JPH04179894A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH04179894A
JPH04179894A JP30987290A JP30987290A JPH04179894A JP H04179894 A JPH04179894 A JP H04179894A JP 30987290 A JP30987290 A JP 30987290A JP 30987290 A JP30987290 A JP 30987290A JP H04179894 A JPH04179894 A JP H04179894A
Authority
JP
Japan
Prior art keywords
space
refrigerant gas
spring
lubricating oil
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30987290A
Other languages
Japanese (ja)
Inventor
Takao Yoshimura
多佳雄 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP30987290A priority Critical patent/JPH04179894A/en
Publication of JPH04179894A publication Critical patent/JPH04179894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent the lowering of volumetric efficiency and the increase in compressive motive power and improve reliability by providing a communicating tube, where one edge is opened and the other edge is opened to the refrigerant gas space, in the space on the inner diameter side of a spring where one edge is fixed to a countershaft and the other edge reaches into lubricating oil and is also housed in a guide tube. CONSTITUTION:In a communicating tube 19, one edge is communicate with the space 12c on the inner diameter side of a spring 12b, and the other edge is communicated with the refrigerant gas space 1a, and a fixing plate 21 to fix the communicating tube 19 to a guide tube 12b has a communicating hole 21a. When a compressor is operated, though refrigerant gas produced by means of a stirring action accompanied by rotation of the spring 12b is also carried similarly to lubricating oil 17, the lubricating oil 17 having large specific gravity flows on the space 12d side on the outer diameter side of the spring 12b by means of centrifugal force, and the refrigerant gas having small specific gravity remains on the space 12c side on the inner diameter side of the spring 12b. The refrigerant gas remained in the space 12c on the inner diameter side of the spring 12b is exhausted to the refrigerant gas space 1a through the communicating tube 19, and the lubricating oil accompanying less refrigerant gas flowing in the space 12d on the outer diameter side of the spring 12b flows out into the refrigerant gas space 1a through grooves 3e, 3f and 3d.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に体積効率が良好で摺動損失が少なく更に軸受の
信頼性の高い構成に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to a structure with good volumetric efficiency, low sliding loss, and highly reliable bearings.

従来の技術 従来の構成を第2図、第3図を用いて説明する。Conventional technology The conventional configuration will be explained using FIGS. 2 and 3.

1は冷媒ガス空間1a’(H有する密閉ケーシング、2
は電動機部であり、シャフト3を介してシリンダ4.ロ
ーラ6、ベーン6、主軸受7.副軸受8により構成され
る機械部本体9と連結している。
1 is a hermetic casing having a refrigerant gas space 1a'(H; 2
is an electric motor section, which is connected to cylinder 4 through shaft 3. Roller 6, vane 6, main bearing 7. It is connected to a mechanical part main body 9 constituted by a sub-bearing 8.

電動機部2はロータ2a、ステータ2b、及びバランス
ウェイト2d、2eより構成される。シャフト3は主軸
3a、副軸3b、及び主軸3a、副軸3bの軸芯からE
だけ偏心したクランク3Cよすする。また、シャフト3
の主軸3a−と副軸3bのそれぞれには、溝3d、3e
が、更にクランク3Cには溝31が設けられている。1
0はベーン背面に設けられたヌプリングでるる。11a
The electric motor section 2 includes a rotor 2a, a stator 2b, and balance weights 2d and 2e. The shaft 3 has a main shaft 3a, a sub-shaft 3b, and an E distance from the axes of the main shaft 3a and sub-shaft 3b.
The eccentric crank 3C is correct. Also, shaft 3
Grooves 3d and 3e are provided in the main shaft 3a- and the sub-shaft 3b, respectively.
However, a groove 31 is further provided in the crank 3C. 1
0 is the nup ring provided on the back of the vane. 11a
.

11bはシリンダ4内で、ローラ6、ベーン6゜主軸受
7.副軸受8により構成される吸入室と圧縮室でおる。
11b is inside the cylinder 4 and includes a roller 6, a vane 6°, a main bearing 7. There is a suction chamber and a compression chamber formed by the sub-bearing 8.

12は、副軸受8に固定されたガイド管12aと副軸3
bに固定されたバネ12bにより形成される給油機構で
ある。従って、ガイド管12a内は、バネ12bの内径
側の空間12cと外径側]の空間12dの二つの空間を
有する。
12 is a guide tube 12a fixed to the sub-bearing 8 and a sub-shaft 3;
This is an oil supply mechanism formed by a spring 12b fixed to b. Therefore, the inside of the guide tube 12a has two spaces: a space 12c on the inner diameter side of the spring 12b and a space 12d on the outer diameter side.

13は吸入管であり、副軸受8.シリンダ4の吸入通路
14を介して吸入室11aと連通している。
13 is a suction pipe, and sub-bearing 8. It communicates with the suction chamber 11a via the suction passage 14 of the cylinder 4.

16は吐出孔であり密閉ケーシング1内の冷媒ガス空間
1aと連通している。16は吐出管であり密閉ケーシン
グ1内に開放している。17は密閉ケーシング1の下部
に溜った潤滑油である。また、主軸3aと主軸受7.副
軸3bと副軸受8.及びローラ5とクランク3cは、そ
れぞれ微小なりリアランス18a、18b、18cを介
して回転摺動自在となっている。
Reference numeral 16 denotes a discharge hole, which communicates with the refrigerant gas space 1a within the sealed casing 1. Reference numeral 16 denotes a discharge pipe that opens into the sealed casing 1. Reference numeral 17 indicates lubricating oil accumulated in the lower part of the sealed casing 1. Moreover, the main shaft 3a and the main bearing 7. Counter shaft 3b and counter bearing 8. The roller 5 and the crank 3c are rotatably slidable via minute rearances 18a, 18b, and 18c, respectively.

次に回転式圧縮機の機構について説明する。冷却システ
ム(図示せず)からの冷媒は、吸入管13、吸入孔14
よシ導71”れシリンダ4内の吸入室11aに至る。吸
入室11aに至った冷媒は、シャフト3のクランク3C
に回転自在に暇納されたローラ6とベーン6により仕切
られた圧縮室11bで、電動機部2の回転に伴うシャフ
ト3の回転運動により漸次圧縮される吐出孔16を介し
て密閉ケーシング1内に一旦吐出された伐、吐出管16
を介し冷却システムに吐出される。このとき密閉ケーシ
ング1内の下部に溜った潤滑油17は、給油機構12の
副軸3bK固定されたバネ12bの回転に伴い、ガイド
管り2a内のバネ12bの内径側の空間12cと外径側
の空間12dを介して副軸3bの近傍に到り溝3e、3
f、3dを通り、冷媒ガス空間1aに流出する。このと
き主軸受7と主軸3a、副軸受8と副軸3bとのクリア
ランス18a、18bおよびクランク3Cとローラ5の
クリアランフ、180に供給されると共にローラ6の円
周側より、差圧によりローラ端面を潤滑した後、吸入室
11a、圧縮室11bに至り、その後吐出孔15より密
閉ケーシング1内に吐出される。
Next, the mechanism of the rotary compressor will be explained. Refrigerant from the cooling system (not shown) is supplied to the suction pipe 13 and suction hole 14.
The refrigerant is guided 71" to the suction chamber 11a in the cylinder 4. The refrigerant that has reached the suction chamber 11a is
In the compression chamber 11b partitioned by the roller 6 and the vane 6, which are rotatably installed, the air is gradually compressed by the rotational movement of the shaft 3 as the electric motor section 2 rotates. Once discharged, the discharge pipe 16
to the cooling system. At this time, the lubricating oil 17 accumulated in the lower part of the sealed casing 1 is moved between the space 12c on the inner diameter side of the spring 12b in the guide tube 2a and the outer diameter due to the rotation of the spring 12b fixed to the subshaft 3bK of the oil supply mechanism 12. The grooves 3e, 3 reach the vicinity of the counter shaft 3b through the side space 12d.
f, 3d, and flows out into the refrigerant gas space 1a. At this time, the clearances 18a and 18b between the main bearing 7 and the main shaft 3a, the sub-bearing 8 and the sub-shaft 3b, and the clearance between the crank 3C and the roller 5, 180, are supplied, and from the circumferential side of the roller 6, differential pressure is applied to the roller end surface. After being lubricated, it reaches the suction chamber 11a and the compression chamber 11b, and is then discharged into the sealed casing 1 from the discharge hole 15.

発明が解決しようとする評題 この様な従来の構成では、主軸受、ローラとシャフト間
のクリアランスには、潤滑油が給油機構よシ供給される
が、密閉ケーシング下部に溜った潤滑油には冷媒が溶は
込んでいる為に、副軸に固定されたバネがガイド管内で
回転すると、撹拌によ!ll浴は込んでいた冷媒がガス
化し、それが潤滑油と共に供給されることになる。ガス
化した冷媒がガイド管内に溜ると潤滑油の流入を阻害し
連続的な潤滑油の供給ができなくなり、主軸受、副軸受
、ローラとシャフト間の潤滑が悪くなり信頼性が低下す
ると共に、各摺動部の機械損失が増加する。又、ガス化
した冷媒ガスは、副軸と副軸受間の隙間や溝を介してロ
ーラの内周側に侵入し、−部がローラの端面よシ圧縮室
や吸入室に多量に流入し、体積効率の低下や圧縮動力の
増大となり効率が低下するとの問題がめった。この対策
としてガイド管に孔を設はガスを抜くことも考えられる
が、ただ単に孔を設けるだけでは、バネとガイド管の間
の空間にある流体で孔に至ったもの全てが抜けることに
な9ガスだけでなく潤滑油も抜けるため給油特性も低下
するとの問題があった。
Problems to be Solved by the Invention In such a conventional configuration, lubricating oil is supplied to the clearance between the main bearing, the roller and the shaft by the oil supply mechanism, but the lubricating oil accumulated at the bottom of the sealed casing is Because the refrigerant is in the solution, when the spring fixed to the subshaft rotates in the guide tube, it causes stirring! The refrigerant contained in the ll bath is gasified, and it is supplied together with lubricating oil. When gasified refrigerant accumulates in the guide tube, it obstructs the inflow of lubricating oil, making it impossible to continuously supply lubricating oil, which deteriorates the lubrication between the main bearing, sub-bearing, rollers and shaft, reducing reliability. Mechanical loss at each sliding part increases. In addition, the gasified refrigerant gas enters the inner circumferential side of the roller through the gap and groove between the subshaft and the subbearing, and a large amount of the refrigerant gas flows into the compression chamber and suction chamber through the end surface of the roller. Problems such as reduction in efficiency due to reduction in volumetric efficiency and increase in compression power have frequently occurred. As a countermeasure to this, it is possible to create a hole in the guide tube to release gas, but simply providing a hole will cause all the fluid in the space between the spring and the guide tube to escape. There was a problem that not only the 9 gas but also the lubricating oil escaped, resulting in deterioration of the oil supply characteristics.

本発明は、上記従来例の欠点を解決するものでアリ、体
積効率の低下や圧縮動力の増加を防止し、更に信頼性を
向上することを目的としている。
The present invention solves the above-mentioned drawbacks of the conventional example, and aims to prevent a decrease in volumetric efficiency and an increase in compression power, and further improve reliability.

課題を解決するための手段 本発明は、バネの内径側の空間に一端が開孔し他端が冷
媒ガス空間に開孔する連通管を設けたものである。
Means for Solving the Problems In the present invention, a communication pipe is provided, one end of which opens in the space on the inner diameter side of the spring, and the other end opens into the refrigerant gas space.

作用 本発明は上記した構成により、バネの回転によυガイド
管内を搬送される潤滑油と撹拌により発生した冷媒ガス
の混合流体のうち潤滑油は比重が大きい為にバネの回転
による遠心力によりバネの外径側の空間を流れ、一方冷
媒ガスは比重が軽い為にバネの内径側の空間に溜った後
連通管を介して冷媒ガス空間に排出される。従って、ガ
イド管内の混合流体のうち主に冷媒ガスだけを排出する
ことができ摺動部に冷媒ガスの少ない潤滑油を供給する
ことができるために効率と信頼性が向上する。
Operation The present invention has the above-described configuration, and since the lubricating oil has a large specific gravity among the mixed fluid of the lubricating oil conveyed in the υ guide tube by the rotation of the spring and the refrigerant gas generated by stirring, the centrifugal force caused by the rotation of the spring The refrigerant gas flows through the space on the outside diameter side of the spring, while the refrigerant gas has a light specific gravity, so it accumulates in the space on the inside diameter side of the spring and is then discharged into the refrigerant gas space via the communication pipe. Therefore, mainly only the refrigerant gas out of the mixed fluid in the guide tube can be discharged, and lubricating oil with less refrigerant gas can be supplied to the sliding parts, thereby improving efficiency and reliability.

実施例 以下本発明の一笑施例を第1図にて説明する。Example A simple embodiment of the present invention will be explained below with reference to FIG.

尚、従来例と同一部分は同一符号を付し詳細な説明を省
略する。19は連通管であり、一端がパネ12bの内径
側の空間12cに連通し他端が冷媒ガス空間1aに連通
している。2oは連通管19をガイド管12bに固定す
る固定板でるり、連通孔20 aを有している。
Note that the same parts as in the conventional example are given the same reference numerals and detailed explanations are omitted. 19 is a communication pipe, one end of which communicates with the space 12c on the inner diameter side of the panel 12b, and the other end of which communicates with the refrigerant gas space 1a. 2o is a fixing plate for fixing the communication tube 19 to the guide tube 12b, and has a communication hole 20a.

かかる構成において、圧縮機が運転されると吸入管13
より吸入された冷媒ガスは従来と同様に三輪された吐出
管16より吐出される。
In such a configuration, when the compressor is operated, the suction pipe 13
The refrigerant gas sucked in is discharged from three discharge pipes 16 as in the conventional case.

また、冷媒の溶解した潤滑油17は、従来と同様にバネ
12bの回転に伴い固定板2oの連通孔20a’i介し
てガイド管り2a内のバネ12bの内径側の空間12c
と外径側の空間12dを介して搬送され副軸受8の近傍
に至る。このとき、バネ12bの回転による撹拌作用に
より発生した冷媒ガスも潤滑油17と同様に搬送される
が、バネ12bの回転による遠心力により比重の大きい
潤滑油17はバネ12bの外径側の空間12d側を流れ
、比重の軽い冷媒ガスはバネ12bの内径側の空間12
 C1lllに溜ることになる。そして、バネ12bの
内径側の空間12Cに溜った冷媒ガスは、連通管19を
介して冷媒ガス空間1aに排出される。また、バネ12
bの外径側の空間12dを流れる冷媒ガスの少ない潤滑
油に、溝3e 、 3f 。
Further, as in the conventional case, as the spring 12b rotates, the lubricating oil 17 in which the refrigerant is dissolved flows through the communication hole 20a'i of the fixed plate 2o to the space 12c on the inner diameter side of the spring 12b in the guide pipe 2a.
and is conveyed through the space 12d on the outer diameter side and reaches the vicinity of the sub-bearing 8. At this time, the refrigerant gas generated by the stirring action caused by the rotation of the spring 12b is also transported in the same way as the lubricating oil 17, but the lubricating oil 17 with a large specific gravity is transferred to the space on the outer diameter side of the spring 12b due to the centrifugal force caused by the rotation of the spring 12b. The refrigerant gas that flows on the 12d side and has a light specific gravity flows into the space 12 on the inner diameter side of the spring 12b.
It will accumulate in C1llll. The refrigerant gas accumulated in the space 12C on the inner diameter side of the spring 12b is discharged to the refrigerant gas space 1a via the communication pipe 19. Also, spring 12
Grooves 3e and 3f are provided in the lubricating oil with less refrigerant gas flowing through the space 12d on the outer diameter side of b.

3di通シ冷媒ガスを1v11aに流出する。このとき
、主軸受7と主軸3a、副軸受8と副軸3b。
3di passing refrigerant gas flows out to 1v11a. At this time, the main bearing 7 and the main shaft 3a, and the sub-bearing 8 and the sub-shaft 3b.

ローラ5とクランク3C闇のクリアランス18a。Roller 5 and crank 3C dark clearance 18a.

18b、18Cに潤滑油が供帽される。また、ローラ6
の内周に至った潤滑油は、差圧によりローラ端面を潤滑
した後、吸入室11a、圧縮室11bに至り、その後吐
出孔15より冷媒ガス空間1aに吐出される。
Lubricating oil is supplied to 18b and 18C. Also, roller 6
The lubricating oil that has reached the inner periphery of the roller lubricates the end face of the roller due to the differential pressure, then reaches the suction chamber 11a and the compression chamber 11b, and is then discharged from the discharge hole 15 into the refrigerant gas space 1a.

従って、冷媒ガスが給油機構12内に溜り潤滑油の供給
が阻害さfることかなくなり、給油が連続的に行なえる
と共に、クリアランス18a。
Therefore, the refrigerant gas does not accumulate in the oil supply mechanism 12 and obstruct the supply of lubricating oil, allowing continuous oil supply and reducing the clearance 18a.

18b、18Cおよびローラ5の端面には冷媒ガスを殆
ど含まない潤滑油が供給され、機械損失が減少し信頼性
も向上する。E覧ローラ6の端面から吸入室11a、圧
縮室11bに侵入する冷媒量も減少し体積¥yJ率が向
上すると共に、漏れによる動力損失も減少し、信頼性と
効率の高い圧縮機を供給できる。
Lubricating oil containing almost no refrigerant gas is supplied to the end surfaces of 18b, 18C and the roller 5, reducing mechanical loss and improving reliability. The amount of refrigerant that enters the suction chamber 11a and the compression chamber 11b from the end face of the E-reading roller 6 is also reduced, improving the volume yJ ratio, and reducing power loss due to leakage, making it possible to provide a highly reliable and efficient compressor. .

発明の効果 以上の説明から明らかな様に本発明は、冷媒ガス空間を
有する密閉ケーシングと、密閉グーシン5グの下部に溜
められた潤滑油と、密閉ケーシング内に収納されるシリ
ンダと、シリンダの両端に固定される主軸受および副軸
受と、主軸受と副軸受内を回転rd動じ主軸と副軸とク
ランクよ!ll構成されるシャフトと、一端が副軸受に
固定され他端が潤滑油中に開口するガイド管と、一端が
副軸に固定され他端が潤滑油中に至り且つガイド管内に
収納されたバネと、バネの内径側の空間に一端が開孔し
他端が冷媒ガス空間に開孔する連通管を備えたものでる
るから、給油が連続的となり軸受の摺動部に冷媒ガスの
少ない潤滑油を供給することができ信頼性が向上し機械
損失が減少すると共に、体積効率が向上し、信頼性と効
率の高い圧縮機を供給することができる。
Effects of the Invention As is clear from the above description, the present invention includes a sealed casing having a refrigerant gas space, lubricating oil stored in the lower part of the sealed gas casing, a cylinder housed in the sealed casing, and a cylinder. The main bearing and sub-bearing are fixed at both ends, and the rotating main shaft, sub-shaft, and crank rotate within the main bearing and sub-bearing! A shaft, a guide tube having one end fixed to the sub-bearing and the other end opening into the lubricating oil, and a spring having one end fixed to the sub-shaft, the other end extending into the lubricating oil, and housed in the guide tube. Since it is equipped with a communication pipe with one end opening in the space on the inner diameter side of the spring and the other end opening in the refrigerant gas space, lubrication is continuous and the sliding part of the bearing is lubricated with less refrigerant gas. It is possible to supply oil, improve reliability, reduce mechanical loss, improve volumetric efficiency, and provide a highly reliable and efficient compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一笑施vJヲ示す回転式圧縮機の縦断
面図、第2図は従来の回転式圧縮機の縦断面図、第3図
は第2図のm −m’  線における断面図である。 1・・・・・・密閉ケーシング、1a・・・・・・冷媒
ガス空間、3・・・・・・シャフト、3a・・・・・・
主軸、3b・・・・・・副軸、3C・・・・・・クラン
ク、4・・・・・・シリンダ、7・・・・・・主軸受、
8・・・・・・副軸受、12a・・・・・・ガイド管、
12b・・・・・・バネ、12C・・・・・・バネの内
径側の空(8)、19・・・・・・連通管。 代理人の氏名 弁理士 小鍜治  明 ほか2名第2図
       !−夏 □ 第3図
Fig. 1 is a longitudinal cross-sectional view of a rotary compressor showing the implementation of the present invention, Fig. 2 is a longitudinal cross-sectional view of a conventional rotary compressor, and Fig. 3 is taken along the m-m' line in Fig. 2. FIG. 1... Sealed casing, 1a... Refrigerant gas space, 3... Shaft, 3a...
Main shaft, 3b... Subshaft, 3C... Crank, 4... Cylinder, 7... Main bearing,
8... Secondary bearing, 12a... Guide pipe,
12b...Spring, 12C...Empty (8) on the inner diameter side of the spring, 19...Communication pipe. Name of agent: Patent attorney Akira Okaji and 2 others Figure 2! -Summer□ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 冷媒ガス空間を有する密閉ケーシングと、前記密閉ケー
シングの下部に溜められた潤滑油と、前記密閉ケーシン
グ内に収納されるシリンダと、前記シリンダの両端に固
定される主軸受および副軸受と、前記主軸受と副軸受内
を回転摺動し主軸と副軸とクランクより構成されるシャ
フトと、一端が前記副軸受に固定され他端が前記潤滑油
中に開口するガイド管と、一端が前記副軸に固定され他
端が前記潤滑油中に至り且つ前記ガイド管内に収納され
たバネと、前記バネの内径側の空間に一端が開孔し他端
が前記冷媒ガス空間に開孔する連通管とを備えた回転式
圧縮機。
a sealed casing having a refrigerant gas space, lubricating oil stored in the lower part of the sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub bearing fixed to both ends of the cylinder, and the main bearing. a shaft that rotates and slides within a bearing and a sub-bearing and is composed of a main shaft, a sub-shaft and a crank; a guide tube having one end fixed to the sub-bearing and the other end opening into the lubricating oil; and one end fixed to the sub-shaft. a spring fixed to the spring, the other end of which extends into the lubricating oil and is housed in the guide tube, and a communication tube that has one end opening in a space on the inner diameter side of the spring and the other end opening in the refrigerant gas space. Rotary compressor with.
JP30987290A 1990-11-14 1990-11-14 Rotary compressor Pending JPH04179894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30987290A JPH04179894A (en) 1990-11-14 1990-11-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30987290A JPH04179894A (en) 1990-11-14 1990-11-14 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH04179894A true JPH04179894A (en) 1992-06-26

Family

ID=17998318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30987290A Pending JPH04179894A (en) 1990-11-14 1990-11-14 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH04179894A (en)

Similar Documents

Publication Publication Date Title
KR880000225B1 (en) Bearing device for enclosed type scroll compressor
WO2019044867A1 (en) Scroll-type compressor
CN110925211A (en) Low-backpressure rolling rotor type compressor and air conditioner
JPH04179894A (en) Rotary compressor
JPH08170595A (en) Hermetic compressor
JP2674113B2 (en) Horizontal scroll compressor
JP2923582B2 (en) Scroll compressor
CN110360104A (en) A kind of oil channel structures for rotary machine and the screw compressor with it
JPH04143486A (en) Rotary compressor
JP2928371B2 (en) Scroll machine
JP2006241993A (en) Scroll compressor
JPS5929791A (en) Scroll compressor
JPH0494490A (en) Rotary pump
JPH04308392A (en) Rotary compressor
JPH11324944A (en) Scroll compressor
JPS6350696A (en) Rotary compressor
JPS62139991A (en) Scroll type compressor
JPH0783185A (en) Horizontal rotary compressor
WO2023218584A1 (en) Scroll compressor
JPH02227579A (en) Fluid machine with scroll
JP7186055B2 (en) scroll compressor
JPH10196566A (en) Fluid compressor
JPH02191894A (en) Rotary compressor
JPH0443887A (en) Rotary pump
JPH0814181A (en) Sealed type electric compressor