overflow drain structure
EP0732748B1 (en) Solid-state image sensing device and its driving method
JPH0118629B2 (en)
KR930002818B1 (en) Ccd imager
US11011557B2 (en) Solid-state imaging device
GB2030026A (en) Solid-state imaging device with anti-blooming cicuitry
EP0453530B1 (en) Solid-state image sensor
US7595517B2 (en) Charge coupled device having diverged channel
JPH0230189B2 (en)
JPH0414549B2 (en)
US4860326A (en) Solid-state image pickup device
JP2002151673A (en) Solid-state image pickup element
KR100769563B1 (en) Image sensor for reducing current leakage
JP2697246B2 (en) Solid-state imaging device
JPH0421351B2 (en)
JP2897689B2 (en) Solid-state imaging device
JPH031871B2 (en)
KR950002194B1 (en) Frame transfer style ccd image sensor
JPH0377711B2 (en)
JPS6373658A (en) Solid-state image sensing device
JP2894489B2 (en) Driving method of solid-state imaging device
JP2001177769A (en) Drive method for solid-state image sensing device
KR820002403Y1 (en) Solid state image device having a clamping circuit for drawing out excoss charge
JP2987844B2 (en) Solid-state imaging device and driving method thereof