JPH03291133A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH03291133A
JPH03291133A JP9057890A JP9057890A JPH03291133A JP H03291133 A JPH03291133 A JP H03291133A JP 9057890 A JP9057890 A JP 9057890A JP 9057890 A JP9057890 A JP 9057890A JP H03291133 A JPH03291133 A JP H03291133A
Authority
JP
Japan
Prior art keywords
hole
mold
diameter
ingot
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9057890A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Akira Hideno
秀野 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9057890A priority Critical patent/JPH03291133A/en
Publication of JPH03291133A publication Critical patent/JPH03291133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously cast a high quality cast billet at high speed by specifying the hole diameter of a mold at the molten metal side, the hole diameter at the cast billet drawing side, the hole diameter at the intermediate part and step difference and inclining angle. CONSTITUTION:The diameter Da of a hole A at the molten metal supplying side in the mold, the diameter Db of a hole B at the cast billet drawing side and the diameter Dc of a hole C at the intermediate part, satisfy the inequality Da<Dc<Db, and boundary part between the hole A and the hole C is enlarged to this diameter by a step difference distance (d) satisfying the inequality I as step-like in the right angle direction to the mold axis from the hole A, and the hole C is made to the shape enlarging the diameter with the inclining angle theta satisfying the inequality II from the above step difference lower part to the position of the hole B in order. Under the condition, where the tip part 4 of a solidified layer reaches the step difference part 3 and does not yet reach the inner face of the hole A, the cast billet 2 is drawn by the prescribed distance and successively, stopped for the prescribed time to again solidify the molten metal. As the tip part 4 of a solidified layer can be formed to thick and the taper at the cast billet drawing side is applied in the mold, by drawing the cast billet at only a little, this is separated from the mold 1 and micro crack is not developed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高品質の鋳塊を高速度で鋳造し得る連続鋳造
用鋳型に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous casting mold capable of casting high quality ingots at high speed.

〔従来の技術とその課題〕[Conventional technology and its issues]

従来の連続鋳造方法は、例えば第3図に横型連続鋳造方
法についてその要部を示したように、溶融金属6を貯留
した鋳造炉8に、外周を冷却ジャケット7で覆った鋳型
lを連通して接続し、上記鋳造炉8から供給される溶融
金属6を鋳型1内で凝固せしめて鋳塊2となし、上記鋳
塊2をビンチロール9で引出して鋳造するものである。
In the conventional continuous casting method, for example, as shown in the main part of the horizontal continuous casting method in FIG. The molten metal 6 supplied from the casting furnace 8 is solidified in the mold 1 to form an ingot 2, and the ingot 2 is pulled out by a vinyl roll 9 and cast.

ところで上記鋳塊2の引出しは、ビンチロール9に断続
の電気信号をプログラムしておいて、引出し・停止の動
作を交互に繰返す断続引出しによりなされている。この
ように鋳塊2引出しを断続的に行う理由は、停止時に凝
固層を厚く形成せしめ、引出し時に張力がか\っても凝
固層にクラックが生じ難くする為である。上記の引出し
・停止の動作の一部を押込みに代えて薄い凝固層先端部
を故意に破壊して、より強固な凝固層のみを残して引出
すようにした方法も提案されている。
By the way, the above-mentioned drawing of the ingot 2 is carried out by intermittent drawing in which an intermittent electric signal is programmed to the vinyl roller 9 and the drawing and stopping operations are repeated alternately. The reason why the ingot 2 is drawn out intermittently is to form a thick solidified layer when the ingot is stopped and to prevent cracks from forming in the solidified layer even if the tension is increased during drawing. A method has also been proposed in which the tip of the thin coagulated layer is intentionally destroyed in place of pushing in part of the above-mentioned pulling out/stopping operation, and only the stronger coagulated layer is left behind to be pulled out.

しかしながら、これらの引出し方法によっても鋳造速度
を高速化しようとすると鋳塊表面に微細なりラックが発
生し、このクランクは面側して除去する為、製造歩留り
が大幅に低下してしまうという問題があった。
However, even with these drawing methods, when trying to increase the casting speed, fine cracks occur on the surface of the ingot, and since these cranks are removed face-first, the manufacturing yield is significantly reduced. there were.

(!Iffを解決する為の手段及び作用〕本発明はか\
る状況に鑑み、引出し・停止、或いは引出し・押込み・
停止の動作を交互に繰返して鋳造した時に生じるミクロ
クラックの発生メカニズムについて鋭意研究した結果、
第4図に鋳型内の凝固形態を示したように、鋳塊2を停
止状態から引出す時点にて、離型前の凝固層先端部4と
鋳型1内面との間に静止摩擦及び運動摩擦が作用し、鋳
塊2を引出す際、これらの摩擦に打ち勝つ張力が作用し
、その結果鋳型1と摺動中の薄い凝固層先端部4や既に
離型した凝固層5にミクロクラックが発生することを知
見し、更に研究を重ねて本発明を充放するに到ったもの
である。
(Means and effects for solving !If) What is the present invention?
In view of the situation, pull out and stop, or pull out and push in,
As a result of intensive research into the mechanism by which micro-cracks occur when casting is performed by repeating alternating stopping operations,
As shown in Fig. 4, the solidification form inside the mold shows that when the ingot 2 is pulled out from the stopped state, static friction and kinetic friction occur between the solidified layer tip 4 before mold release and the inner surface of the mold 1. When the ingot 2 is pulled out, tension that overcomes these frictions acts, and as a result, microcracks occur in the thin solidified layer tip 4 that is sliding against the mold 1 and in the solidified layer 5 that has already been released. After discovering this, and conducting further research, the present invention was developed.

即ち、本発明は、両端開放の鋳型の一端より溶融金属を
供給して凝固せしめて鋳塊となし、当該鋳塊を他端より
引出してなる連続鋳造方法にて用いる鋳型であって、当
該鋳型の孔型が溶融金属供給側の径Daなる孔Aと、鋳
塊引出側の径Dbなる孔Bと、その中間部であって径D
cがり、 <D。〈Daの式を満足する孔Cとから構成
されており、孔Aと孔Cとの境界部が、孔A部から鋳型
軸と直角な方向に階段状に下記(1)式を満足する段差
距離dだけ拡径され、前記孔Cは当該段差下部端から孔
Bの位置まで下記(2)式を満足する傾斜角度θをもっ
て順次拡径された形状からなることを特徴とする連続鋳
造用鋳型である。
That is, the present invention provides a mold used in a continuous casting method in which molten metal is supplied from one end of a mold with both ends open, solidified to form an ingot, and the ingot is pulled out from the other end. A hole A with a diameter Da on the molten metal supply side, a hole B with a diameter Db on the ingot withdrawal side, and a hole B with a diameter Db on the ingot withdrawal side.
c gari, <D. <It is composed of a hole C that satisfies the formula of Da, and the boundary between the holes A and C is a step-like step in a direction perpendicular to the mold axis from the hole A that satisfies the following formula (1). A mold for continuous casting, characterized in that the diameter of the hole C is expanded by a distance d, and the diameter of the hole C is gradually expanded from the lower end of the step to the position of the hole B with an inclination angle θ that satisfies the following formula (2). It is.

0.005Da≦d≦0.025 D 、・−・−(1
)0. OO3≦tanθ≦0.015 −・・・・−
(2)以下に本発明を図を参照して具体的に説明する。
0.005Da≦d≦0.025 D, ・−・−(1
)0. OO3≦tanθ≦0.015 −・・・・・−
(2) The present invention will be specifically explained below with reference to the drawings.

第1図は本発明鋳型の−JJpJを示す円筒状鋳型の側
断面説明図である。
FIG. 1 is an explanatory side sectional view of a cylindrical mold showing -JJpJ of the mold of the present invention.

上記円筒状鋳型lは溶融金属供給側の内径Dbの孔A、
鋳塊引出側の内径り、の孔B及び上記孔Aと孔Bの中間
部の孔Cから構成されており、上記孔Cは孔Aの鋳塊引
出側端部に鋳型軸方向に直角な方向に階段状に長さdの
段差部3が設けられており、この段差部3の下端部Eか
ら鋳塊引出側にかけてテーパーをつけて順次拡径されて
孔Bに連なって形成されている。
The cylindrical mold l has a hole A with an inner diameter Db on the molten metal supply side,
It consists of a hole B in the inner diameter of the ingot drawer side, and a hole C in the middle between the holes A and B, and the hole C is perpendicular to the mold axis direction at the end of the ingot drawer side of hole A. A stepped portion 3 having a length d is provided in a step-like manner in the direction, and the stepped portion 3 is tapered and successively enlarged in diameter from the lower end E to the ingot drawing side, and is formed in a continuous manner with the hole B. .

上記鋳型における溶融金属の凝固形態は、第2図イ〜ハ
に例示したように、凝固層先端部4が段差部3に達し、
且つ孔A内面には到達しない状態(図イ)のところで鋳
塊2を所定距離引出しく同質)、次いで引出しを所定時
間停止して再び図イの状態に凝固せしめたのち(図ハ)
、鋳塊2を所定距離引出して鋳造を行うもので、凝固層
先端部4は段差部3で長手方向の戊辰が止められて厚さ
方向にのみ凝固が進むので、凝固層先端部4は凝固層が
厚く形成され、又引出しの際にか\る静止摩擦はテーパ
ーを付けた分低減し、更にテーパー部位に形成した凝固
層5は、鋳塊2を僅か引出すだけで鋳型1のテーパ一部
内面から離れ、その結果鋳型l内面と凝固層5との間に
運動摩擦が生しなくなり、依って引出し時に凝固層5に
か\る張力は大幅に減少して凝固層5にミクロクラック
が入るようなことがなくなる。
The solidification form of the molten metal in the mold is such that the solidified layer tip 4 reaches the stepped portion 3, as illustrated in FIGS.
In a state where the ingot 2 does not reach the inner surface of hole A (Fig. A), the ingot 2 is pulled out a predetermined distance (the same quality), and then the drawing is stopped for a predetermined period of time to allow it to solidify again to the state shown in Fig. A (Fig. C).
, the ingot 2 is pulled out a predetermined distance to perform casting, and the tip 4 of the solidified layer is stopped from collapsing in the longitudinal direction at the step 3 and solidification progresses only in the thickness direction, so the tip 4 of the solidified layer The solidified layer 5 is formed thickly, and the static friction generated during drawing is reduced by the taper, and furthermore, the solidified layer 5 formed at the tapered part allows the taper of the mold 1 to be adjusted by just slightly drawing out the ingot 2. As a result, no kinetic friction occurs between the inner surface of the mold and the solidified layer 5, and therefore the tension applied to the solidified layer 5 during drawing is significantly reduced, causing microcracks in the solidified layer 5. There will be no need to enter.

本発明鋳型において、段差距離dを0.005 Db以
上、0.025Db以下に限定した理由は、0゜005
Da未満では凝固層先端部4が厚く形成されない為引出
しの際破断してミクロクラック発生の原因となり、又0
.025Daを超えると段差部3に凝固層先端部4が厚
く形成され段差部3との密着力が高まって鋳塊2引出し
時に凝固層5にか\る張力が増え凝固層5にミクロクラ
−7りが生じる為である。
In the mold of the present invention, the reason why the step distance d is limited to 0.005 Db or more and 0.025 Db or less is that 0°005
If it is less than Da, the solidified layer tip 4 will not be formed thickly and will break during extraction, causing microcracks.
.. When the temperature exceeds 025 Da, the tip 4 of the solidified layer is formed thickly in the stepped part 3, and the adhesion with the stepped part 3 increases, and the tension applied to the solidified layer 5 increases when the ingot 2 is pulled out, and microcracks 7 are formed in the solidified layer 5. This is because

又本発明においてテーパ一部の傾斜角度θをtanθで
0.003以上、0.015以下の範囲に限定した理由
は、0.003未満ではテーパーを付けたことによる静
止及び運動摩擦の低減効果が十分に得られない為、又0
.. O15を超えると凝固層5の外周部の傾斜が大き
くなり、引出し時点で上記凝固層5と鋳型1間に溶融金
属6が入りこんで凝固してかぶり欠陥を生じる為である
In addition, in the present invention, the reason why the inclination angle θ of a part of the taper is limited to a range of 0.003 or more and 0.015 or less in terms of tan θ is that if it is less than 0.003, the effect of reducing static and kinetic friction due to the taper is insufficient. 0 again because I can't get enough
.. .. This is because when the temperature exceeds O15, the slope of the outer circumference of the solidified layer 5 increases, and at the time of drawing out, the molten metal 6 enters between the solidified layer 5 and the mold 1 and solidifies, causing a fogging defect.

本発明鋳型を用いて鋳造する場合の鋳塊2の冷却は、第
3図に示したように鋳型外周を覆った冷却ジャケット7
又は/及び鋳塊2を鋳型出口で直接冷却してなされるが
、鋳型内の凝固先端位置の制御は冷却ジャケット7を前
後方向に移動して行うことが好ましい。又鋳塊2の引出
しピッチは、第1図に示した鋳型1の孔Cのテーパーの
付いた部分の長さ以内に短くするのが、凝固層先端部4
の位置の制御が的確にできて好ましい。
When casting using the mold of the present invention, the ingot 2 is cooled by a cooling jacket 7 that covers the outer periphery of the mold, as shown in FIG.
Alternatively, the ingot 2 may be cooled directly at the outlet of the mold, but it is preferable to control the position of the solidification tip within the mold by moving the cooling jacket 7 in the front-rear direction. In addition, the drawing pitch of the ingot 2 should be shortened to within the length of the tapered part of the hole C of the mold 1 shown in FIG.
This is preferable because the position of can be accurately controlled.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第1図に示した形状の本発明鋳型を用いて65/35黄
銅の棒状鋳塊を鋳造した。
A rod-shaped ingot of 65/35 brass was cast using the mold of the present invention having the shape shown in FIG.

鋳型には黒鉛鋳型を用い、その形状は、長さ25011
II+、外径50a+mの円筒状で、溶融金属供給側の
孔Aの内径を13Mm、長さを5(1+m、鋳塊出口側
の孔Bの内径を151111とした。上記孔Bの長さ、
孔C部の段差距離d及びテーパー角度θは種々に変化さ
せた。又上記黄銅の溶融温度は1150°C1冷却ジヤ
ケツトの水量は2012 /sin 、鋳型出口の直接
冷却水量は5J2/■inとなし、鋳塊の引出しパター
ンは、引出しピッチ30−1引出し時間0.5 sec
 、停止時間0.5 secとし、平均鋳造速度を18
00 mm/winとした。又段差下端部Eの鋳型温度
は冷却ジャケットを前後方向に移動させて上記黄銅の固
相線温度より約10℃低い890°Cに制御して、この
段差部が凝固先端位置となるようにした。
A graphite mold is used for the mold, and its shape is 25011 mm in length.
II+, a cylindrical shape with an outer diameter of 50 a + m, the inner diameter of the hole A on the molten metal supply side was 13 mm, the length was 5 (1 + m), and the inner diameter of the hole B on the ingot outlet side was 151111. The length of the hole B,
The step distance d and the taper angle θ of the hole C were varied. The melting temperature of the above brass is 1150°C, the amount of water in the cooling jacket is 2012/sin, the amount of direct cooling water at the mold outlet is 5J2/in, and the drawing pattern of the ingot is 30-1 drawing pitch and 0.5 drawing time. sec
, the stopping time was 0.5 sec, and the average casting speed was 18
00 mm/win. In addition, the mold temperature at the lower end E of the step was controlled to 890°C, which is about 10°C lower than the solidus temperature of the brass, by moving the cooling jacket back and forth, so that this step became the solidification tip position. .

比較の為、鋳型に内径151I11、外径50mm、長
さ250mmの従来の円筒状黒鉛鋳型を用いて、前記と
同じ鋳造条件により65/35黄銅の棒状鋳塊を鋳造し
た。
For comparison, a 65/35 brass rod-shaped ingot was cast under the same casting conditions as above using a conventional cylindrical graphite mold with an inner diameter of 151I11, an outer diameter of 50 mm, and a length of 250 mm.

斯くのごとくして得られた各々の65/35黄銅の棒状
鋳塊について、ミクロクランク及びかぶりの有無を調査
した。結果は第1表に示した。
Each of the 65/35 brass rod-shaped ingots thus obtained was examined for the presence or absence of micro cranks and fogging. The results are shown in Table 1.

第1表より明らかなように本発明例の鋳塊にはミクロク
ラック及びかぶり欠陥が無く優れた品質のものであった
As is clear from Table 1, the ingots of the examples of the present invention had no microcracks or fogging defects and were of excellent quality.

これに対し比較例の鋳塊はいずれも品質に劣るものであ
った。即ちNo 5はテーパー角度が本発明の限定値を
超えた為に、凝固層外周部に溶融金属が入りこんでかぶ
り欠陥を生した。
On the other hand, the ingots of Comparative Examples were all inferior in quality. That is, in No. 5, since the taper angle exceeded the limit value of the present invention, molten metal entered the outer periphery of the solidified layer, causing a fogging defect.

又No 6〜8にはミクロクラックが発生したがこれは
No6は段差部が長すぎて段差部から凝固層先端部を分
離するのに高い張力を要した為、又No 7は段差部の
長さが短すぎて凝固層先端部を厚く形成できなかった為
、又No8は従来の内面フラットな鋳型を用いた為凝固
層先端の厚みが薄く、しかも引出しの際静止並びに運動
摩擦が作用した為である。
In addition, microcracks occurred in Nos. 6 to 8, but this was because the step part in No. 6 was too long and high tension was required to separate the tip of the coagulated layer from the step part, and in No. 7, the length of the step part was too long. Because the length was too short, it was not possible to form a thick tip of the solidified layer, and because No. 8 used a conventional mold with a flat inner surface, the thickness of the tip of the solidified layer was thin, and static and kinetic friction were applied during drawing. It is.

上記のNo 1〜8の鋳塊を引抜加工により3開φの線
材に加工して表面性状を観察したところ、本発明のNo
 1〜4の線材は平滑面からなり鋳型内面の段差部の影
響は全く認められなかった。
When the ingots Nos. 1 to 8 above were processed into wire rods with a diameter of 3 openings by drawing and the surface properties were observed, it was found that the ingots Nos. 1 to 8 of the present invention
Wire rods Nos. 1 to 4 had a smooth surface, and no influence of the stepped portion on the inner surface of the mold was observed.

これに対し比較例のNo5〜8は、よりロクラツク又は
かぶり欠陥に起因するソゲ状欠陥が多数存在し、いずれ
も皮剥ぎを要するものであった。
On the other hand, Comparative Examples Nos. 5 to 8 had many splinter-like defects caused by rock cracks or fogging defects, and all required peeling.

上記比較例のうち、従来の鋳型を用いたNo 8で、ミ
クロクランクを生しないようにするには、鋳造速度を1
30ss/sin程度に低減して凝固層を厚く形成する
必要があった。
Among the comparative examples above, in No. 8 using a conventional mold, the casting speed was changed to 1 in order to prevent micro cranks from occurring.
It was necessary to reduce the rate to about 30 ss/sin and form a thick solidified layer.

以上65/35黄銅について説明したが、本発明鋳型は
他の銅又は銅合金或いはAf又はA1合金等任意の金属
に適用して前記黄銅の場合と同様の効果が得られるもの
である。
Although 65/35 brass has been described above, the mold of the present invention can be applied to any other metal such as copper, copper alloy, Af or A1 alloy, and the same effects as in the case of brass can be obtained.

〔効果〕〔effect〕

以上述べたように、本発明鋳型によれば高品質の鋳塊を
高速度で連続鋳造することができ、工業上顕著な効果を
奏する。
As described above, according to the mold of the present invention, high-quality ingots can be continuously cast at high speed, and this has an industrially significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋳型の−IQ様を示す側断面図、第2図
イ〜ハは本発明鋳型における凝固形態の−態欅を示す側
断面図、第3図は横型連続鋳造方法の説明図、第4図は
従来鋳型における凝固形態を示す側断面図である。 1−・−鋳型、2・・・鋳塊、3・−・段差部、4・・
・凝固層先端部、5・・・凝固層、6・・・溶融金属、
7・・・冷却ジャケット、8・・・鋳造炉、9・・・ビ
ンチロール。
Fig. 1 is a side sectional view showing the -IQ aspect of the mold of the present invention, Fig. 2 A to C are side sectional views showing the -IQ aspect of the solidification form of the inventive mold, and Fig. 3 is an explanation of the horizontal continuous casting method. 4 are side sectional views showing the solidification form of a conventional mold. 1--Mold, 2--Ingot, 3--Step part, 4--
・Tip of solidified layer, 5... Solidified layer, 6... Molten metal,
7... Cooling jacket, 8... Casting furnace, 9... Vinci roll.

Claims (1)

【特許請求の範囲】 両端開放の鋳型の一端より溶融金属を供給して凝固せし
めて鋳塊となし、当該鋳塊を他端より引出してなる連続
鋳造方法にて用いる鋳型であって、当該鋳型の孔型が溶
融金属供給側の径D_aなる孔Aと、鋳塊引出側の径D
_bなる孔Bと、その中間部であって径D_cがD_a
<D_c<D_bの式を満足する孔Cとから構成されて
おり、孔Aと孔Cとの境界部が、孔A部から鋳型軸と直
角な方向に階段状に下記(1)式を満足する段差距離d
だけ拡径され、前記孔Cは当該段差下部端から孔Bの位
置まで下記(2)式を満足する傾斜角度θをもって順次
拡径された形状からなることを特徴とする連続鋳造用鋳
型。 0.005D_b≦d≦0.025D_b……‥(1)
0.003≦tanθ≦0.015……‥(2)
[Scope of Claims] A mold used in a continuous casting method in which molten metal is supplied from one end of a mold with both ends open, solidified to form an ingot, and the ingot is pulled out from the other end, the mold The hole A has a diameter D_a on the molten metal supply side, and a diameter D on the ingot withdrawal side.
A hole B called __b and a hole B in the middle part with a diameter D_c of D_a
<D_c<D_b, and the boundary between hole A and hole C satisfies the following formula (1) in a stepped manner from hole A in a direction perpendicular to the mold axis. step distance d
The continuous casting mold is characterized in that the diameter of the hole C is gradually expanded from the lower end of the step to the position of the hole B with an inclination angle θ that satisfies the following formula (2). 0.005D_b≦d≦0.025D_b……(1)
0.003≦tanθ≦0.015……(2)
JP9057890A 1990-04-05 1990-04-05 Mold for continuous casting Pending JPH03291133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9057890A JPH03291133A (en) 1990-04-05 1990-04-05 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9057890A JPH03291133A (en) 1990-04-05 1990-04-05 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH03291133A true JPH03291133A (en) 1991-12-20

Family

ID=14002317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057890A Pending JPH03291133A (en) 1990-04-05 1990-04-05 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH03291133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034056A1 (en) * 1997-10-21 2000-09-13 Wagstaff Inc. Casting of molten metal in an open ended mold cavity
KR101194846B1 (en) * 2010-06-14 2012-10-25 한국에너지기술연구원 Apparatus and method for manufacturing silicon thin plate using continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034056A1 (en) * 1997-10-21 2000-09-13 Wagstaff Inc. Casting of molten metal in an open ended mold cavity
EP1034056A4 (en) * 1997-10-21 2005-05-18 Alcan Int Ltd Casting of molten metal in an open ended mold cavity
EP1867411A3 (en) * 1997-10-21 2008-08-13 Novelis, Inc. Casting of molten metal in an open ended mold cavity
KR101194846B1 (en) * 2010-06-14 2012-10-25 한국에너지기술연구원 Apparatus and method for manufacturing silicon thin plate using continuous casting

Similar Documents

Publication Publication Date Title
JPH02205232A (en) Method and apparatus for drawing-up continuous casting
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
US3990498A (en) Method of continuous casting
JPH07113142B2 (en) Manufacturing method of phosphor bronze sheet
US3891024A (en) Method for the continuous casting of metal ingots or strips
JPH03291133A (en) Mold for continuous casting
JPH0255642A (en) Method and device for continuously casting strip steel
JPH11170014A (en) Horizontal continuous casting machine
RU94005388A (en) METHOD OF OBTAINING BIMETALLIC STRIP
JP2003311376A (en) Apparatus and method for casting metallic ingot
JPH03133543A (en) Continuous casting method
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
SU916060A1 (en) Method of horizontal continuous casting of hollow blanks
JP2501144B2 (en) Horizontal continuous casting method
JP2815282B2 (en) Centrifugal casting that can prevent internal defects
JP2003290878A (en) Horizontally continuous casting method
JPH06218497A (en) Mold for continuous casting
JP3338943B2 (en) Metal continuous casting equipment
JPH0243569B2 (en)
JPH0112579B2 (en)
JPS63188459A (en) Continuous casting method for round cast billet
JPS61229441A (en) Continuous casting method for preventing cavity in central part
SU1424950A1 (en) Method of continuous casting of a blank
JPH02175049A (en) Method for continuously casting metal pipe
JPS63224847A (en) Dummy bar for continuously casting metal strip