JPH04144245A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04144245A
JPH04144245A JP26880590A JP26880590A JPH04144245A JP H04144245 A JPH04144245 A JP H04144245A JP 26880590 A JP26880590 A JP 26880590A JP 26880590 A JP26880590 A JP 26880590A JP H04144245 A JPH04144245 A JP H04144245A
Authority
JP
Japan
Prior art keywords
substrate
metal layer
phs
chip
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26880590A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
晋一 坂本
Nobuyuki Kasai
笠井 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26880590A priority Critical patent/JPH04144245A/en
Publication of JPH04144245A publication Critical patent/JPH04144245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To protect a chip end surface, and prevent cracks and breaks at the time of handling, by wrapping the dicing region of a substrate with a heat dissipating electrode (PHS) formed on the rear of the substrate. CONSTITUTION:A base metal layer 12 for forming a PHS is formed on the rear side of a thinned GaAs substrate 1, and a resist pattern 11 for selectively forming the PHS metal layer is formed on the rear side, except a part corresponding with a dicing region. A PHS 13 is formed by plating PHS on the base metal layer 12 by electroplating. After the resist pattern 11 used as a mask is eliminated, the metal layer 12 and an electroplated layer 5 in the dicing region are selectively eliminated by etching using the PHS 13 as a mask, and chip dividing is performed. After that, square chips in the divided state are exfoliated from a glass substrate 6, and washed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置に関し、さらに詳しくは半絶縁性
GBAB基板を用いγこ電界効果トランジスタC以下G
aA3FETと呼ぶ)などにおける分割されγこチップ
構造に係るものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device, and more specifically, a semi-insulating GBAB substrate is used to form a γ field effect transistor C or a G
This relates to the divided γ-chip structure in devices such as aA3FET.

〔従来の技術〕[Conventional technology]

一般に、この種のGaA3FETなどにおいては、装置
構成での熱抵抗の低減、およびソースインダクタンスの
低減を図る1こめをこ、ゲート電極、ノース電極、およ
びドレイン電極などを設けTこ半絶縁性GaAs基板の
厚さを数IOμm程度にまで薄くシ、がつその裏面側か
らはソース電極への貫通孔を形成させると共に、この裏
面側にあって、放熱電極(Plated Heat 5
inku :以下PH5と呼ぶ)を設けて使用するよう
をこしていγこ。
Generally, in this type of GaA3FET, etc., a gate electrode, a north electrode, a drain electrode, etc. are provided to reduce thermal resistance and source inductance in the device configuration. The thickness of the plated heat 5 is reduced to about several IO μm, and a through hole is formed from the back side to the source electrode, and a heat dissipation electrode (Plated Heat 5
Inku (hereinafter referred to as PH5) is provided and used.

ここで、従来のGaAsF E Tの断面図を第3図に
示し、まTこ、その製造方法の主要な工程を第4図(a
)ないし[f) Gこ示す。すなわち、第3図において
、〔1)は半絶縁性GaAs基板、 +21. +3)
および(4)はこのGaA、基板il+の工面上Gこあ
って所定位置を占めて形成される半導体素子のためのそ
れぞれにゲート電極、ソース電極、およびドレイン電極
、■はGaAs基板(1)の裏面側に設けられるPH5
形成のためのめつき下地金属溜、叫はめつき下地金属層
@を介して形成されたPH5である。しかし、この従来
の方法においては、第4図(!L)ないしくf)に示さ
れているように、まず、半絶縁性GaAs基板filの
主面上にあって、所期通りに半導体素子、およびそのゲ
ート電極(2)、ソース電極(3)、ドレイン電極(4
)をそれぞれ形成させると共擾こC第4図(a)、この
半導体素子、および各電極を形成しにワエハ状態でのG
aA3基板(1)上に、貼付用ワックス(7)を用いて
ガラス基板(6)を貼付して置き、この状態でGaA3
基板(1)を裏面側から所望の厚さ(数10声m程度)
までラッピング、およびエツチングすることによって薄
層化させ、かつその後、この薄層化されTこ基板裏面に
第1のレジストパターン(8)を形成する(第4図(b
))。
Here, a cross-sectional view of a conventional GaAsFET is shown in Fig. 3, and the main steps of its manufacturing method are shown in Fig. 4 (a).
) or [f) G shows. That is, in FIG. 3, [1] is a semi-insulating GaAs substrate, +21. +3)
and (4) are gate electrodes, source electrodes, and drain electrodes, respectively, for semiconductor elements formed occupying predetermined positions on the surface of the GaA substrate il+, and ■ is the gate electrode, source electrode, and drain electrode of the GaAs substrate (1). PH5 provided on the back side
The plating base metal layer for formation is PH5 formed via the plating base metal layer. However, in this conventional method, as shown in FIG. , and its gate electrode (2), source electrode (3), and drain electrode (4)
) are formed in a wafer state.
A glass substrate (6) is pasted and placed on the aA3 substrate (1) using pasting wax (7), and in this state GaA3
Cut the board (1) to the desired thickness (about several tens of meters) from the back side.
The first resist pattern (8) is formed on the back surface of the thinned T substrate (see FIG.
)).

続いて、第1のレジストパターン(8)をマスクに用イ
、GaAs 基板(1)をエツチング処理して、その裏
面側から前記ソース電極(3)に達する貫通孔(9)を
形成しくW、4図(c) ) 、まに、マスクに用いT
こ第1のレジストパターン(8)の除去後、金層と他の
金属層からなるPH5下地金属層(2)を形成させ、か
つ所定のダイシング域該当部分にあって、第2のレジス
トパターン0ηを形成する(第4図(d))。次に。
Next, using the first resist pattern (8) as a mask, the GaAs substrate (1) is etched to form a through hole (9) that reaches the source electrode (3) from the back side thereof. Figure 4 (c) ), Mani, T used for mask
After removing the first resist pattern (8), a PH5 base metal layer (2) consisting of a gold layer and another metal layer is formed, and a second resist pattern 0η is formed in the corresponding portion of the predetermined dicing area. (Fig. 4(d)). next.

第2のレジストバター/cu)をマスクに用い、PH5
めっきを施すこと(こよりめっき下地金属層03上にP
H5(Llを形成しく第4 fN(e) )、さらに、
その後マスクに用いγこ第2のレジストノ<ターン01
)を除去し1こ上で、今後はこのPH5QJをマスクに
して、めっき下地金属層Oaをエツチング除去しく第4
図(f) ) 、続いて、ここでは図示省略したが、半
絶縁性GaAs基板(1)を所期通り(こエツチングし
て、チップ分割をなし、このようにして第3図をこ示す
半導体装置を得ることができる。
Use the second resist butter/cu) as a mask, and use the PH5
Applying plating (P on the plating base metal layer 03)
H5 (4th fN(e) to form Ll), and
After that, the second resist layer used as a mask is turned 01.
), and from now on, using this PH5QJ as a mask, remove the plating base metal layer Oa by etching.
Although not shown here, the semi-insulating GaAs substrate (1) was then etched into chips to form the semiconductor shown in FIG. You can get the equipment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のGaAsFETはその製造に際して、PH5を、
マスクに用い半絶縁性QBA1基板のエツチングをなす
ことでチップ分割を行なうようにしているがこのように
して構成されるチップの断面構造は第3図構成から明ら
かな如く、分割されTこチップのGaA、基板の端面が
鋭く尖った形状を呈することになるもので、以後のチッ
プの取扱い時に、この基板1111面、つまり、チップ
端面が欠は易いと云う欠点があり、まγこ、このような
PH5をマスクにしTこGaA、基板のエツチング(こ
よる分割では、PH5の仕上がり形状、および、めっき
下地金属層を除去した後の形状がチップ分割後での基板
主面側の形状に増幅されて、この基板主面側寸法の不揃
いとか、オーバーエツチングなどを生じ易くチップ分割
の歩留まり低下を招くという問題点かあつfこ。
Conventional GaAsFETs require PH5,
The chip is divided by etching the semi-insulating QBA1 substrate used as a mask. GaA has a sharp end surface of the substrate, which has the disadvantage that the substrate 1111 surface, that is, the end surface of the chip, is easily chipped during subsequent handling of the chip. Etching the T-GaA substrate using PH5 as a mask (in this method, the finished shape of PH5 and the shape after removing the plating base metal layer are amplified to the shape of the main surface of the substrate after chip division). However, there is a problem in that irregular dimensions on the main surface of the substrate and over-etching tend to occur, resulting in a decrease in the yield of chip division.

この発明は上記のような問題点を解消するγこめになさ
れγこもので、チップ取扱い時にそのチップ端面が欠く
難く、歩留まり良くチップを提供し得ろようにした半導
体装置を得ることを目的とする・)〔課題を解決する1
こめの手段〕 この発明に係る半導体装置は、基板主面をこ半導体素子
およびその電極を形成させ、かつ裏面@をこ下地金属層
を介してPH5を形成させ1こ半導体装置において、基
板裏面に形成されるPH5により基板のダイシング域を
包み込むように被覆して構成させたものである0 〔作用〕 この発明における半導体装置は、基板主面に半導体素子
およびその電極を形成させ、かつ裏面側に下地金属層を
介してPH5を形成させTこ半導体装置において、基板
裏面に形成されるPH5によって、基板のダイシング域
を包み込むよう・こ被覆させTこので、この放熱電極(
こよりチップ端面が保護されて取扱い時での欠け1割れ
などを防止でき。
The purpose of this invention is to solve the above-mentioned problems and to obtain a semiconductor device in which the end face of the chip is not easily chipped when handling the chip, and the chip can be provided with a high yield. ) [Solving the problem 1
A semiconductor device according to the present invention has semiconductor elements and their electrodes formed on the main surface of the substrate, and PH5 is formed on the back surface via a base metal layer. The dicing area of the substrate is covered with the formed PH5. In the semiconductor device, the dicing area of the substrate is covered with the PH5 formed on the back surface of the substrate, so that the heat dissipating electrode (
This protects the chip end face and prevents chips and cracks during handling.

ま1こ、 caAaのエツチングをレジストパターンを
マスクに行うので基板主面側寸法の不揃いとか、オーバ
ーエツチングをこよるチップ分割歩留まりの低下を解消
でき1歩留まりの良いチップ分割をなし得る。
First, since the caAa etching is performed using the resist pattern as a mask, it is possible to eliminate the drop in chip division yield caused by uneven dimensions on the main surface side of the substrate or overetching, and it is possible to perform chip division with a high yield.

〔実施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例であるG、A、 F ETのチ
ップ構造の概要を模式的に示す断面図、1g2図fa)
ないしくg)は第1図のチップ構造の主要な製造工程を
順次模式的に示すそれぞれの断面図で、図中前記従来の
ものと同一符号は同一または相当部分を示す。すなわち
、第1図において、(1)は半絶縁性CaAa基板、 
+21.  (3)および(4)はこのGaAa基板(
1)の主面上にあって所定位置を占めて形成される半導
体素子のためのそれぞれにゲート電極、ソース電極およ
びドレイン電極、また、(5)はダイシング域(こ選択
的に形成された金属層で、裏面放熱電極(至)と同一材
料で形成されている。さらに、@はG@ A6基板il
lの裏面側に設けられるPH5形成の1こめのめつき下
地金属層、A3はめつき下地金属層02を介し形成され
1こPH5である。Lがし、この実施例の方法において
は第2図(a)ないしくf)に示されているように、ま
ず、半絶縁性GaA3基板「1)の主面上にあって、所
期通りの位置を占めてゲート電極(2)とソース電極(
3)およびドレイン電極(4)とそれぞれに形成させ、
ま1こ、このGaA3基板(1)のダイシング域に対応
しγこ表面上をドライエツチングGこまって最終基板厚
みまで堀り込み裏面PH5と同一材料で被覆する。尚、
ソース電極を裏面に接地する貫通孔(バイアホール)も
同時に形成する(第2図(a))。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a cross-sectional view schematically showing the outline of the chip structure of G, A, FET, which is an embodiment of the present invention.
1 to g) are respective sectional views schematically showing the main manufacturing steps of the chip structure shown in FIG. That is, in FIG. 1, (1) is a semi-insulating CaAa substrate,
+21. (3) and (4) are this GaAa substrate (
(1) is a gate electrode, a source electrode, and a drain electrode for a semiconductor element formed occupying a predetermined position on the main surface, and (5) is a dicing area (a metal selectively formed in this area). It is made of the same material as the back heat dissipation electrode (to).Furthermore, @ is G@ A6 substrate il
One plating base metal layer of PH5 formed on the back side of A3 is formed through the plating base metal layer 02 of PH5. In the method of this embodiment, as shown in FIGS. The gate electrode (2) and the source electrode (
3) and a drain electrode (4), respectively.
First, the surface of the GaA3 substrate (1) corresponding to the dicing area is dry-etched until it reaches the final thickness of the substrate and coated with the same material as the back surface PH5. still,
A through hole (via hole) for grounding the source electrode on the back surface is also formed at the same time (FIG. 2(a)).

ついで、これらの各電極(2)ないしく4)、おJび金
属層(5)をそれぞれに形成しγこウェハ状態でのGa
A3基板[11の表面側には、貼り付は用ワックス(7
)を用いてガラス基板(6)を貼り付けて置き、この状
態でこのGaA3基板filを裏面側から所望の厚さc
数lOμm程度)までラッピング、およびエツチングす
ることにより薄層化させ(第2図(b) ) 、その後
、この4層化されrこGaA3基板(1)の裏面側にP
H5形成用下地金属層(例えばTi :Au )(2)
を形成し、さらに、ダイシング域に対応する箇所を除い
てPH5用金属層を選択的に形成するγこめのレジスト
パターン01)を形成する(第2図(c) ) 、その
後、電解めっきにより、このめっき下地金属層(至)上
にPH5めっきを施してPH5Q3を形成する(第2図
(d))。そしてまた、マスクに用いたレジストパター
ン0υを除去(71,2図(e) ) L 7=後、P
)(S(Llをマスクにして、ダイシング域該当の金属
層(金属層(2)例えばTi :Au )および電解め
っき層(5)をエツチングをこより選択的に除去しチッ
プ分割ど行う(第2図ば))、その後1分割状態にある
各チップをガラス基板(6)から剥離させて洗浄し、こ
のようにして第1図に示す装置構成を得るのである。
Next, each of these electrodes (2) to 4), and a metal layer (5) are formed on each of the Ga layers in the γ-wafer state.
On the front side of the A3 board [11] is wax (7) for pasting.
) to attach the glass substrate (6), and in this state, cut the GaA3 substrate fil to the desired thickness c from the back side.
The layer is thinned by lapping and etching to a thickness of several tens of μm (Fig. 2(b)), and then P is applied to the back side of the four-layered GaA3 substrate (1).
Base metal layer for H5 formation (e.g. Ti:Au) (2)
Then, a γ resist pattern 01) for selectively forming a PH5 metal layer except for the portion corresponding to the dicing area is formed (Fig. 2(c)), and then electrolytic plating is performed. PH5 plating is performed on this plating base metal layer to form PH5Q3 (FIG. 2(d)). Then, remove the resist pattern 0υ used for the mask (71, 2 (e)) L 7=after, P
) (Using S (Ll) as a mask, the metal layer (metal layer (2), e.g., Ti:Au) and the electroplated layer (5) in the dicing area are selectively removed by etching, and chip division is performed (second step). After that, each divided chip is peeled off from the glass substrate (6) and cleaned, thus obtaining the device configuration shown in FIG. 1.

〔発明の効果] 以上のようにこの発明によれば、基板主面に半導体素子
およびその電極を形成させ、かつ裏面側に下地金属層を
介してPH5を形成させた半導体装置において、基板裏
面に形成されるPH5によって、基板のダイシング域を
包み込むように被覆c!−1rTこので、このPH5に
よる被覆(こよりチップ端面を保護できて、取扱い時で
のチップの欠け、割れなどを良好Qこ防止でき、まfこ
、基板のチップ分割を行うダイシング域のG、Asのエ
ツチングは。
[Effects of the Invention] As described above, according to the present invention, in a semiconductor device in which a semiconductor element and its electrodes are formed on the main surface of a substrate, and PH5 is formed on the back surface side through a base metal layer, The formed PH5 coats the dicing area of the substrate c! -1rT Now, this PH5 coating (this protects the chip end face and prevents chips from chipping, cracking, etc. during handling). Etching of As.

レジストパターンをマスクに行うのでチップ分割の寸法
精度が良くかつオーバーエツチングなく行えるので、従
来の場合でのようにPH5をマスクに用いる基板のエツ
チングに比較するとき、その形成精度、ひいては、エツ
チング後の基板自体の寸法nutを格段tこ向上させる
ことができると共に。
Since the resist pattern is used as a mask, chip division can be performed with good dimensional accuracy and without over-etching. Therefore, when compared to etching of a substrate using PH5 as a mask, as in the conventional case, the formation accuracy, and even the post-etching The dimensions of the substrate itself can be significantly improved.

ワエハ面内でのエツチングのアンバランスを解消でき、
PH5Iこよるダイ7ング域を含んだ基板裏面の包み込
み被覆とも相まって、チップ寸法を揃えることが可能と
なり、チップ分割を歩留まり良く行い得るなどの優れγ
こ効果を有する。
Etching imbalance within the wafer surface can be eliminated,
Coupled with the wrap-around coating on the back side of the substrate including the die area, PH5I makes it possible to make the chip dimensions uniform, making it possible to perform chip division with high yield.
It has this effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体装置の一実施例を適用L
l二G、A3FETのチップ構造の概要を模式的に示す
断面図、第2図(a)ないしくf)は第1図のチップ構
造の主要な製造工程を順次模式的をこ示すそれぞれの断
面図、第3図は従来の(、IA、NETのチップ構造の
概要を模式的に示す断面図、第4図(a)ないしくf)
は第3図のチップ構造の主要な製造工程を順次模式的に
示すそれぞれの断面図である。 図・こおいて、〔1)は半絶縁性GaA、基板、(2)
はゲート電極、(3)はソース電極、(4)はドレイン
電極、(5)は金属層、(6)はガラス基板%(7)に
貼り付は用ワックス、 (8)は第1のレジストパター
ン、 f9)はソース電極に達する貫通孔、aηは選択
PH5めつき用レジストパターン、 021はめつき下
地金属層、儲はPH5を示す。 なお、図中、同一符号は同一 まγこは相機部分を示す
FIG. 1 shows an L to which an embodiment of the semiconductor device according to the present invention is applied.
Figures 2(a) to 2(f) are cross-sectional views schematically showing the outline of the chip structure of the A3FET. Figures 3 and 3 are cross-sectional views schematically showing the outline of the chip structure of conventional (, IA, NET, Figures 4 (a) to f).
3 are respective cross-sectional views sequentially schematically showing the main manufacturing steps of the chip structure of FIG. 3. FIG. In the figure, [1] is a semi-insulating GaA substrate, (2)
is the gate electrode, (3) is the source electrode, (4) is the drain electrode, (5) is the metal layer, (6) is the wax attached to the glass substrate (7), and (8) is the first resist. The pattern, f9) is a through hole reaching the source electrode, aη is a resist pattern for selective PH5 plating, 021 is a base metal layer for plating, and the mark is PH5. In addition, in the figure, the same reference numerals indicate the same parts, and the same characters indicate the phase parts.

Claims (1)

【特許請求の範囲】[Claims]  基板主面に半導体およびその電極を形成させ、かつ裏
面側に放熱電極を形成させた半導体装置において、前記
放熱電極が前記半導体装置を包み込むように構成させた
ことを特徴とする半導体装置。
1. A semiconductor device in which a semiconductor and its electrodes are formed on a main surface of a substrate, and a heat dissipation electrode is formed on a back surface side, wherein the heat dissipation electrode is configured to wrap around the semiconductor device.
JP26880590A 1990-10-05 1990-10-05 Semiconductor device Pending JPH04144245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26880590A JPH04144245A (en) 1990-10-05 1990-10-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26880590A JPH04144245A (en) 1990-10-05 1990-10-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04144245A true JPH04144245A (en) 1992-05-18

Family

ID=17463515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26880590A Pending JPH04144245A (en) 1990-10-05 1990-10-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04144245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027859A1 (en) * 2002-08-22 2004-04-01 United Monolithic Semiconductors Gmbh Method for the production of individual monolithically integrated semiconductor circuits
EP1739736A1 (en) * 2005-06-30 2007-01-03 Interuniversitair Microelektronica Centrum ( Imec) Method of manufacturing a semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027859A1 (en) * 2002-08-22 2004-04-01 United Monolithic Semiconductors Gmbh Method for the production of individual monolithically integrated semiconductor circuits
US7084047B2 (en) 2002-08-22 2006-08-01 United Monolithic Semiconductors Gmbh Method for the production of individual monolithically integrated semiconductor circuits
US7442635B2 (en) 2005-01-31 2008-10-28 Interuniversitair Microelektronica Centrum (Imec) Method for producing a semiconductor device and resulting device
US7759701B2 (en) 2005-01-31 2010-07-20 Imec Semiconductor device having interconnected contact groups
EP1739736A1 (en) * 2005-06-30 2007-01-03 Interuniversitair Microelektronica Centrum ( Imec) Method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
US6455945B1 (en) Semiconductor device having a fragment of a connection part provided on at least one lateral edge for mechanically connecting to adjacent semiconductor chips
JPH0215652A (en) Semiconductor device and manufacture thereof
US8101470B2 (en) Foil based semiconductor package
US4499659A (en) Semiconductor structures and manufacturing methods
JP2000173952A (en) Semiconductor device and its manufacture
JPH04144245A (en) Semiconductor device
JP2922066B2 (en) Method for manufacturing semiconductor device
JP2606940B2 (en) Semiconductor device and manufacturing method thereof
JPH08172062A (en) Semiconductor wafer and manufacture thereof
TW200901422A (en) Pre-plated leadframe having enhanced encapsulation adhesion
JPH02148739A (en) Manufacture of semiconductor device
US4661834A (en) Semiconductor structures and manufacturing methods
JPH06112236A (en) Semiconductor device and its manufacture
JPH02214127A (en) Semiconductor device and manufacture thereof
JPH07120642B2 (en) Semiconductor device and manufacturing method thereof
JPH01309351A (en) Semiconductor chip
US6074948A (en) Method for manufacturing thin semiconductor device
JP2564045B2 (en) Semiconductor chip manufacturing method
JPS6221239A (en) Manufacture of semiconductor device
JPS62186569A (en) Manufacture of field effect type transistor
JP2863216B2 (en) Method for manufacturing semiconductor device
JPH04258150A (en) Manufacture of semiconductor device
KR100247700B1 (en) Method of fabricating semicondcutor device
JPH01270308A (en) Semiconductor chip
JPS6066452A (en) Manufacture of semiconductor element