JPH04138844A - Solid lubricated casting method having excellent quality in cast slab - Google Patents

Solid lubricated casting method having excellent quality in cast slab

Info

Publication number
JPH04138844A
JPH04138844A JP25742190A JP25742190A JPH04138844A JP H04138844 A JPH04138844 A JP H04138844A JP 25742190 A JP25742190 A JP 25742190A JP 25742190 A JP25742190 A JP 25742190A JP H04138844 A JPH04138844 A JP H04138844A
Authority
JP
Japan
Prior art keywords
mold
casting
edge parts
thickness
center part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25742190A
Other languages
Japanese (ja)
Inventor
Chiyokatsu Hamaguchi
浜口 千代勝
Tomoharu Shimokasa
知治 下笠
Kazumi Daitoku
一美 大徳
Fujiya Nogami
不二哉 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25742190A priority Critical patent/JPH04138844A/en
Publication of JPH04138844A publication Critical patent/JPH04138844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably execute a casting at high velocity by thickening the thickness at mold edge parts to center part of the mold to casting direction and the transverse direction of lining ceramic pieces on the whole surface of inner wall in the mold and executing solid lubrication with small ceramic pieces to the edge parts while slow cooling it. CONSTITUTION:Major sides 1 of the mold and minute sides 2 of the mold are made of copper or apply plating, etc., to the copper. The thickness of small ceramic pieces 3 is varied to the whole surface of inner wall in this mold step by step or in continuous-state along the casting direction. At the same time, besides the casting direction, the thickness thereof at the mold edge parts is thicker than that at the mold center part to the transverse direction of the mold so as to slowly cool the edge parts. By varying the thickness thereof along the casting direction and thickening that at the mold edge parts to that at the center part to the transverse direction, shrinking deformation caused by quick cooling at edge parts in a cast slab or uneven cooling between the center part and the edge parts, is eliminated. By this method, the solid lubricated casting is stably executed at high velocity and surface flaw, bleed flaw, transverse crack, pin hole, slag inclusion, deformation, etc., of the cast slab, is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 一般に連続鋳造においてはモールドによって冷却された
凝固殻を速やかにモールド内壁面を下降せしめつつ凝固
殻を順次成長させて健全な凝固を行わせることが重要で
ある。
[Detailed Description of the Invention] [Industrial Application Field] Generally, in continuous casting, the solidified shell cooled by the mold is quickly moved down the inner wall surface of the mold, and the solidified shell is sequentially grown to achieve sound solidification. is important.

この健全な凝固を行わせるためにモールド上部に湯面保
護材を添加し、溶融金属の空気酸化の防止と前記凝固殻
とモールド内壁面を溶融パウタ′−によって潤滑し凝固
殻の焼き付きや破断を防止している。また、モールドの
冷却と寿命向上を図るとともに、溶融金属、または凝固
殻を緩冷却するために、凝固開始点を含んてモールドの
下端または途中まて低熱伝導性材料を張りつけたものが
特開昭58−173061号公報、特開昭61−195
742号公報等で提案されている。また、モールドの寿
命を延長するため鋳型の下端近傍を含んでモールド内壁
面にセラミックス、ステンレス系金属等の耐摩耗性材料
を張りつけたものか特開昭58−13445号公報で提
案され一部ては実用化が図られている。
In order to ensure this healthy solidification, a surface protection material is added to the upper part of the mold to prevent air oxidation of the molten metal and to lubricate the solidified shell and the inner wall surface of the mold with melting powder to prevent seizure and breakage of the solidified shell. It is prevented. In addition, in order to cool the mold and extend its lifespan, as well as to slowly cool the molten metal or solidified shell, a low thermal conductivity material is pasted to the lower end or halfway of the mold, including the solidification start point. Publication No. 58-173061, JP-A-61-195
This method has been proposed in Publication No. 742, etc. In addition, in order to extend the life of the mold, it is proposed in JP-A-58-13445 that a wear-resistant material such as ceramics or stainless metal be applied to the inner wall surface of the mold, including the vicinity of the lower end of the mold. is being put into practical use.

[発明が解決しようとする課題] しかしなから、先に述べた湯面保護材を用いた溶融バラ
タ−の融体による潤滑ではモールドと凝固殻との間に流
入する溶融パウダーの均一性が得られないために凝固殻
の形成か不均一となる。この結果凝固殻のモールドへの
焼付、破断あるいはパウダーの巻き込みによる表面疵の
発生原因となる。また、前述した特開昭58−1730
61号公報、特開明61−195742号公報等て提案
されているモールドにおいては湯面から凝固か開始する
。そのため溶融パウダーか必要とさお、オシレーション
マーク、パウダーの巻き込み等の問題が依然として未解
決のままである。
[Problems to be Solved by the Invention] However, the above-mentioned lubrication by the melt of molten balata using the surface protection material does not ensure uniformity of the molten powder flowing between the mold and the solidified shell. This results in the formation of a solidified shell or non-uniformity. As a result, the solidified shell may seize into the mold, break, or cause surface flaws due to the entrainment of powder. In addition, the above-mentioned Japanese Patent Application Laid-Open No. 58-1730
In the molds proposed in JP-A No. 61 and JP-A No. 61-195742, solidification starts from the surface of the molten metal. Therefore, problems such as the need for molten powder, oscillation marks, and powder entrainment remain unsolved.

また、如何なるモールドを用いても鋳片の端部及びその
近傍の冷却が中央部より強冷却のため、鋳片の端部か収
縮変形しオシレーションマークか残存し、このオシレー
ションマークに沿った横割れか発生する。更にモールド
端部及びその近傍の冷却が強いと、端部及びその近傍の
凝固殻か収縮し・モールドから離れ、この空隙に溶融パ
ウダーの流入か多くなりピンホール5ノロカミ等か発生
する等の問題点もある。
In addition, no matter what mold is used, the ends of the slab and the vicinity thereof are cooled more strongly than the center, so the edges of the slab shrink and deform, leaving oscillation marks. Lateral cracks may occur. Furthermore, if the mold end and its vicinity are cooled too strongly, the solidified shell at the end and its vicinity will shrink and separate from the mold, causing more molten powder to flow into this gap, causing problems such as pinholes, etc. There are also points.

本発明の目的はこれ等従来の欠点である鋳片の端部の収
縮変形、この収縮変形に起因したオシレーションマーク
に沿った横割れ、溶融パウダーの流入過多によるピンホ
ール、ノロカミ、殻の破断等を解決した固体潤滑鋳造方
法を提供することにある。
The purpose of the present invention is to address these conventional drawbacks such as shrinkage deformation of the ends of slabs, transverse cracks along oscillation marks caused by this shrinkage deformation, pinholes, slits, and shell breakage due to excessive inflow of molten powder. The object of the present invention is to provide a solid lubrication casting method that solves the above problems.

[課題を解決するための手段] 本発明の鋳造方法はモールドの内壁全面に小片セラミッ
クスを鋳造方向に沿って段階的あるいは連続的に厚みを
変化させるとともに、鋳造方向に加えてモールドの幅方
向の厚みがモールドの中央部に対しモールド端部を厚く
して端部を緩冷却しつつ、小片セラミックスにより固体
潤滑することを特徴とする。
[Means for Solving the Problems] The casting method of the present invention changes the thickness of small pieces of ceramic on the entire inner wall of the mold stepwise or continuously along the casting direction, and also changes the thickness in the width direction of the mold in addition to the casting direction. The mold is characterized in that the end portions of the mold are thicker than the center portion of the mold, and the end portions are slowly cooled while solid lubrication is provided by small pieces of ceramic.

小片セラミックスをモールドの内壁全面に張り付けた固
体潤滑鋳造においては、湯面下の凝固開始点をモールド
の内壁全周に均一にせしめ凝固開始点を起点として成長
した凝固殻を全周剛体状態で引き抜くことか重要である
In solid lubrication casting, in which small pieces of ceramic are attached to the entire inner wall of a mold, the solidification start point below the molten metal surface is made uniform around the entire inner wall of the mold, and the solidified shell that grows from the solidification start point is pulled out in a rigid state all around. That is important.

単にセラミックスを内壁に張り付けて固体潤滑鋳造を行
っても、モールドの端部と中央部の凝固か均一状態に近
似てきないと凝固開始点と成長した凝固殻か鋳造方向に
不均一になり、これは鋳片引き抜き時に引き抜き抵抗の
不均一となり脆弱な初期凝固殻の破断や凝固殻の成長阻
害となる。
Even if you simply stick ceramics on the inner wall and perform solid lubrication casting, if the solidification at the edges and center of the mold does not approximate a uniform state, the solidification start point and the growing solidified shell will become uneven in the casting direction. When the slab is pulled out, the drawing resistance becomes uneven, leading to breakage of the brittle initial solidified shell and inhibition of growth of the solidified shell.

しかも、固体潤滑であるために溶融パウダーの流入かな
く、これは鋳片端部が収縮変形かそのまま大きなエアー
キャップとなり、引き続く凝固殻の抜熱か不良となり、
凝固殻の再溶解を生し鋳片の端部に起因したブリート疵
あるいはブレークアウト等か発生する。
Moreover, since it is a solid lubricant, there is no inflow of molten powder, which may cause the end of the slab to shrink and deform, or become a large air cap, which may lead to subsequent heat removal from the solidified shell or defects.
This causes re-melting of the solidified shell and causes bleat defects or breakouts at the ends of the slab.

また、フルームにおいては鋳片の端部の急冷却によって
初期凝固殻の収縮変形時に表層近傍内部に割れか発生し
欠陥となる。
In addition, in a flume, cracks occur inside near the surface layer when the initially solidified shell shrinks and deforms due to rapid cooling of the end of the slab, resulting in defects.

そこて、本発明は固体潤滑鋳造を行うに際し、モールド
の内壁全面に小片セラミックスを鋳造方向に沿って段階
的あるいは連続的に厚みを変化させるとともに、鋳造方
向に加えてモールドの幅方向の厚みがモールドの中央部
に対しモールド端部を厚くして端部を緩冷却する。
Therefore, when performing solid lubrication casting, the present invention changes the thickness of small pieces of ceramic on the entire inner wall of the mold stepwise or continuously along the casting direction, and also changes the thickness in the width direction of the mold in addition to the casting direction. The ends of the mold are made thicker than the center of the mold, and the ends are slowly cooled.

この鋳造方向に沿った段階的あるいは連続的な厚みの変
化と幅方向の厚みを中央部よりもモールド端部を厚くす
ることで、鋳片の端部の急冷却あるいは中央部と端部の
冷却不均一による凝固殻の収縮変形か解消される。
By changing the thickness stepwise or continuously along the casting direction and making the thickness in the width direction thicker at the ends of the mold than at the center, rapid cooling of the ends of the slab or cooling of the center and ends is achieved. Shrinkage deformation of the solidified shell due to non-uniformity is eliminated.

鋳片の端部及びその近傍の収縮変形の解消により初期凝
固開始点がモールド全周で均一に行われるため、凝固開
始点を起点として成長した凝固殻を全周剛体状態で引き
抜くことか可能となる。こわは脆弱な初期凝固殻を固体
潤滑にも係わらす容易に引き抜き剥離せしめ順次凝固殻
を成長させ得る。
By eliminating the shrinkage deformation at the end of the slab and its vicinity, the initial solidification start point is uniformly formed all around the mold, making it possible to pull out the solidified shell that has grown from the solidification start point in a rigid state around the entire circumference. Become. Stiffness can cause the brittle initial solidified shell to be easily pulled out and peeled off in spite of solid lubrication, and the solidified shell can gradually grow.

しかも、収縮変形の解消は内張りセラミックスと鋳片の
凝固殻の間にエアーキャップをなくし、引き続く凝固殻
の抜熱か良好となり凝固殻の再溶解かなく鋳片端部に起
因したブリート疵あるいはブレークアウト等か防止でき
る。
Furthermore, shrinkage deformation can be eliminated by eliminating the air cap between the lining ceramics and the solidified shell of the slab, and the subsequent heat removal of the solidified shell is improved, eliminating re-melting of the solidified shell and preventing bleed defects or breakouts caused by the ends of the slab. etc. can be prevented.

また、ブルームにおいては鋳片の端部の急冷却か防止さ
れるため、初期凝固殻の収縮変形かな〈従来の鋳造時間
題となる表層近傍内部の割れ発生欠陥か解消される。
In addition, in bloom, rapid cooling of the ends of the slab is prevented, which eliminates shrinkage deformation of the initially solidified shell (defects caused by cracking inside near the surface layer, which is a problem during conventional casting).

このことは固体潤滑にも係わらす安定した連続鋳造を実
現するとともに、高速鋳造を可能とする。
This enables stable continuous casting even with solid lubrication, as well as high-speed casting.

ここで、モールドとしては銅製又は銅表面にメツキを施
したものを用いる。このモールドは鋳造方向に沿って段
階的あるいは連続的に厚みを変化させるとともに、幅方
向の厚みがモールド中央部に対しモールド端部のセラミ
ックス片の厚みを03から3.0mm厚くする。このセ
ラミックス片の厚み差が3.0mmを超えると過緩冷却
となり、抜熱不良のため凝固殻の成長か遅れ凝固殻強度
が低下して鋳片か破断する。逆に、厚みが0.3mm未
満であるとモールド端部の緩冷却が困難となり、ブリー
ド疵、横割れ、ピンホール、ノロカミ、鋳片の変形等か
防止できない。また、モールド端部としてはその近傍を
含むものでその厚みはモールド端部につれて厚くしであ
る。なお、モールド端部及びその近傍はモールド全幅の
20から40%であり、40%以上ではモールド全幅の
均一冷却ができない。
Here, the mold used is made of copper or has a plated copper surface. The thickness of this mold changes stepwise or continuously along the casting direction, and the thickness of the ceramic piece at the end of the mold is 0.3 to 3.0 mm thicker in the width direction than the center of the mold. If the difference in thickness of the ceramic pieces exceeds 3.0 mm, the ceramic pieces will be cooled too slowly, and due to insufficient heat removal, the solidified shell will grow slowly and the solidified shell strength will decrease, causing the slab to break. On the other hand, if the thickness is less than 0.3 mm, it becomes difficult to slowly cool the mold end, and it is impossible to prevent bleed defects, lateral cracks, pinholes, grooves, deformation of the slab, etc. Further, the mold end includes the vicinity thereof, and the thickness thereof increases toward the mold end. Note that the mold end and its vicinity account for 20 to 40% of the entire mold width, and if it exceeds 40%, uniform cooling of the entire mold width cannot be achieved.

[実施例コ 次にモールドサイズ290 X290.250 X98
0を用いて該モールドの上端に厚み120mmのセラミ
ックス断熱部を設けるとともに、モールドの幅方向の厚
み変更した条件で鋳造した結果を表−1に示し、その時
のモールド内張りとモールド内壁面温度を従来を比較し
て第1図に示す。
[Example] Next, mold size 290 x 290.250 x 98
Table 1 shows the results of casting under conditions in which a 120 mm thick ceramic heat insulating part was provided at the upper end of the mold and the thickness of the mold was changed in the width direction. A comparison is shown in Figure 1.

1はモールドの長片で、2はモールドの短パで銅又は銅
にメツキ等を施しである。このモールドの長片1、モー
ルドの短片2の内壁面にはセラミックス片3か例えは銅
あるいはアルミ等の粉を混合した有機接着材にて張り付
けである。また、本発明のモールドは、第1図の鋳型構
造の左側に示すとおり、モールド端片側に従いセラミッ
クス片3の厚みを厚くしである。
1 is a long piece of the mold, and 2 is a short piece of the mold made of copper or plated copper. Ceramic pieces 3 or, for example, an organic adhesive mixed with copper or aluminum powder are attached to the inner wall surfaces of the long piece 1 and the short piece 2 of the mold. Further, in the mold of the present invention, as shown on the left side of the mold structure in FIG. 1, the thickness of the ceramic piece 3 is increased toward one side of the mold end.

このように本発明はモールド内壁面温度をモールド幅方
向で第1図のように200から210℃と均にできるこ
とから、比較例x、Yに対しAからDいずれとも鋳片の
表面疵、ブリード疵、横割わ、ピンホール、ノロカミ、
鋳片の変形等のない良好な結果か得られた。
In this way, the present invention can even out the mold inner wall surface temperature from 200 to 210 degrees Celsius in the mold width direction as shown in Figure 1, so compared to Comparative Examples Scratches, horizontal splits, pinholes, rough edges,
Good results were obtained with no deformation of the slab.

[発明の効果] 以上述べた如く、本発明の固体潤滑鋳造方法を用いるこ
とによりモールド内壁面温度をモールド幅方向で均一に
できるため、固体潤滑鋳造を安定、且つ高速で実現出来
るとともに、鋳片の表面疵、ブリード疵、横割れ、ピン
ホール、ノロカミ、鋳片の変形等のない優れた鋳造方法
である。
[Effects of the Invention] As described above, by using the solid lubrication casting method of the present invention, the temperature of the inner wall surface of the mold can be made uniform in the width direction of the mold, so solid lubrication casting can be realized stably and at high speed. This is an excellent casting method that does not cause surface flaws, bleed flaws, horizontal cracks, pinholes, rough edges, or deformation of slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はモールド幅方向にセラミックス厚みを可変した
本発明とセラミックス厚が同一な比較例の内張り図とモ
ールド内壁面温度を示す。 1・−モールドの長片、2・・・モールドの短片、3・
・・セラミックス片 持許出願人代理人
FIG. 1 shows the lining diagram and mold inner wall surface temperature of the present invention in which the ceramic thickness is varied in the mold width direction and a comparative example in which the ceramic thickness is the same. 1.- long piece of mold, 2... short piece of mold, 3.
...Ceramics cantilever permit applicant representative

Claims (1)

【特許請求の範囲】[Claims] 1、モールドの内壁全面の内張りセラミックス片を鋳造
方向に沿って段階的あるいは連続的に厚みを変化させる
とともに、鋳造方向に加えてモールドの幅方向の厚みが
モールドの中央部に対しモールド端部を厚くして端部を
緩冷却しつつ、小片セラミックスにより固体潤滑するこ
とを特徴とする鋳片品質の優れた固体潤滑鋳造方法。
1. The thickness of the lining ceramic piece on the entire inner wall of the mold is changed stepwise or continuously along the casting direction, and the thickness in the width direction of the mold is changed from the center of the mold to the edge of the mold. A solid lubrication casting method with excellent slab quality, characterized by thickening the slab, slowly cooling the edges, and applying solid lubrication using small pieces of ceramic.
JP25742190A 1990-09-28 1990-09-28 Solid lubricated casting method having excellent quality in cast slab Pending JPH04138844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25742190A JPH04138844A (en) 1990-09-28 1990-09-28 Solid lubricated casting method having excellent quality in cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25742190A JPH04138844A (en) 1990-09-28 1990-09-28 Solid lubricated casting method having excellent quality in cast slab

Publications (1)

Publication Number Publication Date
JPH04138844A true JPH04138844A (en) 1992-05-13

Family

ID=17306136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25742190A Pending JPH04138844A (en) 1990-09-28 1990-09-28 Solid lubricated casting method having excellent quality in cast slab

Country Status (1)

Country Link
JP (1) JPH04138844A (en)

Similar Documents

Publication Publication Date Title
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPH04138844A (en) Solid lubricated casting method having excellent quality in cast slab
KR101825129B1 (en) Tool for casting and casting method using the same
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
JP2000033461A (en) Continuous casting mold
JPH06339754A (en) Method for continuously casting thin sheet
JPH0724921B2 (en) Subsurface solidification casting method in continuous casting
JPS62292244A (en) Production of ingot
JPH06218497A (en) Mold for continuous casting
JPS59185548A (en) Continuous casting machine for thin billet
JPH08112656A (en) Nozzle for continuously casting steel
JPH02220736A (en) Continuous casting method and mold for continuous casting
JPH03291133A (en) Mold for continuous casting
JPS63188459A (en) Continuous casting method for round cast billet
JPH06297107A (en) Continuous casting method
JPS59133942A (en) Inside surface treatment of mold for horizontal continuous casting
SU450637A1 (en) Metal rod melted
JPH05245600A (en) Method for casting end part of cast slab in continuous casting
JPS61169147A (en) Continuous casting method
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
JPS61289945A (en) Slow cooling casting mold for vertically short steel ingot
JPS60137551A (en) Method and mold for horizontal and continuous casting
JPH06218529A (en) Production of sheet metal ingot by electromagnetic force
JPS6339733A (en) Electrode wire for wire electric spark machining
JPH0716764B2 (en) Continuous casting method and apparatus for copper and copper alloys