JPH04143486A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH04143486A
JPH04143486A JP26770790A JP26770790A JPH04143486A JP H04143486 A JPH04143486 A JP H04143486A JP 26770790 A JP26770790 A JP 26770790A JP 26770790 A JP26770790 A JP 26770790A JP H04143486 A JPH04143486 A JP H04143486A
Authority
JP
Japan
Prior art keywords
bearing
spring
sub
shaft
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26770790A
Other languages
Japanese (ja)
Inventor
Takao Yoshimura
多佳雄 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26770790A priority Critical patent/JPH04143486A/en
Publication of JPH04143486A publication Critical patent/JPH04143486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent drop of volume efficiency and increase in the compressing power and enhance the reliability by furnishing an oil sump leading from a guide pipe to the gap of spring in the neighborhood of an aux. bearing, and providing a communication hole leading from the oil sump to the space with regrigerant gas. CONSTITUTION:When the refrigerant gasified during transportation till an oil sump 19c comes into the chamber 19c, the refrigerant moves up in the lubricant due to buoyancy without being affected by agitation due to rotation and flows out to the refrigerant gas space 1a through a communication hole 19e. The lubricant 17 in the oil sump 19c intrudes again into the gap 19d between a guide pipe 19a and a spring 19b through the pumping action with rotation of the spring 19b and flows out to the refrigerant gas space 1a upon passing through grooves 3e, 3f, 3d. At this time, lubricant is fed to clearances 18a, 18b, 18c between the main bearing 7 and main shaft 3a, between aux. bearing 8 and aux. shaft 3b, and between roller 5 and crank 3c, respectively. The lubricant having reached the internal circumference of the roller 5 makes the roller end faces lubricated through the action of differential pressure, attains the suction chamber 11a and compression chamber, and is discharged to the space 1a from the discharge hole 15.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に体積効率が良好で摺動損失が少なく更に軸受の
信頼性の高い構成に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to a structure with good volumetric efficiency, low sliding loss, and highly reliable bearings.

従来の技術 従来の構成を第2図、第3図を用いて説明する。Conventional technology The conventional configuration will be explained using FIGS. 2 and 3.

1は冷媒ガス空間1aを有する密閉ケーシング、2は電
動機部であり、シャフト3を介してシリンダ4.ローラ
5.ベーン6、主軸受7.副軸受8により構成される機
械部本体9と連結している。
1 is a sealed casing having a refrigerant gas space 1a, 2 is an electric motor section, and a cylinder 4. Roller 5. Vane 6, main bearing 7. It is connected to a mechanical part main body 9 constituted by a sub-bearing 8.

電動機部2はロータ2a、ステータ2b、及びパランヌ
ウェイト2d 、2eより構成される。シャフト3は主
軸3a、副軸3b、及び主軸3a、副軸3bの軸芯から
Eだけ偏心したクランク3Cよりなる。また、シャフト
3の主軸3I!1と副軸3bのそれぞれには、溝3d、
3eが、更にクランク3Cには溝3fが設けられている
。10はベーン背面に設けられたスプリングである。1
1a。
The electric motor section 2 is composed of a rotor 2a, a stator 2b, and Palanne weights 2d and 2e. The shaft 3 consists of a main shaft 3a, a subshaft 3b, and a crank 3C that is eccentric by E from the axes of the main shaft 3a and subshaft 3b. Also, the main axis 3I of shaft 3! 1 and the subshaft 3b each have a groove 3d,
3e, and a groove 3f is further provided in the crank 3C. 10 is a spring provided on the back side of the vane. 1
1a.

11bはシリンダ4内で、ローラ6、ベーン6゜主軸受
7.副軸受8により構成される吸入室と圧縮室である。
11b is inside the cylinder 4 and includes a roller 6, a vane 6°, a main bearing 7. These are a suction chamber and a compression chamber formed by the sub-bearing 8.

12は、副軸受8に固定されたガイド管12aと副軸3
bに固定されたバネ12bによυ形成される給油機構で
ある。
12 is a guide tube 12a fixed to the sub-bearing 8 and a sub-shaft 3;
This is an oil supply mechanism formed by a spring 12b fixed to b.

13は吸入管であり、副軸受8.シリンダ4の吸入通路
14を介して吸入室11aと連通している。
13 is a suction pipe, and sub-bearing 8. It communicates with the suction chamber 11a via the suction passage 14 of the cylinder 4.

16は吐出孔であり密閉ケーシング1内の冷媒ガス空間
1aと連通している。16は吐出管であシ密閉ケーシン
グ1内に開放している。17は密閉ケーシング1の下部
に溜った潤滑油である。また、主軸3aと主軸受7.副
軸3bと副軸受8.及びローラ5とクランク3Cは、そ
れぞれ微小なりリアランヌ18a、18b、18cを介
して回転摺動自在となっている。
Reference numeral 16 denotes a discharge hole, which communicates with the refrigerant gas space 1a within the sealed casing 1. Reference numeral 16 denotes a discharge pipe which opens into the sealed casing 1. Reference numeral 17 indicates lubricating oil accumulated in the lower part of the sealed casing 1. Moreover, the main shaft 3a and the main bearing 7. Counter shaft 3b and counter bearing 8. The roller 5 and the crank 3C are rotatably slidable via minute rear runnes 18a, 18b, and 18c, respectively.

次に回転式圧縮機の機構について説明する。冷却システ
ム(図示せず)からの冷媒は、吸入管13、吸入孔14
より導かれシリンダ4内の吸入室11aに至る。、吸入
室11aに至った冷媒は、シャフト3のクランク3Cに
回転自在に収納されたローラ6とベーン6により仕切ら
れた圧縮室11bで、電動機部2の回転に伴うシャフト
3の回転運動により漸次圧縮される吐出孔15を介して
密閉ケーシング1内に一旦吐出された後、吐出管16を
介し冷却システムに吐出される。このとき密閉ケーシン
グ1内の下部に溜った潤滑油17は、給油機構12の副
軸3bに固定されたバネ12bの回転に伴い、ガイド管
り2a内を副軸3bの近傍に到シ溝se、3f 、3c
lを通シ、冷媒ガス空間1aに流出する。このとき主軸
受7と主軸3a、副軸受8と副軸3bとのクリアランス
18と、18bおよびクランク3Cとローラ5のクリア
ランス18cに供給されると共にローラ6の内周側より
、差圧によりローラ端面を潤滑した後、吸入室11a、
圧縮室11bに至り、その後吐出孔15より密閉ケーシ
ング1内に吐出される。
Next, the mechanism of the rotary compressor will be explained. Refrigerant from the cooling system (not shown) is supplied to the suction pipe 13 and suction hole 14.
It is guided further and reaches the suction chamber 11a inside the cylinder 4. The refrigerant that has reached the suction chamber 11a is gradually compressed by the rotational movement of the shaft 3 as the electric motor section 2 rotates, in a compression chamber 11b partitioned by a roller 6 and a vane 6, which are rotatably housed in the crank 3C of the shaft 3. After being once discharged into the closed casing 1 through the discharge hole 15 to be compressed, it is discharged through the discharge pipe 16 to the cooling system. At this time, the lubricating oil 17 accumulated in the lower part of the sealed casing 1 flows into the groove se in the guide pipe 2a near the countershaft 3b as the spring 12b fixed to the countershaft 3b of the oil supply mechanism 12 rotates. , 3f , 3c
l passes through and flows out into the refrigerant gas space 1a. At this time, the pressure is supplied to the clearance 18 between the main bearing 7 and the main shaft 3a, the sub-bearing 8 and the sub-shaft 3b, and the clearance 18c between the crank 3C and the roller 5. After lubricating the suction chamber 11a,
It reaches the compression chamber 11b and is then discharged into the sealed casing 1 from the discharge hole 15.

発明が解決しようとする課題 この様な従来の構成では、主軸受、ローラとシャフト間
のクリアランスには、潤滑油が給油機構より供給される
が、密閉ケーシング下部に溜った潤滑油には冷媒が溶は
込んでいる為に、副軸に固定されたバネがガイド管内で
回転すると、撹拌により溶は込んでいた冷媒がガス化し
、それが潤滑油と共に供給されることになる。ガス化し
た冷媒がガイド管内に溜ると潤滑油の流入を阻害し連続
的な潤滑油の供給ができなくなり、主軸受、副軸受、ロ
ーラとシャフト間の潤滑が悪くなり信頼性が低下すると
共に、各摺動部の機材損失が増加する。又、ガス化した
冷媒ガスは、副軸と副軸受間の隙間や溝を介してローラ
の内周側に侵入し、−部がローラの端面より圧縮室や吸
入室に多量に流入し、体積効、率の低下や圧縮動力の増
大となり効率が低下するとの問題があった。この対策と
してガイド管に孔を設はガスを抜くことも考えられるが
、ただ単に孔を設けるだけでは、バネとガイド管の間の
空間にある流体で孔に至ったもの全てが抜けることにな
シガスだけでなく潤滑油も抜けるため給油特性も低下す
るとの問題があった。
Problems to be Solved by the Invention In such a conventional configuration, lubricating oil is supplied from the oil supply mechanism to the clearance between the main bearing, the roller, and the shaft, but the lubricating oil accumulated at the bottom of the sealed casing is filled with refrigerant. Since the melt is contained, when the spring fixed to the subshaft rotates within the guide tube, the refrigerant contained in the melt is gasified by stirring, and it is supplied together with the lubricating oil. When gasified refrigerant accumulates in the guide tube, it obstructs the inflow of lubricating oil, making it impossible to continuously supply lubricating oil, which deteriorates the lubrication between the main bearing, sub-bearing, rollers and shaft, reducing reliability. Equipment loss at each sliding part increases. In addition, the gasified refrigerant gas enters the inner circumferential side of the roller through the gap and groove between the subshaft and the subbearing, and a large amount of the refrigerant gas flows into the compression chamber and suction chamber from the end surface of the roller, reducing the volume. There has been a problem that the efficiency decreases due to a decrease in efficiency and compression power and an increase in compression power. As a countermeasure to this, it is possible to create a hole in the guide tube to release gas, but simply providing a hole will cause all the fluid in the space between the spring and the guide tube to escape. There was a problem in that not only the gas but also the lubricating oil escaped, resulting in a deterioration in the oil supply characteristics.

本発明は、上記従来例の欠点を解決するものでアリ、体
積効率の低下や圧縮動力の増加を防止し、更に信頼性を
向上することを目的としている。
The present invention solves the above-mentioned drawbacks of the conventional example, and aims to prevent a decrease in volumetric efficiency and an increase in compression power, and further improve reliability.

課題を解決するための手段 本発明は、ガイド管とバネの隙間と連通ずる油溜め室を
副軸受の近傍に設け、更に油溜め室と冷媒ガス空間を連
通ずる連通孔を設けたものである。
Means for Solving the Problems The present invention provides an oil reservoir near the sub-bearing that communicates with the gap between the guide tube and the spring, and further provides a communication hole that communicates the oil reservoir and the refrigerant gas space. .

作   用 本発明は上記した構成により、バネの回転によりガイド
管内を搬送される潤滑油は、−旦油溜め室に至るがこの
とき潤滑油より出たガス冷媒は、油溜め室に入ると共に
、バネの回転作用から開放され、軽いガスだけが油溜め
室上部に集まり、連通孔より排出される。従って、再度
バネの回転によりガイド管内を副軸受側に流れる潤滑油
にはガス冷媒が含まれることが少なくなシ、効率と信頼
性が向上する。
According to the above-described structure, the lubricating oil conveyed through the guide pipe by the rotation of the spring first reaches the oil sump chamber, but at this time, the gas refrigerant discharged from the lubricating oil enters the oil sump chamber. Freed from the rotational action of the spring, only light gas collects in the upper part of the oil sump chamber and is discharged from the communication hole. Therefore, the lubricating oil that flows through the guide tube toward the sub-bearing side due to the rotation of the spring again contains less gas refrigerant, improving efficiency and reliability.

実施例 以下本発明の一実施例を第1図にて説明する。Example An embodiment of the present invention will be described below with reference to FIG.

尚、従来例と同一部分は同一符号を付し詳細な説明を省
略する。1′9は給油機構であり、ガイド管19a、バ
ネ19bにより構成される。ガイド管19aは一端が副
軸受8に固定され他端が潤滑油17中に開孔すると共に
副軸受8の近傍部に油溜め室19Cを有する。またバネ
19bは、一端が副軸3bに固定され他端が潤滑油17
中につかると共にガイド管19a中に収納されている。
Note that the same parts as in the conventional example are given the same reference numerals and detailed explanations are omitted. Reference numeral 1'9 denotes an oil supply mechanism, which is composed of a guide pipe 19a and a spring 19b. The guide tube 19a has one end fixed to the sub-bearing 8, the other end opening into the lubricating oil 17, and has an oil reservoir chamber 19C in the vicinity of the sub-bearing 8. The spring 19b has one end fixed to the subshaft 3b and the other end fixed to the lubricating oil 17.
It is held inside the guide tube 19a.

油溜め室19cは、ガイド管19aとバネ19b間の隙
間19dに連通ずると共に、油溜め室の断面積はガイド
管19aのその他の部位より大きく設定されている。油
溜め室19cの鉛直方向上部には連通孔19eが開孔さ
れ、油溜め室19cと冷媒ガス空間1aを連通している
The oil reservoir chamber 19c communicates with a gap 19d between the guide tube 19a and the spring 19b, and the cross-sectional area of the oil reservoir chamber is set to be larger than other parts of the guide tube 19a. A communication hole 19e is formed in the vertical upper part of the oil reservoir chamber 19c, and communicates the oil reservoir chamber 19c with the refrigerant gas space 1a.

かかる構成において、圧縮機が運転されると吸入管13
より吸入された冷媒ガスは従来と同様に圧縮され吐出管
16より吐出される。
In such a configuration, when the compressor is operated, the suction pipe 13
The refrigerant gas sucked in is compressed and discharged from the discharge pipe 16 as in the conventional case.

また、冷媒の溶解した潤滑油17は、従来と同様にバネ
19bの回転に伴いガイド管り9a内を搬送され、油溜
め室19c部に至る。ここで、油溜め室19Cの断面積
は、それに至るガ・イド管19aの断面積に比べて大き
くなっており、油溜め室19c内ではバネ19bの回転
の影響から一旦開放される。従って、油溜め室19cに
至る搬送の過程でガス化した冷媒が油溜め室19c内に
入ると、回転による撹拌の影響を受けずに、浮力により
潤滑油中を上部に移動し、その後連通孔19eより冷媒
ガス空間1a中に流出する。また油溜め室19c内の潤
滑油17は、バネ19bの回転によるポンピング作用に
より再度ガイド管19aとバネ19b間の隙間19d内
に入り、その後、溝3e 、af 、3dを通シ冷媒ガ
ス窒間1aに流出する。このとき、主軸受7と主軸3a
、副軸受8と副軸3b、ローラ6とクランク30間のク
リアランス18a、18b、18cに潤滑油が供給され
る。また、ローラ5の内周に至った潤滑油は、差圧によ
りローラ端面を潤滑した後、吸入室11a。
Further, the lubricating oil 17 in which the refrigerant is dissolved is conveyed through the guide pipe 9a as the spring 19b rotates, as in the conventional case, and reaches the oil reservoir chamber 19c. Here, the cross-sectional area of the oil reservoir chamber 19C is larger than the cross-sectional area of the guide pipe 19a leading thereto, and the oil reservoir chamber 19c is temporarily released from the influence of the rotation of the spring 19b. Therefore, when the gasified refrigerant enters the oil sump chamber 19c during the transportation process to the oil sump chamber 19c, it moves upward in the lubricating oil due to buoyancy without being affected by rotational agitation, and then flows through the communication hole. The refrigerant gas flows out from 19e into the refrigerant gas space 1a. Furthermore, the lubricating oil 17 in the oil reservoir 19c enters the gap 19d between the guide pipe 19a and the spring 19b again due to the pumping action caused by the rotation of the spring 19b, and then passes through the grooves 3e, af, and 3d between the refrigerant gas and nitrogen. Flows into 1a. At this time, the main bearing 7 and the main shaft 3a
, lubricating oil is supplied to clearances 18a, 18b, and 18c between the subbearing 8 and the subshaft 3b, and between the roller 6 and the crank 30. Further, the lubricating oil that has reached the inner circumference of the roller 5 lubricates the end face of the roller due to the differential pressure, and then enters the suction chamber 11a.

圧縮室11bに至り、その後吐出孔15よシ冷媒ガス空
間1aに吐出される。
The refrigerant reaches the compression chamber 11b and is then discharged through the discharge hole 15 into the refrigerant gas space 1a.

従って、冷媒ガスが給油機構19内に溜シ潤滑油の供給
が阻害されることがなくなシ、給油が連続的に行なえる
と共に、クリアランス18a。
Therefore, the refrigerant gas is stored in the oil supply mechanism 19, and the supply of lubricating oil is not obstructed, and the oil supply can be performed continuously.

18b、18cおよびローラ5の端面には冷媒ガスを殆
ど含まない潤滑油が供給され、機械損失が減少し信頼性
も向上する。また、ローラ6の端面から吸入室11a、
圧縮室11bに侵入する冷媒量も減少し体積効率が向上
すると共に、漏れによる動力損失も減少し、信頼性と効
率の高い圧縮機を供給できる。
Lubricating oil containing almost no refrigerant gas is supplied to the end surfaces of 18b, 18c and the roller 5, reducing mechanical loss and improving reliability. Further, from the end surface of the roller 6, the suction chamber 11a,
The amount of refrigerant that enters the compression chamber 11b is also reduced, improving volumetric efficiency, and power loss due to leakage is also reduced, making it possible to provide a highly reliable and efficient compressor.

発明の効果 以上の説明から明らかな様に本発明は、冷媒ガス空間を
有する密閉ケーシングと、密閉ケーシングの下部に溜め
られた潤滑油と、密閉ケーシング内に収納されるシリン
ダと、シリンダの両端に固定される主軸受および副軸受
と、主軸受と副軸受内を回転摺動し主軸と副軸とクラン
クよシ構成されるシャフトと、一端が副軸受に固定され
他端が潤滑油中に開口するガイド管と、一端が副軸に固
定され他端が潤滑油中に至り且つガイド管内に収納され
たバネと、副軸受の近傍にありガイド管とバネの間の隙
間に連通ずる油溜め室と、油溜め室と冷媒ガス空間を連
通し且つ鉛直方向上方に開孔する連通孔を備えたもので
あるから、給油が連続的となり軸受の摺動部に冷媒ガス
の少ない潤滑油を供給することができ信頼性が向上し、
機械損失も減少すると共に体積効率が向上し、信頼性と
効率の高い圧縮機を供給することができる。
Effects of the Invention As is clear from the above description, the present invention includes a sealed casing having a refrigerant gas space, a lubricating oil stored in the lower part of the sealed casing, a cylinder housed in the sealed casing, and a lubricant at both ends of the cylinder. A fixed main bearing and sub-bearing, a shaft that rotates and slides within the main bearing and sub-bearing and is composed of the main shaft, sub-shaft, and crank; one end is fixed to the sub-bearing and the other end opens into lubricating oil. a spring whose one end is fixed to the sub-shaft and whose other end extends into the lubricating oil and is housed within the guide tube; and an oil sump chamber located near the sub-bearing and communicating with the gap between the guide tube and the spring. Since it is equipped with a communication hole that connects the oil sump chamber and the refrigerant gas space and opens vertically upward, the oil supply is continuous and lubricating oil with less refrigerant gas is supplied to the sliding parts of the bearing. can improve reliability,
Mechanical losses are also reduced and volumetric efficiency is improved, making it possible to provide a highly reliable and efficient compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回転式圧縮機の縦断面
図、第2図は従来の回転式圧縮機の縦断面図、第3図は
第2図のm−m’線における矢視図である。 1・・・・・・密閉ケーシング、1a・・・・・・冷媒
ガス空間、3・・・・・・シャフト、3a・・・・・・
主軸、3b・川・・副軸、3C・・・・・・クランク、
4・・・・・・シリンダ、7・・・・・・主軸受、8・
・・・・・副軸受、17・・・・・・潤滑油、19a・
・自・・ガイド管、19b−・・・・・バネ、19c・
・・・・・油溜め室、19d・・・・・・隙間、19e
・・・・・・連通孔。 代理人の氏名 弁理士 小鍜治  明 ほか2名3G−
クランク 第 図 第 図
Fig. 1 is a longitudinal sectional view of a rotary compressor showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of a conventional rotary compressor, and Fig. 3 is a longitudinal sectional view taken along line m-m' in Fig. 2. It is an arrow view. 1... Sealed casing, 1a... Refrigerant gas space, 3... Shaft, 3a...
Main shaft, 3b・river・secondary shaft, 3C・・・・crank,
4...Cylinder, 7...Main bearing, 8...
...Secondary bearing, 17...Lubricating oil, 19a.
・Self: Guide tube, 19b-・Spring, 19c・
...Oil sump room, 19d...Gap, 19e
・・・・・・Communication hole. Name of agent: Patent attorney Akira Okaji and two others 3G-
Crank diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 冷媒ガス空間を有する密閉ケーシングと、前記密閉ケー
シングの下部に溜められた潤滑油と、前記密閉ケーシン
グ内に収納されるシリンダと、前記シリンダの両端に固
定される主軸受および副軸受と、前記主軸受と副軸受内
を回転摺動し主軸と副軸とクランクより構成されるシャ
フトと、一端が前記副軸受に固定され他端が前記潤滑油
中に開口するガイド管と、一端が前記副軸に固定され他
端が前記潤滑油中に至り且つ前記ガイド管内に収納され
たバネと、前記副軸受の近傍にあり前記ガイド管と前記
バネの間の隙間に連通する油溜め室と、前記油溜め室と
前記冷媒ガス空間を連通し且つ鉛直方向上方に開孔する
連通孔とを備えた回転式圧縮機。
a sealed casing having a refrigerant gas space, lubricating oil stored in the lower part of the sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub bearing fixed to both ends of the cylinder, and the main bearing. a shaft that rotates and slides within a bearing and a sub-bearing and is composed of a main shaft, a sub-shaft and a crank; a guide tube having one end fixed to the sub-bearing and the other end opening into the lubricating oil; and one end fixed to the sub-shaft. a spring fixed to the guide tube with the other end extending into the lubricating oil and housed in the guide tube; an oil sump chamber located near the sub-bearing and communicating with the gap between the guide tube and the spring; A rotary compressor comprising a communication hole that communicates between a storage chamber and the refrigerant gas space and opens vertically upward.
JP26770790A 1990-10-04 1990-10-04 Rotary compressor Pending JPH04143486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26770790A JPH04143486A (en) 1990-10-04 1990-10-04 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26770790A JPH04143486A (en) 1990-10-04 1990-10-04 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH04143486A true JPH04143486A (en) 1992-05-18

Family

ID=17448430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26770790A Pending JPH04143486A (en) 1990-10-04 1990-10-04 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH04143486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023509809A (en) * 2020-12-10 2023-03-10 松下・万宝(▲広▼州)▲圧▼▲縮▼机有限公司 Compressor pumps and compressors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023509809A (en) * 2020-12-10 2023-03-10 松下・万宝(▲広▼州)▲圧▼▲縮▼机有限公司 Compressor pumps and compressors

Similar Documents

Publication Publication Date Title
KR101480464B1 (en) Scoroll compressor and refrigerator having the same
JPS62101895A (en) Rotary compressor with blade slot pressure groove
JPH0893664A (en) Scroll compressor
JP5170197B2 (en) Scroll compressor
JP2513444B2 (en) High pressure rotary compressor
JP2008303844A (en) Scroll fluid machine
JP2013108389A (en) Compressor and refrigerating device
CN116857189A (en) Compressor with axial flexibility
CN110925211A (en) Low-backpressure rolling rotor type compressor and air conditioner
JP2017025789A (en) Rotary compressor
JPH04143486A (en) Rotary compressor
JP2013137002A (en) Scroll compressor
JP2016176458A (en) Compressor
JP2769177B2 (en) Rotary compressor
US6079967A (en) Fluid compressor
JPH04370384A (en) Scroll compressor
CN211950862U (en) Low-backpressure rolling rotor type compressor and air conditioner
JPS5929791A (en) Scroll compressor
JP6608101B1 (en) Scroll compressor
JPH08159071A (en) Rotary compressor
JPH0494490A (en) Rotary pump
JPH04308392A (en) Rotary compressor
KR0127035B1 (en) Closed rotary compressor
JP2604835B2 (en) Rotary compressor
JPH04179894A (en) Rotary compressor