JPH0724921B2 - Subsurface solidification casting method in continuous casting - Google Patents
Subsurface solidification casting method in continuous castingInfo
- Publication number
- JPH0724921B2 JPH0724921B2 JP23991290A JP23991290A JPH0724921B2 JP H0724921 B2 JPH0724921 B2 JP H0724921B2 JP 23991290 A JP23991290 A JP 23991290A JP 23991290 A JP23991290 A JP 23991290A JP H0724921 B2 JPH0724921 B2 JP H0724921B2
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- solidification
- mold
- solidified shell
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はスラブ、ブルーム、ビレット等の連続鋳造方法
に関する。TECHNICAL FIELD The present invention relates to a continuous casting method for slabs, blooms, billets and the like.
[従来の技術] 一般に、連続鋳造においては、モールドによって冷却さ
れた凝固殻を速やかにモールド内壁を下降せしめつつ、
該凝固殻を順次生長させて健全な凝固を行わせることが
重要である。[Prior Art] Generally, in continuous casting, while rapidly lowering the solidified shell cooled by the mold on the inner wall of the mold,
It is important to grow the solidified shells in order to achieve sound solidification.
この健全な凝固を行わせるためにモールド上部に湯面保
護材を添加し、溶融金属の空気酸化の防止と前記凝固殻
とモールド内壁面を溶融パウダーによって潤滑し、凝固
殻の焼付けや破断を防止している。In order to achieve this sound solidification, a bath surface protective material is added to the upper part of the mold to prevent air oxidation of the molten metal and lubricate the solidified shell and the inner wall surface of the mold with molten powder to prevent baking and breakage of the solidified shell. is doing.
また、モールドの冷却と寿命向上を図るとともに、溶融
金属または凝固殻を緩冷却するために、凝固開始点を含
んで鋳型の下端または途中まで低熱伝導性材料を貼り付
けたものが、特開昭58−173061号公報、特開昭61−1957
42号公報等で提案されている。また、鋳型の寿命を延長
するため、鋳型の下端近傍を含んだ内壁面にセラミック
ス、ステンレス系金属等の耐摩耗性材料を貼ることが、
特開昭58−13445号公報で提案され、一部では実用化が
図られている。Further, in order to cool the mold and extend the life thereof, and to slowly cool the molten metal or the solidified shell, a low thermal conductive material is attached to the lower end or the middle of the mold including the solidification starting point. 58-173061, JP 61-1957
No. 42, etc. Further, in order to extend the life of the mold, it is possible to stick a wear resistant material such as ceramics or stainless steel on the inner wall surface including the vicinity of the lower end of the mold,
It has been proposed in Japanese Patent Laid-Open No. 58-14345, and has been partially put into practical use.
[発明が解決しようとする課題] しかしながら、先に述べた湯面保護材を用いた溶融パウ
ダーによる潤滑(所謂、融体による潤滑)では、モール
ドと凝固殻の間に流入する溶融パウダーの均一性が得ら
れないために、該凝固殻の形成が不均一となる。この結
果凝固殻のモールドへの焼付、破断あるいはパウダーの
巻込みによる表面疵の発生原因となる。[Problems to be Solved by the Invention] However, in the above-described lubrication by molten powder using the surface protection material (so-called lubrication by melt), the uniformity of the molten powder flowing between the mold and the solidified shell is Is not obtained, the formation of the solidified shell becomes uneven. As a result, surface defects may occur due to baking of the solidified shell on the mold, breakage, or inclusion of powder.
また、前述した特開昭58−173061号公報、特開昭61−19
5742号公報等で提案されている鋳型においては、湯面か
ら凝固が開始するため、溶融パウダーが必要とされ、オ
シレーションマーク、パウダー巻込み等の問題が依然と
して未解決のままである。また、特開昭58−13445号公
報で示されている耐摩耗性材料は、高熱雰囲気で使用さ
れる鋳型の下端を保護するために使用されており、注湯
された溶融金属の凝固に対しては、格別の影響を与えな
い。従って、この場合にも、従来の鋳型を使用した場合
と同様にオシレーションマーク、パウダー巻込み等の問
題が依然として未解決のままである。Further, the above-mentioned JP-A-58-173061 and JP-A-61-19.
In the mold proposed in Japanese Patent Publication No. 5742, etc., solidification starts from the molten metal surface, so molten powder is required, and problems such as oscillation marks and powder entrainment remain unsolved. Further, the wear-resistant material disclosed in JP-A-58-13445 is used to protect the lower end of a mold used in a high-temperature atmosphere, and to prevent solidification of molten metal poured. Does not have any particular effect. Therefore, also in this case, the problems such as oscillation marks and powder entrainment still remain unsolved as in the case of using the conventional mold.
そこで、本発明者等は先に小片セラミックスをモールド
全面に内張りし、該セラミックス片の厚みを鋳片の引抜
き方向に段階的あるいは連続的に変化させて固体潤滑に
よる鋳造方法を提案し、かなりの効果を上げている。Therefore, the inventors of the present invention first proposed a casting method by solid lubrication by lining a small piece ceramics on the entire surface of the mold, and changing the thickness of the ceramics piece stepwise or continuously in the drawing direction of the cast piece. It is effective.
しかし、このセラミックス小片を内張りした固体潤滑鋳
造も湯面下で凝固せしめるには、初期に形成された凝固
殻にモールド内面剥離と生長に負荷を生じるとともに鋼
種(スーパーヒート量)によっては、メタルベアが発生
し凝固殻の形成と生長の阻害となる場合があり、しかも
固体潤滑による高速鋳造化が指向し難い。However, in order to solidify even solid lubrication casting in which this ceramic piece is lined under the molten metal surface, the solidified shell formed in the initial stage causes a peeling of the inner surface of the mold and a load for growth, and depending on the steel type (superheat amount), a metal bear In some cases, it may occur to hinder the formation and growth of solidified shells, and it is difficult to aim for high speed casting by solid lubrication.
以上のことから、本発明は、モールドの内壁面にセミッ
クスを内張りし、このセラミックスを小片分割し、かつ
鋳片の引抜き方向にセラミックス厚みを変えることによ
って、セラミックス自体による固体潤滑を行い、湯面下
で凝固させてパウダーを使用することなく、高速で優れ
た品質の鋳片を製造すること可能な連続鋳造法を提供す
ることを目的とする。From the above, according to the present invention, the inner wall surface of the mold is lined with ceramics, the ceramics are divided into small pieces, and the ceramics thickness is changed in the drawing direction of the cast piece to perform solid lubrication by the ceramics itself. An object of the present invention is to provide a continuous casting method capable of producing a slab of excellent quality at a high speed without solidifying below and using powder.
[課題を解決するための手段] 本発明は、内壁全面に小片セラミックスの厚みを変化さ
せて内張りした、銅製又は銅表面にメッキを施してなる
モールドを用いて行う連続鋳造方法において、モールド
上部にて鋳造する溶融金属の断熱と引き続いて該溶融金
属を冷却凝固させる内曲率面を介して湯面下で溶融金属
を凝固させることを特徴とする。[Means for Solving the Problems] The present invention provides a continuous casting method in which a mold made of copper or plated on the copper surface is lined on the entire inner wall with the thickness of the small piece ceramics lined, and It is characterized in that the molten metal to be cast is heat-insulated, and subsequently, the molten metal is solidified below the molten metal surface through the inner curvature surface for cooling and solidifying the molten metal.
[作用] 連続鋳造時の生成凝固殻は溶融金属の静圧により内張り
セラミックス片に押圧されており、鋳片を鋳型から引き
抜くとき、鋳片とセラミックス内張りとの間の摩擦力が
発生する。一方、凝固開始点直下の初期凝固殻では、凝
固殻の厚みは薄く且つ弱い。鋳片が引抜力によって破断
しないためには、凝固殻がセラミックス内張り面にソフ
トタッチするように凝固を進行させ、摩擦力を低減する
必要がある。このために、セラミックス内張りの凝固開
始点を含む凝固開始点近傍において、鋳型の内面に、円
弧の下端と上端の円弧角が90度以下である内曲率部(以
下アール部と称する)を、鋳型内周面全周にわたって設
けることが有効である。このアール部に接する凝固殻に
は、鋳片引抜力によってアール部の曲率半径方向の力、
つまり溶融金属の静圧に抗して凝固殻を内張り面から引
き離そうとする力が作用することとなり、凝固開始初期
の凝固殻に作用する摩擦力は低減する。これにより、初
期凝固殻の破断限界内で高速の固体潤滑鋳造が可能とな
る。[Operation] The solidified shell produced during continuous casting is pressed against the lining ceramic piece by the static pressure of the molten metal, and when the slab is pulled out of the mold, a frictional force is generated between the slab and the ceramic lining. On the other hand, in the initial solidified shell just below the solidification start point, the thickness of the solidified shell is thin and weak. In order to prevent the slab from breaking due to the pulling force, it is necessary to reduce the frictional force by promoting solidification so that the solidified shell softly touches the ceramic lining surface. For this reason, in the vicinity of the solidification start point including the solidification start point of the ceramics lining, the inner surface of the mold has an inner curvature portion (hereinafter referred to as a rounded portion) having an arc angle of 90 degrees or less at the lower end and the upper end of the arc. It is effective to provide over the entire circumference of the inner peripheral surface. The solidified shell in contact with the radius portion has a force in the radius direction of the radius of the radius portion due to the slab withdrawal force,
In other words, the force of separating the solidified shell from the lining surface acts against the static pressure of the molten metal, and the frictional force acting on the solidified shell at the initial stage of solidification is reduced. This enables high speed solid lubrication casting within the fracture limit of the initially solidified shell.
アール部の曲率半径rは、20〜400mmが適切である。曲
率半径が20mm未満であると、引抜きとともに抜熱能力が
減退し、再溶解や二重凝固面が発生する。また、摩擦力
開放域の長さが短くなり、摩擦力軽減効果が小さくな
る。逆に、曲率半径が400mmを超えると、溶融金属の静
圧によって凝固殻が内張り面に押圧され通しとなり、摩
擦力開放の効果が得られない。この結果、凝固殻破断が
起こり、ブレークアウトに至る。なお、前記の円弧角は
90度から3度とすることが好ましい。The radius of curvature r of the rounded portion is appropriately 20 to 400 mm. If the radius of curvature is less than 20 mm, the heat removal capability will decrease with drawing and remelting or double solidification surface will occur. Further, the length of the frictional force releasing area becomes shorter, and the effect of reducing the frictional force becomes smaller. On the other hand, when the radius of curvature exceeds 400 mm, the solidified shell is pressed against the lining surface by the static pressure of the molten metal and passes through, and the effect of releasing the frictional force cannot be obtained. As a result, solidified shell fracture occurs, leading to breakout. The arc angle is
It is preferably 90 degrees to 3 degrees.
このように初期凝固によって形成される極めて薄く且つ
脆弱な凝固殻は、鋳片引抜き方向とアール部の曲率半径
方向との分力によって鋳型内面と凝固殻との間の摩擦を
軽減するから、破断することがない。この結果、初期形
成凝固殻の連続形成と引き続く正常な冷却によって健全
な凝固が発現できる。しかも、鋳造時の湯面変動による
メタルベアの生成がこの曲率部によって抑制される。The extremely thin and fragile solidified shell formed by the initial solidification reduces the friction between the inner surface of the mold and the solidified shell due to the component force between the slab withdrawal direction and the radius of curvature of the rounded portion. There is nothing to do. As a result, sound solidification can be achieved by the continuous formation of the initially formed solidified shell and the subsequent normal cooling. Moreover, the generation of the metal bear due to the fluctuation of the molten metal surface during casting is suppressed by this curved portion.
この曲率面の作用によって前述した如く初期に形成され
た凝固殻は剥離分力によって容易に冷却部のセラミック
ス片から離れるとともに、上端は存在する溶湯自熱によ
って再溶解と凝固殻の生成を繰り返しつつ下方に向かう
にしたがって凝固殻の厚みを増す。この結果凝固殻は平
滑な無欠陥のものが得られる。As described above, the solidified shell initially formed by the action of this curved surface easily separates from the ceramic piece of the cooling part by the separation component force, and the upper end repeats remelting and formation of the solidified shell by the self-heating of the existing melt. The thickness of the solidified shell increases as it goes downward. As a result, the solidified shell is smooth and defect-free.
また、湯面下で凝固せしめるには、凝固開始点は、湯面
から少くとも30mm下方にあることが好ましい。30mm未満
であると、湯面に散布した保温材が溶融金属内に巻込ま
れ、また湯面変動による湯面下凝固が困難となり、さら
には保温材の混濁層および浮上介在物の濃縮層を含んだ
欠陥凝固殻となる。凝固開始点を、湯面から少くとも30
mm下方に位置させることによって、生成した凝固殻は、
湯面変動に影響されることなく、安定した表面性状をも
つものとなる。Further, in order to cause solidification under the molten metal surface, the solidification starting point is preferably at least 30 mm below the molten metal surface. If it is less than 30 mm, the heat insulating material sprinkled on the surface of the molten metal is caught in the molten metal, and it becomes difficult to solidify below the surface due to fluctuations in the surface of the molten metal. It becomes a defect solidification shell. At least 30 solidification points from the surface
The solidified shell produced by locating
It will have stable surface properties without being affected by fluctuations in the molten metal surface.
[実施例] 次に、本発明の湯面下凝固鋳造方法を、第1図に示すモ
ールド構造と第1表に示す条件で鋳造した場合について
述べる。[Examples] Next, the case where the under-surface solidification casting method of the present invention is cast under the mold structure shown in FIG. 1 and the conditions shown in Table 1 will be described.
まず、図において1は銅製鋳型で、2は冷却水流路であ
り、該銅製鋳型1の内壁にはセラミックス片3が有機系
接着剤と金属粉を混合した層で接着されている。このセ
ラミックス片3は銅製鋳型1の鋳造方向に段階的に厚み
を変えており(即ち、引抜き方向に厚みを減じてい
る)、該銅製鋳型1の上端若しくは上部に溶融金属の断
熱部5aと冷却凝固させる部分5bが引き続いて形成された
内曲率面4を有するセラミックス5が全周に配設されて
いる。又、断熱部の構造においては、スーパーヒート量
を低目に許容するため断熱空間11を設けると、断熱部5a
に部分的に付着する地金付を防止することができる。First, in the drawing, 1 is a copper mold, 2 is a cooling water flow path, and a ceramic piece 3 is bonded to the inner wall of the copper mold 1 with a layer in which an organic adhesive and metal powder are mixed. The thickness of the ceramic piece 3 is changed stepwise in the casting direction of the copper mold 1 (that is, the thickness is reduced in the drawing direction), and the heat insulating portion 5a of the molten metal and the cooling are formed on the upper end or the upper part of the copper mold 1. A ceramics 5 having an inner curvature surface 4 in which a portion 5b to be solidified is successively formed is arranged all around. Further, in the structure of the heat insulating portion, if the heat insulating space 11 is provided in order to allow the superheat amount to be low, the heat insulating portion 5a
It is possible to prevent the metal from being partially attached to the.
このように構成された鋳型に浸漬ノズル6から溶融金属
7が注入され、凝固開始点8から凝固が行われる。9は
湯面であり、今回は凝固開始点8よりも50mmと100mm上
部で行った。10は湯面の保温材である。Molten metal 7 is injected from the dipping nozzle 6 into the mold thus configured, and solidification is performed from the solidification start point 8. No. 9 is the molten metal surface, and this time, it was performed 50 mm and 100 mm above the solidification starting point 8. 10 is a heat insulating material for the bath surface.
以上説明した本発明の鋳造方法を用いることにより、第
1表に示すように、従来の鋳造法であるF,G(比較例)
よりも明らかに高速鋳造を可能とし、しかも鋳片表面疵
の減少、ブレークアウトの抑制を図るとともに、鋳型内
パウダー(湯面保護材の融体による潤滑)を必要としな
い等極めて優れていることがわかる。By using the casting method of the present invention described above, as shown in Table 1, conventional casting methods F, G (comparative example)
It is extremely superior in that it enables high-speed casting obviously, reduces the flaws on the surface of the slab, suppresses breakout, and does not require powder in the mold (lubrication by the melt of the surface protection material). I understand.
[発明の効果] 以上述べた如く本発明の湯面下凝固鋳造方法を用いるこ
とにより、固体潤滑で高速鋳造を実現するとともに、鋳
片表面疵の減少およびブレークアウト等の鋳造事故を抑
制できる。 [Effects of the Invention] As described above, by using the under-solidification solidification casting method of the present invention, high-speed casting can be realized with solid lubrication, and casting accidents such as reduction of slab surface flaws and breakout can be suppressed.
また、鋳型内パウダーを必要としないことから経済的な
鋳造を実現するとともに、湯面変動量が大幅に許容でき
ることから連鋳操業が容易となる等、優れた効果が期待
できる。In addition, since no powder in the mold is required, economical casting can be realized, and since the amount of fluctuation in the molten metal surface can be significantly tolerated, continuous casting operation can be facilitated and other excellent effects can be expected.
第1図は本発明の鋳造方法の一例を示す部分断面図であ
る。 1……銅製鋳型、2……冷却水流路、3……セラミック
ス片、4……内曲率面、5……セラミックス、6……浸
漬ノズル、7……溶融金属、8……凝固開始点、9……
湯面、10……保温材、11……断熱空間FIG. 1 is a partial sectional view showing an example of the casting method of the present invention. 1 ... Copper mold, 2 ... Cooling water flow path, 3 ... Ceramic piece, 4 ... Internal curvature surface, 5 ... Ceramics, 6 ... Immersion nozzle, 7 ... Molten metal, 8 ... Solidification starting point, 9 ……
Hot water surface, 10 ... Heat insulation material, 11 ... Insulation space
Claims (1)
させて内張りした、銅製又は銅表面にメッキを施してな
るモールドを用いて行う連続鋳造方法において、モール
ド上部にて鋳造する溶融金属の断熱と引き続いて該溶融
金属を冷却凝固させる内曲率面を介して湯面下で溶融金
属を凝固させることを特徴とする連続鋳造における湯面
下凝固鋳造方法。1. In a continuous casting method using a mold made of copper or plated on the copper surface, which is lined with varying thickness of small piece ceramics on the entire inner wall, heat insulation of molten metal cast on the upper part of the mold Subsequently, the molten metal under-solidification casting method in continuous casting is characterized in that the molten metal is solidified under the molten metal surface through an inner curvature surface for cooling and solidifying the molten metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23991290A JPH0724921B2 (en) | 1990-09-12 | 1990-09-12 | Subsurface solidification casting method in continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23991290A JPH0724921B2 (en) | 1990-09-12 | 1990-09-12 | Subsurface solidification casting method in continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04123846A JPH04123846A (en) | 1992-04-23 |
JPH0724921B2 true JPH0724921B2 (en) | 1995-03-22 |
Family
ID=17051701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23991290A Expired - Lifetime JPH0724921B2 (en) | 1990-09-12 | 1990-09-12 | Subsurface solidification casting method in continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0724921B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101301384B1 (en) * | 2011-08-01 | 2013-09-10 | 주식회사 포스코 | Mold for continuous casting |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9621427D0 (en) | 1996-10-15 | 1996-12-04 | Davy Distington Ltd | Continuous casting mould |
-
1990
- 1990-09-12 JP JP23991290A patent/JPH0724921B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101301384B1 (en) * | 2011-08-01 | 2013-09-10 | 주식회사 포스코 | Mold for continuous casting |
Also Published As
Publication number | Publication date |
---|---|
JPH04123846A (en) | 1992-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1220606A (en) | Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine | |
JPH0724921B2 (en) | Subsurface solidification casting method in continuous casting | |
EP0448773B1 (en) | Continuous caster mold and continuous casting process | |
US5127462A (en) | Side wall construction for continuous belt caster | |
JP3805708B2 (en) | Horizontal continuous casting method | |
JP3289118B2 (en) | Shrinkage hole reduction device in continuous casting | |
JP3256148B2 (en) | Continuous casting method of steel with large shrinkage during solidification process | |
JPH06339754A (en) | Method for continuously casting thin sheet | |
JPH06104266B2 (en) | Method of preventing vertical cracking of slab in high speed casting | |
JP3061794B1 (en) | Mold for horizontal continuous casting of hypoeutectic cast iron and horizontal continuous casting method | |
CA1325875C (en) | Side wall construction for continuous belt caster | |
SU738754A1 (en) | Method of continuously casting metals into small-section ingots | |
JPS63188459A (en) | Continuous casting method for round cast billet | |
JPH09253800A (en) | Mold for continuous casting | |
JPH0716764B2 (en) | Continuous casting method and apparatus for copper and copper alloys | |
JPS61169147A (en) | Continuous casting method | |
JPH0128661B2 (en) | ||
JPH0679754B2 (en) | Belt-type continuous casting dipping nozzle | |
JPH02220736A (en) | Continuous casting method and mold for continuous casting | |
JP2941525B2 (en) | Belt for twin belt type continuous casting equipment | |
JPH04138844A (en) | Solid lubricated casting method having excellent quality in cast slab | |
JPH0694059B2 (en) | Cooling mold for continuous casting | |
JPS63160750A (en) | Introducing pipe-mold for continuous casting | |
JPH01249240A (en) | Manufacture of hollow billet | |
JPH04197555A (en) | Mold for horizontal continuous casting having excellent wear resistance |